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,e optimization of high-dimensional functions is an important problem in both science and engineering. Wolf pack algorithm is
a technique often used for computing the global optimum of a multivariable function. In this paper, we develop a new wolf pack
algorithm that can accurately compute the optimal value of a high-dimensional function. First, chaotic opposite initialization is
designed to improve the quality of initial solution. Second, the disturbance factor is added in the scouting process to enhance the
searching ability of wolves, and an adaptive step length is designed to enhance the global searching ability to prevent wolves from
falling into the local optimum effectively. A set of standard test functions are selected to test the performance of the proposed
algorithm, and the test results are compared with other algorithms. ,e high-dimensional and ultrahigh-dimensional functions
(500 and 1000) are tested. ,e experimental results show that the proposed algorithm features in good global convergence, high
accuracy calculation, strong robustness, and excellent performance in high-dimensional functions.

1. Introduction

,e rapid development of science and technology enriches
human life. Meanwhile, the problems encountered in various
fields, especially in engineering and technology related fields,
become increasingly complex and diversified, for example, large-
scale dispatching problems [1–3] and large-scale power system
optimization problems [4–6]. ,e complexity of the problem
increases exponentially with the increase of dimension, which
reduces the performance of traditional optimization algorithms
and thus the ability to solve this kind of problems well. Inspired
by the living mode of creatures in nature, swarm intelligence
algorithm contains the wisdom of nature for thousands of years.
Compared with the traditional optimization algorithm, its
structure is simple and easy to implement, so it is widely used.
Swarm intelligence algorithm is applied to high-dimensional
function optimization problems by many scholars. ,e study in
[7] used neighborhood factors to improve the NFO algorithm,
which is applied to complex optimization problems and achieves
good results. Compared with the traditional particle swarm
optimization (PSO) algorithm, the improved particle swarm
optimization algorithm in [8] is applied to high-dimensional

function optimization because its convergence accuracy in high-
dimensional function is improved. ,e study in [9] applied the
improved dolphin colony algorithm to solve the high-dimen-
sional function optimization problem and achieved good results.
Although the performance of the improved method outweighs
the original algorithm in high-dimensional function optimiza-
tion, the improved one still has low convergence precision and
low solving efficiency, making it difficult to meet the require-
ments of more and more refinement in the field of engineering
science and technology.

In [10], wolf pack algorithm (WPA) was proposed based
on a detailed analysis of wolves’ scouting behavior and prey
allocation methods. WPA is abstracted as three kinds of
artificial wolves (the lead wolf, the scout wolf, and the fe-
rocious wolf ). In the process of hunting, there are three
kinds of intelligent behaviors (the calling of the lead wolf, the
wandering of the scout wolf, and the siege of the ferocious
wolf ), in addition to the generation rule of the “winner is the
king” and the population updating rule of “survival of the
fittest”. As a novel swarm intelligence algorithm, WPA has
good performance in global optimization and local explo-
ration [11]. Its optimization method is different from the
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previous bionic intelligent algorithms such as particle swarm
optimization (PSO) [12], ant colony optimization (ACO)
algorithm [13], shuffled frog leaping algorithm (SFLA) [14],
genetic algorithm (GA) [15], and artificial bee colony (ABC)
algorithm [16]. It is widely adopted in PID parameter tuning
[17], path planning [18], knapsack problem [19], combi-
national optimization problem [20], etc. ,e study in [10]
indicates that the superiority of WPA is obvious in solving
complex and high-dimensional problems. However, some
shortcomings still exist in the algorithm: for example, the
initial population produced randomly makes the algorithm
easily fall into local optimum, and low quality initial solution
increases the calculation amount of the algorithm; the
greedy search method and rigid wandering direction of wolf
detection stand great chances of falling into local optimum
and missing the optimal solution; the step size of three linear
relationships leads to the inflexible movement of the whole
wolf pack, increasing the computational complexity of the
algorithm.

,e study in [21] makes use of tent chaotic mapping
method to improve the quality of initial solution to the wolf
pack algorithm, which endows the WPA with faster con-
vergence speed and higher solution accuracy. In [22], a chaos
optimization method based on logistic map was used to
initialize the population, which improved the optimization
accuracy and convergence rate of WPA. In [23], the d-di-
mensional chaotic variables were mapped to the solution
space to obtain the initial wolf group. With the aid of op-
position based learning (OBL), the study in [24] adopts an
opposite wolf pack initialization method and puts forward
an oppositional wolf pack algorithm (OWPA), which im-
proves the quality of the initial solution and the convergence
speed of the algorithm.

However, considering only the initial population quality
or initial population distribution, the above method is still
prone to fall into local optimum and the convergence ac-
curacy is not high in some functions. Meanwhile, the above
improved method is not applied to high-dimensional
function optimization, so it is difficult to show that it has
advantages in high-dimensional function optimization.

Compared with the existing research work, the four
main innovative aspects of this paper are as follows:

(1) Chaotic self-logical sequences are used and mapped
to the solution space, and then the initial population
is further optimized by the reverse formula

(2) Disturbance factor is used to disturb the wolf ’s scout
direction to increase the randomness of the scout

(3) ,e scouting step length of the scout wolf and the
ferocious wolf is set as the adaptive step size, so as to
adjust the moving speed according to their own
position during the movement process

(4) A lot of experimental comparisons are made on
hyperdimensional function showing the effective-
ness of the improved algorithm

,e remainder of this paper is organized as follows: In
Section 2, the chaotic disturbance wolf pack algorithm
(CDWPA) is described in detail. In Section 3, the theoretical

analysis of the algorithm is provided. In Section 4, a variety
of benchmark functions with different mathematical char-
acteristics are tested. ,e simulation turns out that the
CDWPA possesses higher accuracy in convergence and
computational robustness and can effectively solve the
problem of high-dimensional function optimization.

2. Chaotic Disturbance Wolf Pack Algorithm

,e wolves are located in the Euclidean space N × D, in
which N is the total number of artificial wolves in the pack
and Dis the number of variables to be optimized. ,e po-
sition of the artificial wolf Xi can be expressed as
Xi � (Xi1, Xi2, . . . , Xi D), where Xid is the position of the
artificial wolf Xi in the d-dimensional variable
spaced � (1, 2, . . . , D) to be optimized; the odor concen-
tration of prey perceived by the artificial wolf Xi is
Yi � f(Xi), where Yi is the value of the target function. ,e
improved wolf pack algorithm is composed of chaos reverse
initialization population, wolf generation, adaptive and
disturbance scout, fierce wolf siege, and population update
rules. ,e algorithm flowchart is shown in Figure 1.

2.1. Chaotic Opposite Initialization of the Population.
Chaotic state exists widely in nature and society. It has the
characteristics of randomness, ergodicity, and regularity.
Chaotic movement can traverse all the states according to its
own law in a certain range. ,erefore, in order to ensure the
diversity and randomness of the individual population of
wolves Xi, this paper adopts logical self-mapping (LSM)
function to generate the wolf pack sequence. First, random
wolves Xi were created, and then wolves Xi were mapped to
chaotic space (− 1, 1) by

Zi � 2 ×
Xi − lb
ub − lb

− 1, (1)

Zi+1 � 1 − 2 × Z
2
i . (2)

To intuitively display the characteristics of the above
chaotic maps, the probability distribution characteristics of
the logical self-mapping on the (0, 1) interval are compared
with those of Gauss map [25], sinusoidal iterator [26], and
logistic map [27]. ,e calculation of probability distribution
is estimated as follows: 50000 chaotic numerical points are
generated by 50000 iterations of chaotic map, the interval (0,
1) is equally divided into 100 intervals, and the probability of
these 50000 points falling into 100 equal intervals is counted;
the probability distribution diagram is shown in Figures 2–5.

From the analysis of Figures 2–5, the distribution of
sinusoidal iterator is low in the front end but high in the back
end, and most of the initial solutions are distributed in the
interval (0.5, 1). If the optimal value of the function problem
does not exist in this interval, it will easily miss the optimal
solution by the sinusoid iterator. ,e Gauss map is just the
opposite; its probability distribution shows a decreasing
trend, and the distribution trend of the logistic map is very
large in middle and small at both ends. If the global optimal
solution of the function problem is distributed in the middle,
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a large number of invalid searches will appear, which will be
unfavorable to global optimization. LSM chaotic sequences
are uniformly distributed in the interval (0, 1). ,is dis-
tribution can avoid oversearching in some local areas (for
example, a large number of searches of logistic maps are
concentrated at both ends of the interval), thus reducing the
adverse effects on the optimization algorithm due to the

mismatch between the distribution characteristics of chaotic
sequences and the position of the global optimal solution of
the optimization problem.

If the definition domain of logical self-mapping function
is (− 1, 1) except for 0 and 0.5, chaos will take effect in logic
definition. After the chaotic variable sequence is obtained by
chaotic search, the chaotic ergodic sequence should be
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Figure 1: Flowchart of CDWPA.
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transformed into the original solution space according to the
following formula to evaluate the fitness value.

Xi+1 � 0.5 ×(ub − lb)∗Zi+1 + 0.5 ×(ub + lb). (3)

Among them, uband lbrepresent the upper and lower
boundaries of the artificial wolf Xi, respectively. Besides, the
objective function values of the system random wolf pack Xi

and chaotic mapping wolf pack Xi+1 are calculated severally.
Once the better solution is found in this process, the better
wolf pack will replace the original wolf pack. ,en the
optimized wolf pack is operated reversely to calculate the
reverse wolf pack.

OXi
′ � Ld + Ud − xi+1. (4)

Many artificial wolves with better target function values
are selected from the Xi+1 ∪OX′  to form the initial wolves
and complete the initialization of the wolves.

2.2. Selecting Lead Wolf. ,e lead wolf, responsible for
directing the whole to cooperate in hunting, is the artificial
wolf with the largest odor concentration of prey in each
generation. In the algorithm, the artificial wolf with the
largest objective function value is selected as the lead wolf in
the current wolf pack.,ere is only one lead wolf. If there are
multiple wolves with the same objective function value, one
of them will be randomly selected as the leader. Meanwhile,
the lead wolf is not a life-long system. In the process of
operation, if the objective function value of the artificial wolf
Xi is better than that of the current one, the artificial wolf Xi

will replace the former one and become the current leader.
,e lead wolf does not perform the behavior of wandering,
besieging, and so on.

2.3. Adaptive Disturbance Scout. After the lead wolf is de-
termined, the scout wolf proceeds with optimization
according to its own position, and the basic calculation
formula is the following one:

xid � xid + step × sin 2π ×
p

h
 . (5)

In this formula, xid refers to the place of the current
searching wolf, stepis the walk length, h is the walk direction,
p ∈ (1, h). After h is given in the formula, the searching wolf
can only walk in a fixed direction, which is easy to fall into
local optimum. ,erefore, a random disturbance factor δ �

rand(round(p/p)) is designed to change the walking for-
mula to

xid � xid + step∗ sin 2π ×
p

h
+ δ . (6)

At the same time, considering the distance between the
detection wolf and the lead wolf, the scouting step length is
improved to

step � rand × norm xi − xbest

����
����, (7)

where xi stands for the current location of the lead wolf and
xbest is the optimal location of the lead wolf, so that the
detection wolf can not only cover the fixed search range
previously, but also search other directions randomly, which
increases the optimal searching ability by breaking through
the encirclement. ,e walking location set of the detection
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Figure 3: Sinusoidal iterator.
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wolf is xid � x1
id, x2

id, . . . , xh
id , and the value of the target

function and that of the lead wolf are analyzed. If the fitness
value is greater than the current lead wolf, then the current
wolf detector becomes the lead wolf.

By analyzing (5), after the search direction h is fixed, the
migration of different wolf detectors is equivalent to the
movement in fixed directions of h. As shown in Figure 6, if
the optimal prey is located at the parallel lines of the search
direction, the detection wolf will be easily trapped into the
local optimum and escape will be difficult. When the dis-
turbance factor δ and adaptive step size are added, the search
direction of the wolf detector is more random and possesses
strong ability to break through; thus, it is not easy to fall into
local optimum.

2.4. 2e Besiege of Ferocious Wolf. When the scouting be-
havior is over, the current artificial lead wolf sends out a
calling behavior to inform the other artificial wolves of their
own location and fitness value. ,e rest of the artificial
wolves move closer to the lead wolf in a rush step according
to their distance from the lead wolf.

x
k+1
id � x

k
id + stepd

b ×
g

k
d − x

k
id

g
k
d − x

k
id




. (8)

In the formula, gk
d stands for the current location of the

lead wolf. stepd
b is the besieging size of ferocious wolf. When

the artificial wolf is far away from the lead wolf, it approaches
the lead wolf with a larger step length; when the artificial
wolf is close to the lead wolf, it approaches the lead wolf with
a smaller step length. In addition, if the odor concentration
of prey perceived by the ferocious wolf is greater than that of
the current lead wolf, the strong one will become the leader,
guiding the wolf pack to hunt until it is replaced by a better
wolf or its operations is over.

After the iteration of the k + 1, if the odor concentration
of prey perceived by wolf Wi is Yk+1

i >Yk
lead, then the fe-

rocious wolf Wi replaces the former wolf leader and initiates
the calling behavior. If the odor concentration of prey
perceived by wolf Wi is Yk+1

i <Yk
lead, then the ferocious wolf

Wi will continue to attack until the distance Lis between wolf
Wi and the lead wolf is less than the determined distance
Lnear; it changes into besiege behavior. Given that the value
range of the d-variable to be optimized is [mind,maxd], w is
the determinant factor in distance, and the determinant
distance is

Lnear �
1

Dw


D

d�1
maxd − mind


. (9)

2e Act of Siege. After the attack, the wolves besiege the
prey to capture it. At this time, the position of the wolf is
regarded as the location of the prey. If the prey’s position in
the d-dimensional space is Gk

d, the siege behavior of wolves
can be expressed by the following equation:

x
k+1
id � x

k
id + λ · stepd

c · G
k
d − x

k
id



, (10)

where λ is the random integer evenly distributed in the
interval [− 1, 1] and stepc is the siege step length. If the odor
concentration of prey perceived by artificial wolf is greater
than that of its original position after the siege, the location
of the artificial wolf will be updated; otherwise, the location
of the artificial wolf will remain unchanged.

2.5. Updating the Wolves. To maintain the competitiveness
and diversity of the wolf pack, after the end of the hunting
behavior, the wolf pack will distribute the prey according to
their contributions and eliminate the artificial wolf R with
the worst fitness value. At the same time, the artificial wolf R

will be randomly generated to complete the population
updating. R is the random integer in [(N/2β), (N/β)], and β
will be taken as the updating proportion factor.

,e steps of chaotic disturbance wolf pack algorithm are
as follows:

Step 1. Chaos reverse wolf group initialization: initialize
the spatial coordinates of wolf pack randomly in the
solution space according to (1)–(4).
Step 2. Adaptive disturbance walk: the walk strategy is
carried out on (6)–(7).
Step 3. Calling behavior: the lead wolf sends out signals
based on its position; the besieging wolf takes adaptive
attack strategy to approach the lead wolf after receiving
the signal.
Step 4. ,e siege of ferocious wolf: after reaching the
siege distance, the ferocious wolf starts to encircle the
prey.
Step 5. Update the location of the wolf pack: sort on the
basis of the fitness value of the wolf pack, and select the
best one.
Step 6. Population regeneration: individuals with poor
fitness in the population will be eliminated, and an
equal number of new individuals will be generated.
Step 7. Repeat the process of 2–6 until the maximum
number of iterations is reached or the algorithm ac-
curacy meets the threshold.

3. Theoretical Analysis of the
CDWPA Algorithm

3.1.ConvergenceAnalysis of theAlgorithm. Markov chain is a
stochastic process with no aftereffect, which is often used to
prove the convergence of the algorithm [28]. CDWPA is a
process that repeatedly produces chaotic sequence, reverse
scouting, summoning, rush, besieging, and wolf pack re-
newal behavior. Each behavior of the population is only
related to the current state of the population but has nothing
to do with the previous state. ,erefore, the CDWPA
population sequence conforms to Markov chain.

Reference [29] has proved that if an intelligent algorithm
satisfies the following two conditions, the intelligent algo-
rithm converges to the global optimal solution with prob-
ability 1.
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Condition one: the sum of any two solutions x1 and x2
in the solution space x2 can be obtained by various
operators in x1 of the algorithm
Condition two: if the population sequence
Q1, Q2, . . . , QN is monotone

According to relevant theories, the problem of proof is
transformed into the following two points:

Point one: the CDWPA population sequence is ergodic
Point two: CDWPA is a finite homogeneous Markov
chain

If the above two conditions are satisfied, CDWPA will
converge to the global optimal solution with probability 1.

Assuming that the search space of CDWPA is Q and
the state changes of state space caused by chaotic

sequence, reverse population, scouting, rushing, be-
sieging, and population updating are, respectively,
expressed by transition probability H, F, Y, B, W, Z, then
the transition probability matrix of Markov chain of
CDWPA is obtained as

P � H × F × Y × B × W × Z. (11)

,e definitions are given as follows:

Definition 1. Assume the Pij to be the transition probability
matrix of a Markov chain. If there is such a matrix for
i, j ∈ Q ∍ k≥ 1, resulting in Pk

ij > 0, then the Markov chain is
said to be irreducible.

Global
optimum prey

Scout wolf 2 Scout wolf 2

Scout wolf 1 Scout wolf 1
Current

optimal prey step = rand × norm ||xi – xbest||

+δ

xp
id = xid + sin (2π × p/h) × stepad xp

id = xid + sin (2π × p/h + δ)·step 

(a)

Global
optimum prey

Scout wolf 2

Scout wolf 1

Scout wolf 2

Scout wolf 1
Current

optimal prey step = rand × norm ||xi – xbest||

+δ

xp
id = xid + sin (2π × p/h) × stepad xp

id = xid + sin (2π × p/h + δ)·step 

(b)

Figure 6: Disturbed scout and fixed scout: (a) when h� 4, p� 1 : 4; (b) when h� 8, p� 1 : 8.
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Definition 2. Assume that there is a nonempty set
I � k | k≥ 1, Pk

ij > 0,∀i, j ∈ Q . If the greatest common di-
visor of the set I is 1, then the Markov chain is aperiodic.

Definition 3. Assume that ui � 
∞
k k · Pk

ij for a recurrent
state i. If ui < +∞, ui is called normal return. In particular, if
i is normal recurrent and aperiodic, then theMarkov chain is
ergodic.

To prove the convergence of CDWPA, we have the
following two points.

Point one: the Markov chain of CDWPA population
sequence is ergodic.
,e following is proved: (1) Markov chain of CDWPA
population sequence is irreducible. Suppose the gen-
eration population k of the algorithm is
Qk � X1, X2, . . . , XN , Xiis the state of the first arti-
ficial wolf. Because the transition probability matrix
Pij � P Qk+1 � j | Qk � i, k≥ 1  of the population
Markov chain is only related to the initial and terminal
states i, j and Qk > 0 is always true, the transition
probability matrix P of a population is positive definite
matrix. According to Definition 1, the Markov chain of
CDWPA population sequence is irreducible. (2) ,e
Markov chain of CDWPA population is aperiodic and
irreducible. For a given k> 0, the Markov chain ob-
tained from condition one is irreducible, and ∍j ∈ Q is
inevitable, so that it holds that Pij > 0, and combined
with Definition 2, k � 1. ,erefore, the maximum
common divisor of Q is 1, so the Markov chain of
CDWPA population is aperiodic. From (1),eMarkov
chain of CDWPA population is aperiodic and
irreducible.
,e Markov chain of CDWPA population is ergodic.
Since the values of the transition matrix H, F, Y, B, W,
and Z are all within [0, 1] and Pij is the probability of
the stateibeing transformed into a statej through
various behaviors, there must be 0≤Pij ≤ 1; let
σ � max Pij | i, j ∈ Ω . ,e Cauchy–Riemann equation
and Definition 3 prove ui � 

∞
k k · Pk

ij ≤ 
∞
k kεk ≤∞.

In conclusion, the Markov chain of CDWPA pop-
ulation sequence is ergodic, and point one is proved.
Point two: CDWPA is a finite homogeneous Markov
chain.
It is proved that each generation of populationQkis
limited, and so is Markov chain; secondly, the algo-
rithm repeatedly generates chaotic sequence, reverse
scouting, summoning, rush, siege, and wolf pack up-
date behavior to find better prey, and the individual
renewal has the characteristics of high-quality selection.
,e generation of population is only related to current
generation. After repeated iterative optimization,
CDWPA can obtain a set of sequence solutions, and the
sequence is a finite homogeneous Markov chain. To
sum up, reasoning 1 and 2 show that the Markov chain
of CDWPA population sequence is ergodic, and its

sequence solution is a finite homogeneous Markov
chain. ,erefore, it is proved that CDWPA converges
to the global optimal solution of the problem with
probability 1.

3.2. Time Complexity Analysis of the Algorithm. ,e time
complexity reflects the operation efficiency of the algorithm.
,e time complexity of cuckoo algorithm is analyzed in [30].
In this paper, the samemethod is adopted to analyze the time
complexity of CDWPA.

In theWPA, we set the size of the wolf pack as N and the
individual dimension as n. If the time of step size step,
update scale factor β, search direction of wolf Tmax, and
judging distance dnear is η0, the time of generating random
number is η1, and the time of solving fitness function value is
f(n), then the time complexity of initialization phase is
shown in

O η0 + N n · η1 + f(n)( (  � O(n). (12)

,e wolf pack was sorted in line with the fitness value,
the time of the lead wolf was selected as η2, and the time for
the artificial wolf to execute the walking strategy was cal-
culated as η3. In the summoning step, the distance between
the artificial wolf Xi and the lead wolf Xlead is η4, the time
needed to move the position of a single wolf in each di-
mension is η5, and the time to judge whether the attack range
is reached is η6; then, the time complexity of this stage is
given as

O N η2 + η3 + η4 + n · η5 + η6( (  � O(n + f(n)). (13)

From the above formula, we can get the time complexity
of the (WPA) to obtain the optimal solution of each
generation.

Tn � O(n) + O(n + f(n)) � O(n + f(n)). (14)

,e process of CDWPA is analyzed. In the initialization
stage, the generation time of logical self-mapping sequence is
t1, and the time of reverse generation population is t2. ,e
other generation parameters, dimensions, and solution fit-
ness function values are the same as those ofWPA.,en, the
time complexity of CDWPA initialization phase is given as

O η0 + N n · η1 + f(n) + t1 + t2( (  � O(n + f(n)). (15)

,e time of calculating the distance between the de-
tection wolf Xi and the lead wolf added by the adaptive step
length is η7, and the other wolves are selected to perform the
same steps as WPA, such as scouting, summoning, and
besieging; then, the time complexity of this stage is

O N η2 + η3 + η4 + n · η5 + η6 + η7( (  � O(n + f(n)).

(16)

To sum up, the total time complexity of CDWPA to find
the optimal value of each generation is shown as

O(n) + O(n + f(n)) � O(n + f(n)). (17)
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From the above analysis, compared with WPA, the time
complexity of CDWPA does not change, and the efficiency
of CDWPA does not decrease.

4. Simulation Experiment and Algorithm
Validity Test

4.1. Test Function. In order to test the performance of the
CDWPA proposed in this paper, we select 10 standard test
functions in [31] (dimensions from 2 to 200) to conduct the
first set of experiments, and compare the optimization
performance with wolf pack algorithm (WPA), oppositional
wolf pack algorithm (OWPA) in [24], chaotic wolf pack
algorithm (CWPA) in [22], PSO, ABC, and ASFA [32]. In
order to further verify the ability of the improved algorithm
to solve high-dimensional complex functions, the second set
of experiments was carried out. Four high-dimensional (500
and 1000 dimensions) functions covering different types
were selected, and the test results of seven algorithms were
compared.,e specific characteristics of the 10 standard test
functions are shown in Table 1. “U” is unimodal function,
“M” is multimodal function, “S” is separable function, and
“N” is nonseparable function. Unimodal function is used to
test the mining ability of the algorithm, multimodal function
tests the exploration ability of the algorithm, and high-di-
mensional function tests the ability of the algorithm to solve
complex problems.

To express the optimization effect more clearly, BEST,
WORST, MEAN, and STD are selected to represent the best
objective function value, the worst value, the mean value of
target function, and the standard deviation of target function
at the end of the optimization result. SR (successful rate)
indicates the success rate of optimization, and the ideal
optimal value of the function is set as R. when the rela-
tionship of them satisfies (18), the optimization is successful.

|BEST − R|≤ 1OE − 6. (18)

4.2. Simulation Experiment and Result Analysis. Because
different authors adopt various parameters, this paper selects
the same general parameters; for example, the population
size is 100 (wolves, particle swarm, fish swarm, bee colony,
etc.), the maximum number of iterations in the first set of
experiments is 200, and the maximum number of iterations
in the second set is 2000. ,e other parameter settings are
shown in Table 2.

,e above experimental environment is as follows: HP
Shadow Genie 4, Windows 10, inter® Core™ i7-8750H; the
program is implemented by MATLAB R2017b, M language.

In the above table, Tmax means the maximum scouting
times. S means step length factor. ωω means determination
distance factor. β means renewal scaling factor.ω means
inertia weight. c1 and c2 mean learning factor. limitv means
individual speed limit. N means number of bees. limit

means controls parameter. trynum means maximum
number of temptations. v means sense of distance. de means
crowding factor. step means step size.

4.2.1. Analysis of the First Set of Experimental Results.
Table 3 shows the optimal value, mean value, worst value,
standard deviation, and success rate of the seven algorithms
for ten standard test functions.

Table 3 shows the comparison of the first set of exper-
imental results of the seven algorithms. ,e analysis shows
that the success rate of CDWPA for ten test functions is
100%, and the results are better than WPA, OWPA, and
CWPA, except that the performance of Booth optimization
of 2D function is worse than ABC, the performance of other
function optimization is better than other algorithms, and
the convergence accuracy of CDWPA in f2f3f5f6f7f9,f10
is improved. In particular, for functions f1 and f6, their
convergence results achieved the theoretical optimal value 0.
Simulation results show the effectiveness of the improved
CDWPA.

In the case of the same population size and iteration
times, on the solution of the low peak one-dimensional
separable function sphere, the success rate of PSO, ABC, and
ASFA was 0. ,e success rate of WPA, OWPA, CWPA, and
CDWPA was 100%. Moreover, CDWPA is obviously su-
perior to other algorithms in terms of optimal value, worst
value, standard deviation, and average value, which indicates
that CDWPA owns better calculation accuracy and
robustness.

Except for ABC, all algorithms can successfully search
for the solution of the unimodal low-dimensional indivisible
functions Easom and Matyas. OWPA has the best optimal
value, and CDWPA follows closely with slight difference.
Moreover, it is better than OWPA and other algorithms in
mean value, standard deviation, and STD, which shows that
CDWPA algorithm has stronger stability and balance ability.

When solving the low-dimensional, multipeak, and
separable function Booth, the success rate of all algorithms is
100% except ASFA which is 95%. CWPA has the best op-
timal value. Compared with WPA and the two improved
wolf pack algorithms OWPA and CWPA, CWPA is better in
terms of mean, variance, and worst value. However,
CDWPA has no obvious advantage compared to ABC.

In solving the step of middle dimension, unimodal and
separable functions, WPA and CDWPA can find the the-
oretical optimal value, and the success rate is 100%. CDWPA
has fewer iterations and higher optimization efficiency.
However, the OWPA with the same reverse strategy holds a
success rate of only 50%, and its convergence accuracy is
lower than that of CDWPA. In CDWPA, chaotic sequences
are used to optimize the initial population.

For solving unimodal and multidimensional inseparable
function on Eggcrate, the success rate of PSO, ABC, WPA,
and CDWPA is 100%, and that of OWPA and CWPA is 95%
and 40%, respectively, yet the success rate of ASFA is only
5%. CDWPA has the best performance in respect of optimal
value optimization and is many orders of magnitude more
accurate than other algorithms. At the same time, it per-
forms better in mean value, standard deviation, and worst
value.

For 200-dimensional functions, PSO, ABC, and ASFA
cannot be well optimized when the number of iterations is
set to 200, making it easy to fall into local optimization and
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difficult to escape. WPA, OWPA, CWPA, and CDWPA
proposed in this paper have good performance on high-
dimensional functions. By analyzing and comparing the
characteristics of these algorithms in solving high-dimen-
sional functions, the characteristics of CDWPA are
illustrated.

First, the function Sumsquares belongs to the high-di-
mensional, unimodal, separable function, and Quadric is a
peak multidimensional separable function. ,e success rate
of WPA, OWPA, and CDWPA is 100%, and the success rate
of CWPA is 90%. Compared with functionf5, the only
difference from function f7 and function f8 is that both of
them are high-dimensional function. ,is shows that
CDWPA has its own advantages in high-dimensional
function optimization, and CDWPA has improved a lot
compared with the optimal value, average value, variance,
and other indicators.

For Griewank and Ackley with 200-dimensional, mul-
timodal, separable function, the success rate of WPA is 95%
and 96%, and that of CWPA is 100% and 0, respectively,
which are easy to fall into local extremum. For OWPA and
CDWPA, the success rate is 100%, while CDWPA can get
global extremum. At the same time, by comparing OWPA
with CDWPA further, it turns out that CDWPA is better
than OWPA in the precision of optimal value, and CDWPA
is less than OWPA in variance, which indicates that
CDWPA is better than OWPA in robustness.

For low-dimensional functions such as f1, f3, f4, and
f5, the classical intelligent optimization algorithms of PSO,
ABC, and ASFA have a good solving effect. Although
CDWPA effect is improved, it is not very obvious, and the

solving effect is even slightly lower than that of ABC on
function f4. However, as the dimensions rise to 100, the
CDWPA advantage becomes apparent. ,e analysis shows
that, for most heuristic optimization algorithms, the gen-
eration of random variables is usually based on a certain
standard probability distribution, such as uniform distri-
bution and Gaussian distribution. As chaos not only has
randomness but also has better spatial ergodicity and
unrepeatability, the algorithm is more diverse after adding
chaos to random search based on certain probability dis-
tribution, and the possibility of jumping out of local ex-
tremum point is greater, which enables the algorithm to
search at a relatively faster speed. When the dimension is
low, the solution space is relatively simple, the distribution of
the initial population can meet the needs of the solution
space, and the advantages of chaos are not obvious. How-
ever, when the solution space becomes more complex, the
quality of the solution is required to be higher, and the
advantages of chaos and disturbance are fully embodied.
,is is the reason why the optimization effect of the algo-
rithm is improved significantly in the case of high-dimen-
sional complex functions and is not obvious in the case of
low-dimensional functions.

4.2.2. Analysis of the Second Set of Experimental Results.
Tables 4 and 5 show the mean value, variance, and optimal
value of the four test functions calculated 20 times by seven
algorithms on 500 and 1000 dimensions, respectively. Ta-
bles 6 and 7 show the P values for the rank sum test. Figures 7
and 8 show the optimization curves of seven algorithms in
500 and 1000 dimensions.

,e advantages of CDWPA are not very obvious on low-
dimensional functions. However, when the function di-
mension increases to 500 or even 1000 dimensions, the
results of CDWPA are better than other algorithms in
optimal value, mean value, and standard deviation. In the
case of 500 dimensions, CDWPA achieves the theoretical
optimal value of 0 towards Griewank function. With the
increase of function dimension, the convergence accuracy of
several algorithms decreases, but the optimization effect of
CDWPA is obviously better than that of other algorithms

Table 1: Benchmark test function.

No. Name Expression Trait Search range Min
1 Easom f(x) � − cos(x1)cos(x2) × e(− x1 − π)2− (x2 − π)2 UN [− 100, 100]2 − 1
2 Sphere f(x) � i�1x

2
i US [− 1.5, 1.5]2 0

3 Matyas f(x) � 0.26(x2
1 + x2

2) − 0.48x1x2 UN [− 10, 10]2 0
4 Booth f(x) � (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 MS [− 32, 32]2 0
5 Eggcrate f(x) � x2

1 + x2
2 + 25(sinx1)

2 + (sinx2)
2 MN [− 2π, 2π]2 0

6 Step f(x) � 
D
i�1(xi + 0.5)2 US [100, 100]30 0

7 Sumsquares f(x) � 
D
i�1 (xi)

2 US [− 10, 10]100 0

8 Quadric f(x) � 
D
i�1 (

D
k�1 xk)2 MS [− 30, 30]100 0

9 Griewank f(x) � (
D
i�1 (xi)

2/4000) − (
D
i�1(x2

i /
��
xi

√
) + 1) MN [− 600, 600]100 0

10 Ackley f(x) � − 20e
− 0.2

��������


D

i�1 (x2
i
/D)



− e
D

i�1 cos((2πx1)/D) + 20 + e MN [− 32, 32]100 0

Table 2: Parameter setting of methods.

Methods Parameter setting
WPA Tmax � 10, S � 0.04,ωω � 0.06, β � 5
OWPA Tmax � 10, S � 0.04,ωω � 0.06, β � 5
CWPA Tmax � 10, S � 0.04,ωω � 0.06, β � 5
CDPWA Tmax � 10, S � 0.04,ωω � 0.06, β � 5
PSO ω � 0.7298, c1 � c2 � 1.4946, limitv ∈ (− 0.5, 0.5)

ABC N � 2, limit � 100
ASFA trynum � 100, v � 1, de � 0.618, step � 0.1
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and has better advantages in standard deviation, which
demonstrates that CDWPA is better in robustness. In
general, CDWPA performs better than the other six algo-
rithms in 500- and 1000-dimensional test functions, which
verifies the effectiveness of CDWPA in solving high-di-
mensional complex functions.

For low-dimensional space optimization, the guidance
information of optimization is easy to obtain and confirm.

,e introduction of the optimization strategy based on the
idea of “certainty” can improve the algorithm’s optimization
precision and convergence speed. However, high-dimen-
sional data space to present a kind of highly nonlinear and
asymmetric, nonconvex, multipeak complex features, such
as value orientation information, is very difficult to obtain
accurately; at this point in the optimization strategy, pa-
rameter is set to introduce some “random” strategy and will

Table 3: ,e results of the first experiment were compared.

Dim Fun Index PSO ABC AFSA WPA OWPA CWPA CDWPA

2 Easom f1

BEST −1.00 −1.00 −1 −1 −1.00 −1.00 −1.00
MEAN −1.00 −1 − 0.7254 −1.00 −1.00 −1.00 −1.00
WORST −1.00 −1 − 8.08e − 05 −1.00 − 0.99 − 0.99 −1.00
STD 5.57e − 07 0 0.43 6.25e − 07 2.58e − 05 2.71e − 05 1.80e − 07
SR/% 100% 100% 0 100% 35% 65% 100%

2 Sphere f2

BEST 7.88 50.20 444 6.41e − 17 4.10e − 17 2.21e − 10 1.67e − 18
MEAN 10.30 58.06 468.78 7.17e − 16 8.24e − 16 2.14e − 09 7.19e − 15
WORST 12.24 66.75 488.93 6.53e − 15 2.79e − 15 1.74e − 08 4.53e − 16
STD 1.36 4.47 12.99 1.43e − 15 8.24e − 14 3.78e − 09 1.27e − 15
SR/% 0 0 0 100% 100% 100% 100%

2 Matyas f3

BEST 2.53e − 10 1.47e − 06 7.29e − 10 1.50e − 17 7.67e − 26 1.22e − 15 9.78e − 25
MEAN 1.16e − 08 9.91e − 05 4.08e − 7 2.46e − 07 8.38e − 20 1.66e − 7 3.46e − 20
WORST 5.38e − 08 4.16e − 04 7.07e06 9.86e − 07 5.55e − 19 1.66e − 6 2.54e − 19
STD 1.56e − 10 1.06e − 04 1.57e − 06 2.51e − 07 1.52e − 19 4.17e − 07 7.50e − 20
SR/% 100% 15% 100% 100% 100% 100% 100%

2 Booth f4

BEST 7.12e − 09 1.50 e − 13 1.50e − 08 1.61e − 08 1.48e − 07 1.22e − 07 1.46e − 09
MEAN 3.67e − 07 4.82 e − 11 3.39e − 06 3.07e − 07 2.13e − 06 2.71e − 07 1.44e − 07
WORST 1.53e − 06 2.19 e − 10 2.06e − 05 2.53e − 06 5.80e − 06 1.30e − 06 6.25e − 07
STD 3.57e − 07 5.66 e − 11 4.65e − 06 5.92e − 07 1.75e − 06 3.74e − 07 1.58e − 07
SR/% 100% 100% 95% 100% 100% 100% 100%

2 Eggcrate f5

BEST 4.56e − 08 7.33e − 21 7.66e − 06 3.53e − 21 1.77e − 21 6.83e − 15 1.28e − 22
MEAN 4.61e − 06 2.55e − 18 1.90 9.25e − 19 9.31e − 17 1.37e − 04 4.21e − 20
WORST 2.08e − 05 1.20e − 17 9.48 6.71e − 18 1.05e − 15 0.001 3.36e − 20
STD 5.31e − 06 2.89e − 18 3.89 1.64e − 18 2.48e − 16 2.48e − 04 8.49e − 20
SR/% 100% 100% 5% 100% 100% 40% 100%

30 Step f6

BEST 0 0 199592 0 0 7 0
MEAN 0.43 4.25 2.39e+ 05 0 0 34.45 0
WORST 2 16 279999 0 4 138 0
STD 0.55 4.01 1.90e+ 04 0 1.01 29.22 0
SR/% 60% 5% 0 100% 50% 0 100%

100 Sumsquares f7

BEST 334.29 6.35e+ 04 1.51e+ 04 2.69e − 13 1.09e − 12 8.38e − 08 1.83e − 14
MEAN 402.34 1.02e+ 05 1.61e+ 04 3.53e − 12 2.68e − 12 8.48e − 07 1.24e − 13
WORST 518.25 1.17e+ 05 1.73e+ 04 1.47e − 11 2.49e − 11 2.27e − 06 5.40e − 13
STD 44.88 1.21e+ 04 588.52 4.12e − 12 5.44e − 12 6.76e − 07 1.29e − 13
SR/% 0 0 0 100% 100% 100% 100%

100 Quadric f8

BEST 11.82 1.66e+ 04 4.99e − 05 1.40e − 12 1.02e − 12 5.33e − 07 1.81e − 13
MEAN 19.44 2.42e+ 04 0.02 2.90e − 11 1.90e − 11 3.92e − 06 1.98e − 12
WORST 30.10 3.03e+ 04 0.18 1.38e − 10 9.85e − 11 2.04e − 05 1.82e − 11
STD 4.37 3.70e+ 03 0.05 3.88e − 11 2.80e − 11 4.59e − 06 4.03e − 13
SR/% 0 0 0 100% 100% 90% 100%

100 Griewank f9

BEST 0.04 298 8.59e+ 03 1.84e − 13 1.31e − 13 5.52e − 09 8.50e − 14
MEAN 0.06 426.21 9.32e+ 03 0.04 1.59e − 12 2.34e − 08 1.72e − 13
WORST 0.09 513.55 1.00e+ 04 0.82 7.11e − 12 7.30e − 08 1.00e − 11
STD 0.01 60.07 381 0.18 2.37e − 12 1.90e − 08 2.64e − 13
SR/% 0 0 0 95% 100% 100% 100%

100 Ackley f10

BEST 2.23 19.70 1.59e+ 16 6.94e − 08 6.45e − 08 3.62e − 05 3.68e − 09
MEAN 2.50 19.91 8.01e+ 14 2.12e − 07 1.43e − 07 1.51 1.61e − 09
WORST 2.73 20.04 8.88e+ 08 6.28e − 07 6.20e − 07 3.59 3.76e − 09
STD 0.11 0.07 3.56e+ 15 1.51e − 07 1.46e − 07 1.44 9.36e − 09
SR/% 0 0 0 96% 100% 0 100%

10 Complexity



help the algorithm tomaintain the diversity of population, to
produce more high-quality data processing, prompting al-
gorithm to jump out of local extremum, and balance the
exploration and development ability of the algorithm.
Precisely, because the strategy adopted by CDWPA is the
“directed random” method, the performance of the low-
dimensional solution space is improved, but the gap with
other algorithms is not obvious. However, in the high-di-
mensional solution space, the advantage of “directed ran-
dom” is clearly reflected.

In order to determine whether the proposed CDWPA is
significantly improved compared with other algorithms, this
paper carried out nonparametric statistical test, namely,
Wilcoxon’s rank sum test [33]. ,e results of CDWPA in
each benchmark function of 500 and 1000 dimensions were
tested and compared with other algorithms by 5%. Tables 6
and 7 list the P values obtained through the tests, in which P

values less than 0.05 indicated that the null hypothesis was
rejected, so there was a significant difference at the level of
5%. Conversely, an underlined P value (greater than 0.05)

Table 4: 500-dimensional comparison of experimental results.

Fun PSO ABC ASFA WPA OWPA CWPA CDWPA

Sphere
MEAN 22.86 6.61 1.36e+ 03 4.61e − 43 1.09e − 08 5.56e − 89 9.53e − 149
STD 5.52 1.28 1.38e+ 03 1.61e − 42 1.23e − 08 1.19e − 88 2.92e − 148
BEST 15.61 4.87 1.66e+ 03 8.36e − 76 7.15e − 10 6.48e − 93 6.13e − 165

Sumsquares
MEAN 4.16e+ 03 6.29e+ 04 5.66e+ 04 1.03e − 39 8.20e − 05 1.65e − 85 1.11e − 144
STD 287.36 2.47e+ 04 907.03 3.35e − 39 7.39e − 05 5.63e − 85 3.21e − 144
BEST 3.48e+ 03 1.75e+ 04 5.43e+ 04 5.75e − 72 1.00e − 05 1.53e − 88 1.92e − 160

Griewank
MEAN 0.11 426 5.39e+ 04 0.05 0.0015 8.88e − 17 1.92e − 160
STD 0.009 60.07 1.01e+ 03 0.22 0.0068 1.17e − 16 0
BEST 0.10 117.15 5.21e+ 04 0 1.77e − 16 0 0

Ackley
MEAN 1.71 19.91 − 5.43e+ 29 1.59e − 15 10.32 0.94 0
STD 0.16 0.078 2.42e+ 30 1.45e − 15 5.59 1.33 8.88e − 16
BEST 1.43 13.50 − 1.08e+ 31 8.88e − 16 3.30 7.99e − 15 8.88e − 16

Table 5: 1000-dimensional comparison of experimental results.

Fun PSO ABC ASFA WPA OWPA CWPA CDWPA

Sphere
MEAN 74.39 134.78 2.90e+ 03 3.87e − 41 5.17e − 06 1.54e − 88 3.78e − 149
STD 10.38 6.14 39.26 1.67e − 40 4.63e − 06 3.54e − 88 1.69e − 148
BEST 47.79 125.56 2.83e+ 03 1.65e − 74 1.01e − 16 2.71e − 92 6.23e − 164

Sumsquares
MEAN 3.87e+ 04 2.96e+ 06 1.19e+ 05 2.58e − 39 0.0877 3.68e − 83 1.37e − 145
STD 2.16e+ 03 1.59e+ 05 1.69e+ 03 7.68e − 39 0.0707 3.68e − 82 6.08e − 145
BEST 3.32e+ 04 2.36e+ 06 1.16e+ 05 1.73e − 71 0.0133 3.85e − 89 4.00e − 159

Griewank
MEAN 0.22 5.6e+ 03 1.11e+ 05 0 0.01 1.55e − 16 0
STD 0.01 329.22 1.22e+ 03 0 0.03 1.54e − 16 0
BEST 0.19 4.89e+ 03 1.09e+ 05 0 1.27e − 05 0 0

Ackley
MEAN 2.78 19.07 − 7.01e+ 43 2.48e − 15 9.68 0.90 8.88e − 16
STD 0.06 0.13 3.08e+ 44 1.81e − 15 4.61 1.29 8.88e − 16
BEST 2.64 18.63 − 1.3e+ 45 8.88e − 16 4.73 4.44e − 15 0

Table 6: P value of different reference functions in 500 dimensions by rank sum test.

PSO ABC ASFA WPA OWPA CWPA
F1 P 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08
F2 P 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08 5.2269e − 07 3.3819e − 04
F3 P 1.7313e − 12 8.0065e − 09 8.0065e − 09 0.3421 8.0065e − 09 3.8459e − 04
F4 P 2.3837e − 07 1.1267e − 08 1.1267e − 08 7.10e − 03 1.1267e − 08 1.0324e − 07

Table 7: P value of different reference functions in 1000 dimensions by rank sum test.

PSO ABC ASFA WPA OWPA CWPA
F1 P 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08
F2 P 6.7956e − 08 6.7956e − 08 6.7956e − 08 6.7956e − 08 1.2009e − 06 2.5960e − 05
F3 P 8.0065e − 09 8.0065e − 09 8.0065e − 09 0.3421 8.0065e − 09 8.7603e − 06
F4 P 1.1267e − 08 1.1267e − 08 1.1267e − 08 7.10e − 03 1.1267e − 08 1.0468e − 07
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indicates no significant difference between the comparison
values. It can be concluded from the results in Tables 6 and 7
that, in most comparisons, the P values are less than 0.05,
which proves that the improvements achieved by the pro-
posed CDWPA are statistically significant for most of the
benchmark functions.

Analysis suggests that, for low-dimensional space opti-
mization, the guidance information of optimization is easy
to obtain and confirm. ,e introduction of the optimization
strategy based on the idea of “certainty” can improve the
algorithm’s optimization precision and convergence speed.
However, high-dimensional data space to present a kind of
highly nonlinear and asymmetric, nonconvex, multipeak

complex features, such as value orientation information, is
very difficult to obtain accurately; at this point in the op-
timization strategy, parameter is set to introduce some
“random” strategy and will help the algorithm to maintain
the diversity of population, to produce more high-quality
data processing, prompting algorithm to jump out of local
extremum, and balance the exploration and development
ability of the algorithm. Precisely, because the strategy
adopted by CDWPA is the “directed random” method, the
performance of the low-dimensional solution space is im-
proved, but the gap with other algorithms is not obvious.
However, in the high-dimensional solution space, the ad-
vantage of “directed random” is clearly reflected.
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Figure 7: Four kinds of functions find the optimal curve comparison in 500 dimensions.
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Figure 9 shows the comparison of standard deviations of
the seven algorithms in optimizing Ackley function in the
dimensions of 300–1000. STD reflects the stability of al-
gorithm in the optimization process, with dimension rising
and solution space becoming more and more difficult. From
the analysis of the STD of seven kinds of algorithms in
Ackley function, we found that the standard deviation of
stable algorithms such as PSO, ABC, OWPA, and CWPA
optimization effect is very poor. PSO, ABC, and OWPA can
even not succeed in finding the optimal value, were trapped
into local optimum, and cannot get out of the local optimal
trap after optimal “trap.” However, because it falls into the
local optimum at dimension 300 and cannot jump out of the

local extreme value effectively, it still cannot find the opti-
mization successfully. WPA and CDWPA have a good
optimization effect. Interestingly, the change curves of
standard deviations of the two algorithms are similar, with
large pulsations at 500 and 1000 dimensions, indicating that
the algorithm can effectively jump out of the local optimum
and find better targets when it conducts optimization in
higher dimensions. OWPA adopts the reverse strategy to
optimize the initial population, but it does not consider the
distribution location of the initial population, which easily
leads to the aggregation of the population. ,e initial
populations of WPA and CWPA were relatively dispersed,
but due to the low quality of the initial populations and the

10–150

10–100

10–50

100

1050

Fi
tn

es
s v

al
ue

400 600 800 1000 1200 1400 1600 1800 2000200
Number of iterations

CDWPA
PSO
ABC
WPA

CWPA
OWPA
ASFA

(a)

10–150

10–100

10–50

100

1050

Fi
tn

es
s v

al
ue

400 600 800 1000 1200 1400 1600 1800 2000200
Number of iterations

CDWPA
PSO
ABC
WPA

CWPA
OWPA
ASFA

(b)

400 600 800 1000 1200 1400 1600 1800 2000200
Number of iterations

10–20

10–15

10–10

10–5

100

105

1010

Fi
tn

es
s v

al
ue

CDWPA
PSO
ABC
WPA

CWPA
OWPA
ASFA

(c)

400 600 800 1000 1200 1400 1600 1800 2000200
Number of iterations

10–20

10–10

100

1010

1020

1030

1040

1050
Fi

tn
es

s v
al

ue

CDWPA
PSO
ABC
WPA

CWPA
OWPA
ASFA

(d)

Figure 8: Four kinds of functions find the optimal curve comparison in 1000 dimensions.
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relatively fixed migration direction, the convergence accu-
racy was not high in the optimization. However, CDWPA
considers both the initial population distribution position
and the initial population mass and adds disturbance factors
to the movement of wolves, which equips CDWPA with the
most efficiency in high-dimensional function optimization.

5. Conclusion

In order to improve the convergence accuracy of wolf
pack algorithm (WPA) in solving high-dimensional
complex functions, it is easy to fall into local optimi-
zation. In this paper, we use logical self-mapping to
generate chaotic sequence in the reinitialization stage,
and optimize the initial population through the reverse
wolf pack, adding disturbance factor in the process of
scouting, which improves the ability of wolf detection to
jump out of local optimum. Meanwhile, according to the
distance away from the lead wolf, the strong wolf adopts
appropriate step size to approach the lead wolf. ,e
convergence of the algorithm is tested by Markov process
with the selection of different types of functions. ,e
simulation results show that the comprehensive per-
formance of CDWPA is better than that of wolf pack
algorithm (WPA), oppositional wolf pack algorithm
(OWPA), and chaotic wolf pack algorithm (CWPA), and
three widely applied swarm intelligence algorithms
(PSO, ABC, and ASFA) are more suitable for solving
problems of high-dimensional function optimization.
,e improved method of the algorithm can be applied to
other intelligent optimization algorithms. ,is algorithm
can be applied to large-scale scheduling problem, pho-
tovoltaic power generation problem, multidimensional
data clustering, and other problems.

However, practical problems are often more complex
and changeable, and all methods cannot be perfect. Pre-
mature convergence still restricts the development of swarm
intelligence algorithm. In the next step, we should focus on
solving this problem to further improve the algorithm
performance and efficiency. In addition, it is still the next key
research direction to expand the application scope of the
algorithm.
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