
Research Article
A New Coupled Awareness-Epidemic Spreading Model with
Neighbor Behavior on Multiplex Networks

Chao Zuo, Anjing Wang, Fenping Zhu, Zeyang Meng, and Xueke Zhao

School of Management Engineering and E-Commerce, Zhejiang Gongshang University, Hangzhou 310018, China

Correspondence should be addressed to Xueke Zhao; zhaoxueke111@gmail.com

Received 11 December 2020; Revised 19 February 2021; Accepted 26 February 2021; Published 18 March 2021

Academic Editor: xiaoke xu

Copyright © 2021 Chao Zuo et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we propose a nonlinear coupled model to study the two interacting processes of awareness diffusion and epidemic
spreading on the same individual who is affected by different neighbor behavior status on multiplex networks. We achieve this
topology scenario by two kinds of factors, one is the perception factor that can change interplay between different layers of
networks and the other is the neighbors’ behavior status that can change the infection rate in each layer. According to the
microscopic Markov chain approach (MMCA), we analyze the dynamical evolution of the system and derive the theoretical
epidemic threshold on uncorrelated heterogeneous networks, and then, we validate the analysis by numerical simulation and
discuss the final size of awareness diffusion and epidemic spreading on a scale-free network. With the outbreak of COVID-19, the
spread of epidemic in China prompted drastic measures for transmission containment. We examine the effects of these in-
terventions based on modeling of the awareness-epidemic and the COVID-19 epidemic case.)e results further demonstrate that
the epidemic spreading can be affected by the effective transmission rate of the awareness and neighbors’ behavior status.

1. Introduction

)e outbreak of COVID-19 can involve the diffusion of
information about the epidemic, including the officially
released authoritative information, rumors, and fears [1–3].
In reality, awareness diffusion can stimulate individuals to
take spontaneous behavioral responses such as wearing
masks or staying at home to reduce the frequency of face-
to-face contact [4, 5]. )erefore, the epidemic-spreading
dynamics in complex networks has attracted increasing
attention in many disciplines [6, 7]. However, the exact
impact they can have on the epidemic dynamics is difficult
to quantify, so mathematical modelling is used to test
hypotheses and identify pivotal parameters in the inter-
play between awareness diffusion and epidemic spreading
[8–11]. For example, Granell et al. constructed a UAU-SIS
(unaware-aware-unaware/susceptible-infected-suscepti-
ble) model to study the interaction between epidemics
spreading and awareness diffusion on multiplex networks
[12]. Funk et al. researched the coevolution of information
and epidemic on public and found that the spread of

positively oriented information about the epidemic can
suppress the epidemic [13]. Wang et al. utilized real data
to investigate the coevolution mechanisms between in-
formation and disease spreading, and the empirical
analysis showed that there is an asymmetric interaction
between information and disease spreading [14]. More-
over, Wang et al. further found that the awareness inhibits
the epidemic spreading, whereas the epidemic spreading
facilitates the awareness diffusion [15]. Zhu et al. thought
that an epidemic might spread among multicommunities,
so they modeled each community as a multiplex network
that included both a virtual awareness layer and a physical
layer [16]. )ey further presented a coupled UAU-SIRD
model, which consisted of a virtual layer sustaining
unaware-aware-unaware dynamics and a physical layer
supporting the susceptible-infected-recovered-dead pro-
cess, to investigate the spreading property of epidemics
and the relationships between the focused variables and
parameters of the epidemic. )e result indicated that the
incorporation of virtual layers would reduce the range of
affected individuals [17]. Kabir and Tanimoto established
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a two-layer SIR-UA (susceptible-infected-recovered/un-
aware-aware) epidemic transmission model that com-
prehensively considered the influence of individual
behavior and awareness diffusion on epidemic spreading
on heterogeneous networks [18]. Shang studied the effects
of global, local, and contact awareness on a discrete-time
SIS epidemic dynamics and used the stability theory of
matrix difference equation to derive the epidemic
threshold [19]. )ey further investigated the impact of the
three forms of awareness on epidemic spreading by the
mean-field approach with heterogeneous transmission
rates, and the numerical simulation results showed that
both local and contact awareness can raise the epidemic
threshold while global awareness can only decrease the
final epidemic size [20].

)ough the effects of information-based behavioral re-
sponses on the epidemic dynamics have been studied by
many documents, most of them assumed that individuals are
treated equally when they contact different neighbors. In
fact, the deviation among different neighbors has a re-
markable influence on the individual infection process due
to the complex topological structures of networks. In view of
this, there has been an increasing focus on the discussion of
neighbor behavior in the interacting processes of awareness
diffusion and epidemic spreading [21–25]. For instance, Kan
and Zhang assumed that susceptible individuals can not only
be informed by aware neighbors in the information network
but also by self-awareness induced by the infected neighbors
in the contact network. Results indicated that the individuals
with more neighbors in the information network have
higher awareness acquisition and they are hard to be infected
in the contact network [26]. Guo et al. introduced a het-
erogeneous threshold model to converse that a hub with a
large number of neighbors is relatively easy to become in-
fected [6]. Moreover, they proposed a heterogeneous
spreading model that considers the degree heterogeneity and
k-core measures heterogeneity of individuals with the belief
that different individuals facing the same epidemic would
exhibit distinct behaviors according to their own experiences
and attributes [27]. Zhu et al. generated an adaptive strategy
of the susceptible/exposed individual that a susceptible/
exposed individual would disconnect with infected neigh-
bors probabilistically and one new connection would be
constructed [28]. Chen et al. proposed a resource-epidemic
coevolution model to investigate the effects of the hetero-
geneous distribution of self-awareness and the heteroge-
neous distribution of node degree on the epidemic
dynamics. )ey found that the heterogeneity of self-
awareness distribution suppresses the outbreak of an epi-
demic and the heterogeneity of degree distribution enhances
the epidemic spreading [29]. Pan and Yan proposed a
coupled awareness-epidemic spreading model incorporating
the heterogeneity of neighbors’ responses to disease out-
breaks, and the result showed that the heterogeneity of
neighbors’ responses acts on the epidemic threshold in the
higher stage [30].

Some research studies assumed that the diffusion of
awareness will reduce the infection rate of individuals [12–16].
Considering that the spread rate of awareness is also affected

by the spread of the epidemic [15], in this work, the awareness
perception factor f1 (0≤ f1≤ 2) stands for the influence of
awareness diffusion on the spread rate of epidemic, and we
also introduce an epidemic perception factor f2 (0≤ f2≤ 2) to
express the impact of epidemic spreading on the diffusion rate
of awareness. We define f1≤ 1, f2> 1 when authoritative in-
formation and epidemic interact and rule f1> 1, f2≤1 when
rumors and epidemic interact, as shown in Table1.

Moreover, Kan and Zhang discussed the effect of in-
fected neighbors on the formation of node self-awareness
[26], and some references confirmed that the heterogeneity
of degree distribution enhances the epidemic spreading
[27, 29]. On this basis, we assume that the health of
awareness neighbors (susceptible, infected, and recovered)
plays different roles in the formation of node self-awareness
and propose the health-impact-awareness status factors
(∆ρ1, ∆ρ2, and ∆ρ3) to distinguish this effect in the awareness
layer; the heterogeneity of neighbors degree distribution will
affect the individual’s epidemic infection rate, and the be-
havior-impact-epidemic status factor (1 − e(− kj/􏽐 k), a
positive correlation function of neighbors degree) is
established to discriminate the difference in the epidemic
layer. )erefore, we propose a multiplex networks model to
comprehend the spreading dynamics between epidemic and
awareness on the same population with the influence of
different neighbor behavior status. We introduce the be-
havior status to each node in the multiplex networks. On the
one hand, people can acquire awareness from aware
neighbors with different health-impact-awareness status in
layer 1 of fictitious contacts, such as Microblogs, WeChat, or
other social media. On the other hand, in layer 2 of physical
contacts, the level of epidemic spreading would be influ-
enced by the infected neighbors with different behavior-
impact-epidemic status.)eMMCA theoretical analysis and
numerical simulations results reveal that awareness and
behavioral changes could have favorable effects on the ep-
idemic spreading.

)e rest of this paper is organized as follows: in Section 2,
we introduce the multiplex networks model. )en, we an-
alyze the dynamical processes of the model with the MMCA
method and derive the expression of epidemic threshold in
Section 3. Next, in Sections 4 and 5, we perform numerical
simulations and discuss the Chinese COVID-19 epidemic
case to validate theoretical predictions. Finally, we sum-
marize our findings and conclusions in Section 6.

2. Nonlinear Coupled Awareness-
Epidemic Model

2.1. Model Descriptions. In this work, we generalize a mul-
tiplex networks model to formalize and simplify the spread
mechanisms, as illustrated in Figure 1. In layer 1, people share
epidemic-prevention awareness through social media, while
people get infected in layer 2. Neighbor behavior is simplified
as the “health-impact-awareness” status of aware neighbors in
layer 1 and the “behavior-impact-epidemic” status of infected
neighbors in layer 2. )e definitions of key parameters are
shown in Table 2. We suppose the multiplex propagation
process according to the following regulations:
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(i) Awareness diffusion in layer 1: the diffusion of
awareness satisfies the UAU (unaware-aware-un-
aware) process. Aware (A) individuals can apply
their awareness to decrease the probability of being
infected. Unaware (U) individuals do not have any
awareness about the epidemic prevention. Unaware
individuals can contact with aware neighbors to get
awareness with probability λ, while the aware in-
dividuals can forget the awareness with probability
δ. As we all know, in many cases, individuals who
are infected or cured are more aware than those who
are far away from the epidemic because once they
are exposed to a certain infectious disease (such as
SARS or COVID-19), they will be isolated and feel
panicked, that is, whether an individual has been
physically exposed to the epidemic changes the
probability of awareness acquisition. )erefore, we
assume that unaware infected (UI) and unaware
recovered (UR) individuals know about the epi-
demic and can increase the probability of being
aware with the epidemic perception factor f2. )en,

the awareness infection rate can be represented by
the susceptible infection rate λS � λ and infected
(recovered) infection rate λI � f2λ (λR � f2λ),
respectively.

(ii) Epidemic spreading in layer 2: the spreading of
epidemic satisfies the SIR (susceptible-infected-re-
covered) process. Susceptible individuals get in-
fected with the probability β, while the infected
individuals recover with the probability μ. Yet,
aware susceptible (AS) individuals can apply the
awareness to decrease the probability of being in-
fected with the awareness perception factor f1.)en,
the epidemic infection rate can be expressed by the
unawareness of infection rate βU � β and awareness
of infection rate βA � f1β, respectively.

(iii) )e health-impact-awareness status of aware
neighbors: the direct application of the UAU model
in the two-layer network means that the default
importance ratio of aware neighbors is AS : AI :
AR� 1/3 :1/3 :1/3. We believe that the aware
neighbors of different health states play different
roles in the process of awareness diffusion and
assume that the importance ratio is AS : AI : AR� 1/
3 +∆ρ1 :1/3 +∆ρ2 :1/3 +∆ρ3 (∆ρ1 +∆ρ2 +∆ρ3 � 0).
∆ρ1, ∆ρ2, and ∆ρ3 are the health-impact-awareness
status factors of the model, as shown in Figure 2.

(iv) )e behavior-impact-epidemic status of infected
neighbors: the heterogeneity of degree distribution
plays a role in the epidemic spreading, and we
believe that infected individuals with a large range
of daily activities (a large node degree) are more
likely to carry and transmit the virus. We use the
degree kj of neighbor j to represent its daily activity
range and use 􏽐 k to represent the total degrees of
all infected neighbors; as shown in Figure 3, 1 −

e− (kj/􏽐 k) can distinguish the impact of each in-
fected neighbor on epidemic infected probability
and also limit the size of this impact (the interval is
0–0.5).

2.2. Dynamic Model. According to these presumptions,
there are six primary states: US (unawareness susceptibility);
UI (unawareness infection); UR (unawareness recovered);
AS (awareness susceptibility); AI (awareness infected); and

Table 1: Parameter meaning and influence on individual behavior.

Parameter Model Individual behavior

f1< 1
Authoritative information and

epidemic )e ability of conscious individuals to prevent virus increases as f1 decreases

f1> 1 Rumors and epidemic )e contribution of conscious individuals to virus spread increases as f1 increases

f2> 1
Authoritative information and

epidemic
)e willingness of infected individuals to transmit information increases as f2

increases
f2< 1 Rumors and epidemic )e resistance of infected individuals to rumor increases as f2 decreases

A

A U A

U

A

U AA

U

S

S I I

S

I

R RR

S

Layer 1: information
layer

Layer 2: epidemic
layer

f1
f2

Figure 1: UAU-SIR model. Awareness is disseminating in layer 1,
and the nodes have two possible states: unaware (U) or aware (A).
Epidemic is spreading in layer 2, where the nodes have three
possible states: susceptible (S), infected (I), and recovered (R).
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AR (awareness recovered). )e reaction procedure of the
model can be schematically expressed as follows:

(i) Awareness diffusion US+AS⟶ λ,1+Δρ1AS+
AS,US+AI⟶ λ,1+Δρ2AS+AI,US+AR⟶ λ,1+Δρ3
AS+AR,UI + AS⟶f2∗λ,1+Δρ1AI+AS,UI+AI
⟶f2∗λ,1+Δρ2AI+AI,UI+AR ⟶f2∗λ,1

+Δρ3AI+AR,UR+AS ⟶f2∗λ,1+Δρ1AR
+AS,UR+AI⟶f2∗λ, 1+Δρ2AR+AI,UR
+AR⟶f2∗λ,1+Δρ3 AR+AR

(ii) Epidemic spreading US + I⟶β, 1 + (1 − e− kj/ 􏽐 k)

􏽐 k))AI + I,AS + I⟶f1 ∗ β, 1 + (1 − e− kj/ 􏽐 k)

1 + (1 − e− (kj/􏽐 k))AI + I

(iii) Recoveries I⟶μ R, A⟶δ S

3. Microscopic Markov Chain Approach

We analyze the dynamical processes of the model with the
MMCA method [31, 32]. Let xij and yij be the adjacency
matrices that support the UAU and SIR processes, respec-
tively.)e probability of node i in one of the six states at time
t is denoted by PUS

i (t), PUI
i (t), PUR

i (t), PAS
i (t), PAI

i (t), and
PAR

i (t), respectively. Provisions
PUS

i (t) + PUI
i (t) + PUR

i (t) + PAS
i (t) + PAI

i (t) + PAR
i (t) � 1.

Under the assumption that the possibilities of becoming
aware or infected by any neighbor are independent, we use
r∗i (t), ri

′(t), qA∗
i , and qU∗

i to represent four basic quantities
as follows:

r
∗
i (t) � Πu 1 − xuiP

AS
u (t)λ􏽨 􏽩

1+ρ1( )
􏼚 􏼛 + Πv 1 − xviP

AI
v (t)λ􏽨 􏽩

1+ρ2( )
􏼚 􏼛 +Πw 1 − xwiP

AR
w (t)λ􏽨 􏽩

1+ρ3( )
􏼚 􏼛,

ri
′(t) � Πu 1 − xuiP

AS
u (t)f2λ􏽨 􏽩

1+ρ1( )
􏼚 􏼛 + Πv 1 − xviP

AI
v (t)f2λ􏽨 􏽩

1+ρ2( )
􏼚 􏼛 +Πw 1 − xwiP

AR
w (t)f2λ􏽨 􏽩

1+ρ3( )
􏼚 􏼛,

(1)

Table 2: )e definitions of key parameters.

Parameter Description
β Probability of getting infected for susceptible individuals (the basic infection rate)
μ Probability of recovery
λ Probability of becoming aware (the basic infection rate)
δ Probability of becoming unaware
f1 )e awareness perception factor
f2 )e epidemic perception factor
∆ρ1, ∆ρ2, and ∆ρ3 )e health-impact-awareness status influence of aware neighbors
(1 − e− (kj/􏽐 k)) )e behavior-impact-epidemic status influence of infected neighbors

U

AS

AS

AI

AR

AR

AI

Δρ3

Δρ3

Δρ1

Δρ1

Δρ2
Δρ2

w

v

u

Figure 2: Explanation of the health-impact-awareness status of
aware neighbors in layer 1. )e numbers of AS, AI, and AR are u, v,
and w, respectively. Also, the health-impact-awareness factors of
the three aware neighbors are ∆ρ1, ∆ρ2, and ∆ρ3, respectively.

S

I

II

Ij – 2

1 – e–kj/∑k

1 – e–k1/∑k

1 – e–k2/∑k

1 – e–k3/∑k

Figure 3: Illustration of the behavior-impact-epidemic status of
infected neighbors in layer 2. j is the total number of an individual’s
infected neighbors, and 1 − e(− kj/􏽐 k) is a positive correlation
function of each neighbor’s degree.
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where r∗i (t) denotes the probability for susceptible node i
not getting aware by any neighbors. ri

′(t) is the probability
for infected (recovered) node i not getting aware by any
neighbors. xui means that node i has u neighbors in state
PAS

i :

q
A∗
i � Πj 1 − yjiP

I
j(t)f1β􏽨 􏽩

1+ 1− e − kj/􏽘 k􏼐 􏼑􏼐 􏼑
,

q
U∗
i � Πj 1 − yjiP

I
j(t)β􏽨 􏽩

1+ 1− e − kj/􏽘 k􏼐 􏼑􏼐 􏼑
,

(2)

where qA∗
i (qU∗

i ) denotes the probability of susceptible
aware (unaware) node i not being infected by any neighbors
and yji � 1 means that node j is the neighbor of node i at the
same layer. We extend Markov’s theory to steady state and

assume that PAI
i + PUI

i � PI
i � πi≪ 1. We can obtain the

approximations of qA∗
i and qU∗

i as follows:

q
A∗
i ≈ 1 − f1β􏽘

j

2 − e
− kj/􏽘 k􏼐 􏼑

􏼠 􏼡yjiπj
⎛⎝ ⎞⎠,

q
U∗
i ≈ 1 − β􏽘

j

2 − e
− kj/􏽘 k􏼐 􏼑

􏼠 􏼡yjiπj
⎛⎝ ⎞⎠.

(3)

)e potential state transition process of the UAU-SIR
model is shown in Figure 4.

As shown in Figure 4, every time step is divided into six
stages, and we can easily get the MMCA equations for node i
as follows:

P
US
i (t + 1) � P

US
i (t)r

∗
i (t)q

U∗
i (t) + P

AS
i (t)σq

U∗
i (t),

P
UI
i (t + 1) � P

US
i (t)r

∗
i (t) 1 − q

U∗
i (t)􏽨 􏽩 + P

UI
i (t)ri
′(t)(1 − μ) + P

AS
i (t)σ 1 − q

U∗
i (t)􏽨 􏽩 + P

AI
i (t)σ(1 − μ),

P
UR
i (t + 1) � P

UI
i (t)ri
′(t)μ + P

UR
i (t)ri
′(t) + P

AI
i (t)σμ + P

AR
i (t)σ,

P
AS
i (t + 1) � P

US
i (t) 1 − r

∗
i (t)( 􏼁q

A∗
i (t) + P

AS
i (t)(1 − σ)q

A∗
i (t),

P
AI
i (t + 1) � P

US
i (t) 1 − r

∗
i (t)( 􏼁 1 − q

A∗
i (t)􏽨 􏽩 + P

UI
i 1 − ri

′(t)􏼂 􏼃(1 − μ) + P
AS
i (t)(1 − σ) 1 − q

A∗
i (t)􏽨 􏽩 + P

AI
i (t)(1 − μ)(1 − σ),

P
AR
i (t + 1) � P

UI
i (t) 1 − ri

′(t)( 􏼁μ + P
UR
i (t) 1 − ri

′(t)( 􏼁 + P
AI
i (t)(1 − σ)μ + P

AR
i (t)(1 − σ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

)e solution of equation (4) is a set of fixed-point
equations that satisfy PAI

i (t + 1) � PAI
i (t) � PAI

i , and this
relationship is also true for the other five types of nodes. We
add the second and the fifth equations in equation (4) as
follows:

μP
I
i � P

US
i (t) r

∗
i (t) 1 − q

U∗
i (t)􏽨 􏽩 + 1 − r

∗
i (t)( 􏼁 1 − q

A∗
i (t)􏽨 􏽩􏽮 􏽯

+ P
AS
i (t) σ 1 − q

U∗
i (t)􏽨 􏽩 +(1 − σ) 1 − q

A∗
i (t)􏽨 􏽩􏽮 􏽯.

(5)

Near the threshold, the probability of nodes being in-
fected is very small, i.e., PAI

i + PUI
i � PI

i � πi≪ 1. Taking
equation (3) into equation (4) and omitting the O(εi) terms,
we get

P
US
i � P

US
i r
∗
i (t) + P

AS
i (t)σ,

P
AS
i � P

US
i 1 − r

∗
i (t)( 􏼁 + P

AS
i (1 − σ).

⎧⎨

⎩ (6)

Substituting (6) into (5), we get

μP
I
i � μπi � P

US
i 1 − q

U∗
i (t)􏽨 􏽩 + P

AS
i 1 − q

A∗
i (t)􏽨 􏽩

� P
US
i + f1P

AS
i􏼐 􏼑β 􏽘

j

2 − e
− kj/􏽘 K􏼐 􏼑

􏼠 􏼡yjiπj,
(7)

with PAS
i ≈ PA

i , PUS
i ≈ 1 − PA

i ; then, equation (7) can be
rewritten as

􏽘
j

1 − 1 − f1( 􏼁P
A
i􏽨 􏽩 2 − e

− kj/􏽘 k􏼐 􏼑
􏼠 􏼡yji −

μ
β
τij􏼨 􏼩 � 0,

(8)

where τijdenotes the elements of the identity matrix. We
define a new matrix H, where
hij � [1 − (1 − f1)P

A
i ](2 − e− (kj/􏽐 k))yji, to simplify equa-

tion (8). )e epidemic threshold is equal to the minimum
value of β that satisfies equation (8). We can obtain the
epidemic threshold by denoting Λmax(h), the maximum
eigenvalue of H, and the threshold formula is

βc �
μ
Λmax(H)

. (9)

Equations (8) and (9) show that the epidemic threshold
is based on the structure of layer 2 (yji), the parameter f1,
and the density of awareness PA

i . )e value of PA
i is further

determined by the structure of layer 1(xji), the transmission
rate λ, and the recovery rate σ.

4. Results

We discuss the effect of f1 and f2 through Model I, on
which we introduce the neighbor behavior state, and obtain
Model II. )e comparison between Model 1 and Model 2
reflects the influence of the neighbor behavior state on the
propagation process. We perform extensive Monte Carlo
numerical simulations [33, 34] for the model (run 100 times)
and obtain the infection density ρI and aware density ρA at
steady state. ρI � (􏽐iρI

i /N) � (􏽐iρAIi /N) and
ρA � (􏽐iρA

i /N), where N represents the number of all in-
dividuals in the model. In our simulations, the size of the
two-layer network is N � 1000, the initial number of nodes
m0 � 5, the number of connected edges m � 3, and the
average degree 〈k〉 � 6.)e default value of the parameter is
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fixed as λ � 0.5, σ � 0.3, β � 0.5, μ � 0.2, f1 � 1, f2 � 1,
Δρ1 � 0.067 − 1/3,Δρ2 � 0.689 − 1/3,Δρ3 � 0.244 − 1/3 (the
values of Δρ1, Δρ2, and Δρ3 in this paper can be set according
to actual requirements. We believe that the awareness-
spreading intensity of different neighbors is AI>AR>AS,
and by the summation product method and consistency test,
we obtain the importance ratio AS : AI : AR �

0.067, 0.689, 0.244).

4.1. 5reshold. Figure 5 plots the density of βc as a de-
creasing function of f1. It is clear that βc obviously decreases
as f1(f1 ∈ (0, 1)) increases and basically remains un-
changed as f1, (f1 ∈ (1, 2)) increases. Figure 6 presents that
βc grows as λ increases (f1 � 0.2, f2 � 1.8) and βc decreases
as λ increases (f1 � 1.8, f2 � 0.2), which means authori-
tative information can inhibit the outbreak of the epidemic
and rumors will contribute to the spread of the epidemic. At
the same time, a smaller information forgetting rate, a
greater rumor forgetting rate, and a greater infectious dis-
eases recovery rate can raise the epidemic threshold.
Moreover, the curve ofModel II is lower than that of Model I
with equal parameters in both Figures 5 and 6; measures
such as locating and isolating infected neighbors are good
ways to prevent an outbreak of the epidemic.

As shown in Figure 7, λc is a decreasing function of f2. It
is clear that λc obviously decreases as f2(f2 ∈ (0, 1)) in-
creases and basically remains unchanged as f2(f2 ∈ (1, 2))

increases. Figure 8 suggests that λc grows as β increases
(f1 � 1.8, f2 � 0.2) and λc decreases as β increases
(f1 � 0.2, f2 � 1.8), which means that the rapid spread of
the epidemic can inhibit the outbreak of rumors and pro-
mote the dissemination of authoritative information. A
smaller information forgetting rate, a greater rumor

forgetting rate, and a greater infectious disease recovery rate
can raise the awareness threshold. Moreover, the curve of
Model II is lower than that of Model I with equal parameters
in both Figures 7 and 8, publicizing the epidemic infor-
mation through the infected and cured people will con-
tribute to spreading crisis awareness and preventing the
outbreak of the epidemic.

4.2. Infection Scale. )e key influencing factors for ρI and ρA

are f1 and f2, respectively. Figure 9 reveals that a larger
epidemic cure rate μ helps control the epidemic diffusion
scale and a smaller awareness forgetting rate σ contributes to
the spread of awareness.

US

US AS

US UI AS AI

r∗ 1 – r∗

1 – qu∗

r′ 1 – r′ r′ 1 – r′

qu∗

1 – qu∗

qu∗ 1 – qA∗

qA∗

1 – qA∗

1 – μ μ

1 – μ μ 1 – μ μ

1 – μ μqA∗

UI

UI AI

UI UR AI AR

AS

US AS

US UI AS AI

δ 1 – δ δ 1 – δ δ 1 – δ

AI

UI AI

UI UR AI AR
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Figure 4: Transition probability trees for six possible states.
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4.2.1. Authoritative Information and Epidemic Interaction
Model (f1 < 1, f2 > 1). Both ρA and ρI in Figure 10 show an
upward trend with the increase of β, while the curve in
Figure 10(a) is less obvious than that in Figure 10(b) because
β can only indirectly affect the dissemination of authoritative
information. In the meanwhile, a higher prevention degree
of the individuals (f1 � 0.1) corresponds to a smaller ρI

(Figure 10(b)) and a smaller ρA (Figure 10(a)). Also, a
stronger willingness of the individuals to spread information
(f2 � 1.8) led to a larger ρA and a smaller ρI.

)e increase of λ contributes to the spread of awareness
(Figure 11(a)) and the reduction of the epidemic scale
(Figure 11(b)), which is in line with the actual situation.
When the individuals’ willingness to disseminate informa-
tion gets stronger, (f2 � 1.8), the value of ρA will be larger
and ρI will decrease more. A higher prevention degree of the
individuals (f1 � 0.1) corresponds to a small ρI and a larger
ρA.

)e comparative experimental results of Figures 10 and
11 show that, under the same conditions, the ρA obtained by
Model II is smaller and ρI is larger than that obtained by
Model I, which suggests that models ignoring neighbors’
behavior status would underestimate the epidemic scale and
limit the formulation of epidemic control strategies.

4.2.2. Rumor and Epidemic Interaction Model
(f1 > 1, f2 < 1). A larger β means a greater risk of indi-
vidual infection, and it will led to a lager ρI. However,
rumors are not beneficial to epidemic control, and indi-
viduals would resist the spread of rumors; then, the curve of
ρA would drop. As shown in Figure 12, a smaller
f2(f2 � 0.1) will lead to a smaller ρA, and a larger f1, (f1 �

1.8) will cause a larger ρI.
A larger λmeans that individuals are more likely to have

rumor awareness, which will lead to a lager ρA. However,
individuals in the epidemic layer affected by rumors will take
improper behaviors to accelerate the spread of the epidemic,
and the ρI curve will rise, as illustrated in Figure 13.

Furthermore, the more resistant an individual is to the
rumor (f2 � 0.1), the more difficult it is for the rumor to
spread in the population, and ρA and ρI will be smaller; the
greater an individual’s contribution to epidemic transmis-
sion (f1 � 1.8), the easier it is for the epidemic to spread,
and ρA and ρI will be larger.

Figures 12 and 13 show that when the spread of the
epidemic is accompanied by rumors, ρA obtained by Model
II is larger than Model I, and the obtained ρI is smaller than
Model I, which suggests that models ignoring neighbors’
behavior status would overvalue the epidemic scale and
influence the formulation of epidemic control strategies. As
a result, it is necessary and reasonable to consider the in-
fluence of neighbors’ behavior status when we establish an
interactive propagation model.

5. Epidemic Analysis of COVID-19 in China

Four stages of strict measures for transmission containment
were prompted during the early spread of COVID-19 in
China, which reflects the change in public awareness. Each
awareness stage plays discrepant roles in epidemic control
and public response behaviors. We hypothesized that the
awareness impact factor f1 is negatively correlated with the
importance of epidemic control measures and observe the
assumed value of f1 as shown in Table 3 [35].

Model I and Model II simulate the density of infected
individuals as a function of t for different values of f1. It is
clear that the large value of f1 can increase the density of
infected individuals, see Figure 14(a), and the neighbor
behavior status can narrow the gap between the effects of
different f1 on the infection scale, see Figure 14(b).
)erefore, the government can actively release positive in-
formation to enhance public awareness and restrict the
behavior of infected neighbors for the purpose of controlling
the spread of the epidemic during the COVID-19 epidemic.

Figure 15 is the daily new data released by the Publicity
Department of the National Health Commission except for
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Figure 9: Impact of influence factors on the scale of infection.
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Hubei Province, and Figure 16 is the data fitting curve of
infected individuals (except Hubei Province). Figures 15 and
16 indicate that the number of infected individuals is
gradually decreasing since January 29 with the strengthening
of prevention and control measure [36].

Figure 17 shows the cumulative number of confirmed
cases in Hubei Province from January to April. Since
February 16, the cumulative number of confirmed cases has
been close to 0, indicating that the epidemic has been under
control. As we all know, public awareness is affected by the
spread of the epidemic, and if the epidemic is effectively
controlled, public awareness will become weaker. Public
awareness is difficult to quantify, but we found such a
phenomenon: the online big data information demonstrates
that the amount of comprehensive information has risen
rapidly since January 20, 2020, and reached the peak on
February 15, and the peak time coincides with the epidemic

control time (Feb 16), as shown in Figure 17, which reflect
the influence of epidemic spreading on the diffusion of
awareness.

As shown in Table 4, the Hubei Provincial Government
adjusts information report management at different stages of
the epidemic. Each epidemic stage plays discrepant roles in
public awareness diffusion. We hypothesized that the epi-
demic impact factor f2 is positively correlated with the
importance of information report management and observe
the assumed value of f2.

Model I and Model II simulate the density of aware
individuals as a function of t for different values of f2. It is
clear that the large value of f1 can increase the density of
aware individuals, see Figure 18(a), and neighbor behavior
status can expand the gap between the effects of different f2
on the awareness scale, see Figure 18(b). )erefore, the
measures taken by the government to publicize the epidemic
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Figure 10: )e influence of β on ρA and ρI.
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Figure 13: )e influence of λ on ρA and ρI.

Table 3: Different government control measures and corresponding assumed value of f1.

Phase Date Government measures Importance Assumed value of
f1

1 29 December 2019–22
January 2020 Early detection of the COVID-19 preliminary control Significant 0.8

2 23 January–29 January 2020

(1) Public health level 1 response of 31 provinces

Critical 0.6

(2) Strict exit screening
(3) Medical support from other regions of China
(4) Cancellation of mass gatherings
(5) Methodological improvement on the diagnosis and treatment
strategy
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Figure 14: Changes in ρI under different levels of government measures: (a) Model I; (b) Model II.

Table 3: Continued.

Phase Date Government measures Importance Assumed value of
f1

3 30 January–11 February 2020

(1) Public health level 1 response of 31 provinces

Essential 0.4

(2) Strict exit screening
(3) Domestic and international medical support
(4) )e larger scale of cancellation of mass gatherings
(5) Further methodological improvement on the diagnosis and
treatment strategy
(6) Spontaneous household quarantine by citizens
(7) Two newly built hospitals’ put into use
(8) A clinical trial of perspective medicines

4 12 February–20 February
2020

(1) Public health level 1 response of 31 provinces

Crucial 0.2

(2) Strict exit screening
(3) Further medical support from home and abroad
(4) Massive online teaching in a postponed semester
(5) Orderly resumption of back to work
(6) Addition of new diagnosis method—clinical diagnosis in
Hubei Province
(7) Interagency mechanism
(8) Further exploration of an effective therapeutic strategy
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Figure 15: )e number of newly confirmed diagnoses in regions outside Hubei.

Complexity 11



4000

3000

2000

1000

0

D
ea

th
s

60 k

40 k

20 k

0

C
on

fir
m

ed
 ca

se
s

Jan 5 Jan 19 Feb 2 Feb 16 Mar 1 Mar 15 Mar 29 Apr 12
2020

Dec 30: Jan 05: Jan 24: Feb 13: Mar 01: Apr 16:
Wuhan city
government

starts to 
trace cases

China issued
revised death

and case count

China-WHO joint
investigation report on
COVID-19 published

Hubei Province
incorporates

diagnostic change

Wuhan placed
under quarantine

Shanghai lab
detects

coronavirus
similar to SARS

Cumulative confirmed cases
Cumulative deaths

Events
Key events

Figure 17: Accumulated timetable for confirmed cases in Hubei Province (https://coronavirus.jhu.edu/map.html).

Table 4: Information report of COVID-19 in Hubei Province and the corresponding assumed value of f2.

Phase Epidemic stage Information report management changes Importance Assumed value of
f2

1 Early period
(1) Holding special meetings

Significant 1.2(2) Establishment of emergency response teams
(3) Issue guidance notice

2 Beginning
period

(1) CDC has issued guidance documents for many times

Critical 1.5(2) Video training
(3) Answer questions by telephone
(4) Issuing guidance notices

3 High-risk
period

(1) Provide 4 analysis reports of more than 20 pages per day

Crucial 1.8(2) Analyze the characteristics of the disease
(3) To assess the trend of the epidemic
(4) Provide data support for leaders’ decision-making

4 Low-risk period

(1) Timely update of the COVID-19 monitoring analysis report

Essential 1.6(2) Pay attention to the detailed source and detection route of case information
(3) Focus on asymptomatic infected persons and epidemic situation analysis at
home and abroad

∗)e information of COVID-19 in the study was mainly obtained from the National Health Commission of the People’s Republic of China, Chinese Center
for Disease Control and Prevention, WHO, Hubei Provincial for Disease Control and Prevention, and various websites of Chinese government agencies and
official media, as well as some previous studies.
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Figure 16: Date fitting by ploy regression.
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data and epidemic prevention process during the spread of
COVID-19 can enhance public awareness and effectively
control the spread of the epidemic.

6. Conclusions

In this paper, on the one hand, we discuss the interaction
between awareness diffusion (including authoritative
information and rumors) and epidemic spreading; on the
other hand, we analyze the influence of neighbor status on
epidemic spreading when awareness diffusion and
neighbor behavior are coupled in multiple networks.
Distinct from previous studies, people can get epidemic
prevention information to reduce the infection rates from
their social communication circles, such as microblogs, as
well as increase awareness based on their own health
status. Moreover, different neighbor status play distinct
roles in the awareness acquisition process and the re-
sponse behavior change process of an individual. We
investigate the impact of these factors on epidemic
spreading processes and obtain the epidemic threshold
with the MMCA approach. Analysis based on the nu-
merical simulations reveal that the epidemic can be re-
duced by publishing authoritative information to reduce
f1, publicizing the epidemic prevention process to in-
crease f2, and controlling neighbor behavior to be more
reasonable, for example, isolating infected neighbors and
encouraging them to propagate information related to the
epidemic.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare no conflicts of interest.

Acknowledgments

)is work was supported by the Education Project of
Zhejiang Province (No. Y202045064).

References

[1] H. A. Rothan and S. N. Byrareddy, “)e epidemiology and
pathogenesis of coronavirus disease (COVID-19) outbreak,”
Journal of Autoimmunity, vol. 109, Article ID 102433, 2020.

[2] M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, and R. Siddique,
“COVID-19 infection: origin, transmission, and character-
istics of human coronaviruses,” Journal of Advanced Research,
vol. 24, pp. 91–98, 2020.

[3] C.-J. Fan, Y. Jin, L.-A. Huo, C. Liu, Y.-P. Yang, and
Y.-Q. Wang, “Effect of individual behavior on the interplay
between awareness and disease spreading in multiplex net-
works,” Physica A: Statistical Mechanics and its Applications,
vol. 461, pp. 523–530, 2016.

[4] X.-X. Zhan, C. Liu, G. Zhou, Z.-K. Zhang et al., “Coupling
dynamics of epidemic spreading and information diffusion on
complex networks,” Applied Mathematics and Computation,
vol. 332, pp. 437–448, 2018.

[5] K. M. A. Kabir, K. Kuga, and J. Tanimoto, “Analysis of SIR
epidemic model with information spreading of awareness,”
Chaos, Solitons & Fractals, vol. 119, pp. 118–125, 2019.

[6] Q Guo, X Jiang, and Y Lei, “Two-stage effects of awareness
cascade on epidemic spreading in multiplex networks,”
Physical Review E, vol. 91, no. 1, Article ID 012822, 2015.

[7] S. Pei, L. Muchnik, and J. S. Andrade Jr., “Searching for super
spreaders of information in real-world social media,” Scien-
tific Reports, vol. 4, p. 5547, 2014.

[8] S. Funk, E. Gilad, and V. A. A. Jansen, “Endemic disease,
awareness, and local behavioural response,” Journal of 5e-
oretical Biology, vol. 264, no. 2, pp. 501–509, 2010.

[9] Z. Wang, M. A. Andrews, Z.-X. Wu, L. Wang, and
C. T. Bauch, “Coupled disease-behavior dynamics on complex
networks: a review,” Physics of Life Reviews, vol. 15, pp. 1–29,
2015.

[10] K. M. A. Kabir, K. Kuga, and J. Tanimoto, “Effect of infor-
mation spreading to suppress the disease contagion on the

f2 = 1.2
f2 = 1.5

f2 = 1.8
f2 = 1.6

5 10 15 20 25 300
t

0

0.2

0.4

0.6

0.8

1

ρA

(a)

f2 = 1.2
f2 = 1.5

f2 = 1.8
f2 = 1.6

5 10 15 20 25 300
t

0

0.2

0.4

0.6

0.8

1

ρA

(b)

Figure 18: Changes in ρA under different epidemic stages: (a) Model I; (b) Model II.

Complexity 13



epidemic vaccination game,” Chaos, Solitons & Fractals,
vol. 119, pp. 180–187, 2019.

[11] K. A. Kabir, K. Kuga, and J. Tanimoto, “)e impact of in-
formation spreading on epidemic vaccination game dynamics
in a heterogeneous complex network—a theoretical ap-
proach,” Chaos, Solitons & Fractals, vol. 132, Article ID
109548, 2020.

[12] C. Granell, S. Gomez, and A. Arenas, “Dynamical interplay
between awareness and epidemic spreading in multiplex
networks,” Physical Review Letters, vol. 111, no. 12, Article ID
128701, 2013.

[13] S. Funk, E. Gilad, C. Watkins, and V. A. A. Jansen, “)e
spread of awareness and its impact on epidemic outbreaks,”
Proceedings of the National Academy of Sciences, vol. 106,
no. 16, pp. 6872–6877, 2009.

[14] W. Wang, Q. H. Liu, and S. M. Cai, “Suppressing disease
spreading by using information diffusion on multiplex net-
works,” Scientific Reports, vol. 6, no. 1, pp. 1–14, 2016.

[15] W. Wang, Q.-H. Liu, J. Liang, Y. Hu, and T. Zhou, “Co-
evolution spreading in complex networks,” Physics Reports,
vol. 820, pp. 1–51, 2019.

[16] P. Zhu, X. Wang, Q. Zhi, J. Ma, and Y. Guo, “Analysis of
epidemic spreading process in multi-communities,” Chaos,
Solitons & Fractals, vol. 109, pp. 231–237, 2018.

[17] P. Zhu, X. Wang, S. Li, Y. Guo, and Z. Wang, “Investigation of
epidemic spreading process on multiplex networks by in-
corporating fatal properties,” Applied Mathematics and
Computation, vol. 359, pp. 512–524, 2019.

[18] K. M. A. Kabir and J. Tanimoto, “Analysis of epidemic
outbreaks in two-layer networks with different structures for
information spreading and disease diffusion,” Communica-
tions in Nonlinear Science and Numerical Simulation, vol. 72,
pp. 565–574, 2019.

[19] L. Y. Shang, “Discrete-time epidemic dynamics with aware-
ness in random networks,” International Journal of Bio-
mathematics, vol. 6, no. 2, pp. 147–153, 2013.

[20] Y. Shang, “Modeling epidemic spread with awareness and
heterogeneous transmission rates in networks,” Journal of
Biological Physics, vol. 39, no. 3, pp. 489–500, 2013.

[21] F. Bagnoli, P. Lio, and L. Sguanci, “Risk perception in epi-
demic modeling,” Physical Review E, vol. 76, no. 6, Article ID
061904, 2007.

[22] J. Alstott, P. Panzarasa, and M. Rubinov, “A unifying
framework for measuring weighted rich clubs,” Scientific
Reports, vol. 4, no. 1, pp. 1–6, 2014.

[23] Q. Wu, X. Fu, and M. Small, “)e impact of awareness on
epidemic spreading in networks,” Chaos: an interdisciplinary
journal of nonlinear science, vol. 22, no. 1, Article ID 013101,
2012.

[24] Z. Wang, C. T. Bauch, S. Bhattacharyya et al., “Statistical
physics of vaccination,” Physics Reports, vol. 664, pp. 1–113,
2016.

[25] Z. Li, P. Zhu, and D. Zhao, “Suppression of epidemic
spreading process on multiplex networks via active immu-
nization,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 29, no. 7, Article ID 073111, 2019.

[26] J.-Q. Kan andH.-F. Zhang, “Effects of awareness diffusion and
self-initiated awareness behavior on epidemic spreading—an
approach based on multiplex networks,” Communications in
Nonlinear Science and Numerical Simulation, vol. 44,
pp. 193–203, 2017.

[27] Q. Guo, Y. Lei, and C. Xia, “)e role of node heterogeneity in
the coupled spreading of epidemics and awareness,” PLoS
One, vol. 11, no. 8, Article ID e0161037, 2016.

[28] P. Zhu, Q. Zhi, Y. Guo, and Z. Wang, “Analysis of epidemic
spreading process in adaptive networks,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 66, no. 7,
pp. 1252–1256, 2018.

[29] X. Chen, K. Gong, R. Wang, S. Cai, and W. Wang, “Effects of
heterogeneous self-protection awareness on resource-
epidemic coevolution dynamics,” Applied Mathematics and
Computation, vol. 385, Article ID 125428, 2020.

[30] Y. Pan and Z. Yan, “)e impact of individual heterogeneity on
the coupled awareness-epidemic dynamics in multiplex
networks,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 28, no. 6, Article ID 063123, 2018.

[31] M. C. M. Balemans, M. M. H. Huibers, N. W. D. Eikelenboom
et al., “Reduced exploration, increased anxiety, and altered
social behavior: autistic-like features of euchromatin histone
methyltransferase 1 heterozygous knockout mice,” Behav-
ioural Brain Research, vol. 208, no. 1, pp. 47–55, 2010.

[32] H. Faneca, V. A. Figueiredo, I. Tomaz et al., “Vanadium
compounds as therapeutic agents: some chemical and bio-
chemical studies,” Journal of Inorganic Biochemistry, vol. 103,
no. 4, pp. 601–608, 2009.

[33] K. Hukushima and K. Nemoto, “Exchange Monte Carlo
method and application to spin glass simulations,” Journal of
the Physical Society of Japan, vol. 65, no. 6, pp. 1604–1608,
1996.

[34] A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and
P. N. Vorontsov-Velyaminov, “New approach to Monte Carlo
calculation of the free energy: method of expanded ensem-
bles,” 5e Journal of Chemical Physics, vol. 96, no. 3,
pp. 1776–1783, 1992.

[35] Y. Fang, Y. Nie, andM. Penny, “Transmission dynamics of the
COVID-19 outbreak and effectiveness of government inter-
ventions: a data-driven analysis,” Journal of Medical Virology,
vol. 92, no. 6, pp. 645–659, 2020.

[36] Y. C. Chen, P. E. Lu, and C. S. Chang, “A time-dependent SIR
model for COVID-19 with undetectable infected persons,”
IEEE Transactions on Network Science and Engineering, vol. 7,
no. 4, pp. 3279–3294, 2020.

14 Complexity


