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-is article is related to the issue of fixed-time synchronization of different dimensional complex network systems with unknown
parameters. Two suitable adaptive controllers and dynamic parameter estimations are proposed such that the complex network
driving and response systems can be synchronized in the settling time. Based on fixed-time control theory and Lyapunov
functional method, novel sufficient conditions are provided to guarantee the synchronization within the fixed times, and the
settling times are explicitly evaluated, which are independent of the initial synchronization errors. Finally, a numerical example is
given to illustrate the effectiveness of the proposed control algorithms.

1. Introduction

Complex network systems (CNSs) usually comprise a family
of coupled interconnected nodes, in which each node rep-
resents a dynamical system. Over the past decades, the field
of CNS [1–6] has been gaining wide attention due to its
broad applications in nature and human society, such as
World WideWeb, metabolic pathways, ecological networks,
food webs, electrical power grids, and so on. -e syn-
chronization of CNS has been intensively investigated due to
its important applications in secure communication [7, 8],
image encryption [9, 10], automatic control [11], infor-
mation processing [12], and other fields. Synchronization
refers to a process that all the nodes seek to adjust a certain
property of their motion to a common behavior as time
evolves. Generally speaking, there are two typical syn-
chronizations of CNS including inner synchronization, i.e.
synchronization of all the nodes inside every network, and
outer synchronization between whole complex networks
simultaneously. In recent years, many synchronization
patterns have been proposed to the CNS, for instance, ex-
ponential synchronization [13–15], cluster synchronization
[16, 17], phase synchronization [18], robust synchronization
[19], generalized synchronization [20], projective synchro-
nization [21, 22], complete synchronization [23],

antisynchronization [24], etc. -ere are several control
approaches for the synchronization of CNS, including
sliding mode control [25], intermittent control and im-
pulsive control [26, 27], pinning adaptive control [28, 29],
optimal control [30], fuzzy control [31] and so on.

In the analysis of synchronization problems, the con-
vergence rate of the proposed controller has been considered
as a practically important issue, which leads to the inves-
tigation of finite-time synchronization [32–39]. On the one
hand, compared with the infinite-time synchronization, fi-
nite-time synchronization essentially requires high-preci-
sion convergence; furthermore, the states of CNS remain
completely identical after some finite time, which is called
the settling time. On the other hand, a critical issue of finite-
time synchronization is that the settling time heavily de-
pends upon the initial synchronization error of considered
systems. -erefore, the modification of initial synchroni-
zation errors will lead to the different settling times.
However, the initial conditions of many practical systems
might be random, which leads to the inaccessibility of
settling time. To overcome the defect of finite-time control,
the concept of fixed-time stability was firstly proposed by
Polyakov [40]. Different from the finite-time method, the
settling time of fixed-time technique can be estimated off-
line. Namely, the stability of system can be stabilized in a
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predefined time by properly selecting control gains [41, 42].
Until now, many relevant results concerning fixed-time
synchronization of CNS have been published in [43–48].-e
fixed-time controller for delayed memristor-based recurrent
neural networks is discussed in [43]. -e fixed-time syn-
chronization of CNS with nonidentical nodes and stochastic
noise perturbations was discussed in [44]. Specially, re-
gardless of the initial conditions, the settling time of fixed-
time synchronization for hybrid coupled networks can be
adjusted to the desired values in [45]. In addition, based on a
new fast fixed-time control method and delay feedback
control, the fixed-time synchronization for the delayed
neural networks and delayed Cohen–Grossberg neural
networks was investigated in [46, 47], respectively. -e
fixed-time cluster synchronization for CNS via pinning
control is considered in [48]. By designing new Lyapunov
function and comparison systems, the fixed-time synchro-
nization of CNS with impulsive effects via nonchattering
control was investigated in [49]. However, most of the
aforementioned results just presented either were more
specific to synchronization of some systems or did not
analyze the effects of unknown parameters for systems.

From the practical point of view, uncertainties in the
plant models may arise due to parameter variation, neglected
dynamics, unmodeled dynamics, and either unknown or
approximately known parameters. -erefore, it is important
and necessary to study the synchronization in such systems
with unknown parameters. In recent years, some results of
synchronization for CNS with unknown parameters have
been obtained. In [50], the adaptive synchronization was
studied for the response system contains unknown uncertain
nonlinearities and unknown dead zones in neural networks.
In [51], based on the invariant principle of functional dif-
ferential equations and parameter identification, the rigor-
ous adaptive feedback scheme is derived to achieve
synchronization of two coupled neural networks with time-
varying delay. But in real application, the parameters of the
CNS may be mismatched. Paper [52] proved that for the
general complex networks with identification of the topo-
logical structure and unknown parameters, synchronization
can be achieved by using adaptive control approach. -e
adaptive control, as presented in [51, 52], evaluates the
unknown parameters to achieve synchronization of two
networks. -e adaptive finite-time synchronization of dif-
ferent dimensional coupled chaotic (or hyperchaotic) sys-
tems with unknown parameters has been discussed in
[53, 54]. In [55], the Lyapunov stability theory and the
nonlinear feedback control were used to get the robust finite-
time synchronization for the chaotic systems with different
orders. However, this paper does not analyze the effects of
finite time adaptive feedback control on unknown param-
eters identification of two chaotic neural networks. Recently,
the generalized outer synchronization between two non-
dissipatively coupled CNSs with different time-varying
coupling delays was investigated in [56]. Based on new
concepts of finite-time passivity, two models of delayed
multiweighted CNS with different dimensional nodes were
presented in [57]. -e finite-time synchronization problem
of all parameters estimation between two different

dimensional fractional-order complex dynamical networks
was proposed in [58]. By using fractional adaptive laws, the
fractional-order nonlinear systems with actuator faults
whose parametric uncertainties and parameters are fully
unknown were investigated in [59, 60], respectively. -ese
works have provided important theoretical and application
values than the previous model for single driving and single
response system.

It is worthwhile to emphasize that all results above only
considered the same dimensional CNS, while the different
dimensional CNSs are very universal. Actually, we can
observe that both circulatory and respiratory systems behave
in synchronous way, but their models are essentially dif-
ferent and they have different dimensions. So, the theoretical
research of synchronization for strictly different dynamical
systems is very important. Although many finite-time
synchronization schemes have been developed in the lit-
erature for various CNSs, to the best of the authors’
knowledge, few published papers consider the fixed-time
synchronization and identification of unknown parameters
for the different dimensional CNSs. So, it is meaningful to
consider fixed-time synchronization of all parameters’ es-
timation for different dimensional CNSs. -is paper aims to
solve this challenging problem.

-e remainder of this paper is organized as follows. -e
preliminary results and problem formulation are given in
Section 2. -e main results are derived in Section 3. -e
numerical simulation is provided to verify the results in
Section 4. -e conclusion is drawn in Section 5.

-roughout the paper, the following notations will be
used. Let Rn denote n-dimension real space and R+ denote
1-dimension positive real space, and In is the identity matrix
with n dimensions. For any x ∈ Rn, let ‖x‖ � (xTx)(1/2), and
superscript T denotes the transpose of a vector or matrix.
For a matrix A ∈ Rn×n(∈ Rn×m), A− 1 denotes the inverse
matrix of A (the right inverse matrix of A ) and A⊗B

represents the Kronecker product of matrices of A and B.
For any vector s(t) � (s1, s2, . . . , sn)T ∈ Rn, |s(t)|μ � (|s1|

μ,

|s2|
μ, . . . , |sn|μ)T, sign s(t) � (sign(s1), sign(s2), . . . , sign

(sn))T, and sigμ(s(t)) � (sign(s1)|s1|
μ, sign (s2)|s2|

μ, . . . ,

sign(sn)|sn|μ)T, where sign(·) is the standard sign function.

2. Preliminary Results and
Problem Formulation

In order to facilitate the synchronization control of different
dimensional CNSs with unknown parameters, some defi-
nitions and lemmas are presented in the section.

For the following driving system:

_x � F(x(t)), x(0) � x0, (1)

where x(t) ∈ Rn represents the system state, F: Rn⟶ Rn

is a continuous function on an open neighbourhood D⊆Rn

of the origin with F(0) � 0.
-e controlled response system is given by

_y � G(y(t)) + u(t), (2)

2 Complexity



where y(t) ∈ Rm represents the system state, u(t) ∈ Rm

represents the control input, and G: Rm⟶ Rm is a con-
tinuous function.

Remark 1. When n � m, the driving and response systems
(1) and (2) have the same dimension. -ere are a lot of
relevant works about the problem of synchronization. When
n≠m, the generalized synchronization of systems (1) and (2)
with different dimensional is studied in [53–55]. -ere are
few results about the finite-time and fixed-time synchro-
nization of systems (1) and (2) with different dimensions.
-erefore, it is essential to give some theoretical results. In
addition, it should be noticed that lots of well-known chaotic
systems could be written in the form of (1) and (2), such as,
Lorenz system, Chen system, Rössler system, Duffing sys-
tem, hyperchaotic Lorenz system, and hyperchaotic Rössler
system.

-e definition of fixed-time generalized synchronization
is given as follows.

Definition 1. Systems (1) and (2) are said to be in finite-time
generalized synchronization by adding a suitable designed
controller to response system (2), if there exist two con-
tinuously differentiable functions ϕ: Rn⟶ Rr, φ:

Rm⟶ Rr and there exists a number T(e(0))≥ 0 such that

lim
t⟶T(e(0))

‖e(t)‖ � 0,

‖e(t)‖ � 0, for all t> T(e(0)),

(3)

where e(t) � ϕ(x) − φ(y) ∈ Rr represents the synchroni-
zation error of different dimensional systems (1) and (2) and
‖ · ‖ denotes the Euclidean norm.

-e time

T(e(0)) � inf T(e(0)) ≥ 0: ‖e(t)‖ � 0, for all t> T(e(0)) , (4)

is called the settling time of synchronization, which is de-
pendent of the initial value e(0). Furthermore, if there exists
a fixed-time T≥ 0 such that T(e(0))≤T for any e(0) ∈ Rr,
systems (1) and (2) are said to be in fixed-time generalized
synchronization.

Remark 2. In Definition 1, the functions ϕ and φ are two
arbitrary continuously differentiable functions; according to
the different form of functions ϕ and φ, the generalized
synchronization can also be reduced to the projective
synchronization, so the research about synchronization has
more extensive meaning than previous results. If
m � n,ϕ(x) � x,φ(y) � βy, where β is a scalar, then the
generalized synchronization will be reduced to the projective
synchronization and β denotes the projective coefficient.
Especially, if β � 1, then the generalized synchronization will
be reduced to the complete synchronization; if β � −1, then
the generalized synchronization will be reduced to the
projective antisynchronization.

Remark 3. If m � n,ϕ(x) ≡ 0,φ(y) � y, the equation in
Definition 1 is reduced to the following form:

lim
t⟶T(y(0))

‖y(t)‖ � 0,

‖y(t)‖ � 0, for all t> T(y(0)).

(5)

In this case, system (2) is said to be globally finite-time
asymptotically stabilized to the origin.

-e following lemmas are useful for our main results.

Lemma 1 (see [61]). Let a1, a2, . . . , aN ≥ 0 and
0<p≤ 1, q> 1. -en, the following two inequalities hold:



N

i�1
αp

i ≥ 
N

i�1
αi

⎛⎝ ⎞⎠

p

,



N

i�1
αq

i ≥N
1− q



N

i�1
αi

⎛⎝ ⎞⎠

q

.

(6)

Lemma 2 (see [62]). Consider a scalar system

_y � −αy
(m/n)

− βy
(p/q)

,

y(0) � y0,
(7)

where α> 0 and β> 0 and m, n, p, q are positive odd integers
satisfying m> n and p< q. -en, the equilibrium of system (7)
is fixed-time stable and the settling time is

T �
n

α(m − n)
+

q

β(q − p)
. (8)

In this paper, the fixed time and adaptive controller are
designed to realize the synchronization between the driving
network systems and response ones with unknown pa-
rameters in the settling time T, i.e., limt⟶T‖e(t)‖ � 0.

3. Main Results

In this section, the sufficient conditions of fixed-time syn-
chronization for two different dimensional CNSs are ob-
tained via adaptive control methods.

We consider the following driving dynamical networks
consisting of N identical nodes:

xi

.
(t) � Fi xi(t)(  + fi xi(t)( Φi + 

N

j�1
aijxj(t), i � 1, 2, . . . , N,

(9)

where xi(t) � (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn denotes the
state vector of ith node, Fi: R

n⟶ Rn, fi: R
n⟶ Rn × Rp

are continuous functions, and Φi � (Φi1,Φi2, · · ·Φip)T ∈ Rp

represents the vector of unknown parameters.
A � (aij) ∈ RN×N denotes the weight configuration matrix.
If there is a connection between nodes i and j(i≠ j), then
aij � aji > 0; otherwise, aij � aji � 0. -e diagonal elements
of matrices A are defined as

aii � − 

N

j�1,j≠ i

aij. (10)
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For simplicity, driving system (9) is inferred to be in the
following form:

_x(t) � F(x(t)) + f(x(t))Φ + A⊗ In( x(t), (11)

where x(t) � (xT
1 (t), xT

2 (t), . . . , xT
N(t))T, F(x(t)) � (FT

1
(x1(t)), FT

2 (x2(t)), . . . , FT
N(xN(t)))T, f(x(t)) � diag f1

(x1(t)), f2(x2(t)), . . . , f N(xN(t))},Φ � (ΦT
1 ,ΦT

2 , . . . ,

ΦT
N)T.
Correspondingly, the response system can be given as

follows:

yi

.
(t) � Gi yi(t)(  + gi yi(t)( Ψi

+ 

N

j�1
aijyj(t) + ui(t), i � 1, 2, . . . , N.

(12)

Similarly, response system (12) is inferred to be in the
following form:

_y(t) � G(y(t)) + g(y(t))Ψ + A⊗ Im( y(t) + u(t), (13)

where y(t) � (yT
1 (t), yT

2 (t), . . . , yT
N(t))T, yi(t) � (yi1(t),

yi2(t), . . . , yim(t))T ∈ Rm denotes the response state vector
of the ith node, G(y(t)) � (GT

1 (y1(t)), GT
2 (y2(t)), . . . ,

GT
N(yN(t)))T, Gi: Rm⟶ Rm, g(y(t)) � diag g1(y1(t)),

g2(y2(t)), . . . , gN(yN(t))}, gi: R
m⟶ Rm × Rq are con-

tinuous functions, Ψ � (ΨT
1 ,ΨT

2 , . . . ,ΨT
N)T,Ψi �

(Ψi1,Ψi2, · · ·Ψiq)T ∈ Rq represent the vector of unknown
parameters, and u(t) � (uT

1 (t), uT
2 (t), . . . , uT

N(t))T,

ui(t) ∈ Rm denotes the control input of the ith node.
Consider the driving system (9) and response system

(12) with unknown parameters; we define the synchroni-
zation error as e(t) � (eT

1 (t), eT
2 (t), . . . , eT

N(t))T, ei(t) �

ϕ(xi(t)) − φ(yi(t)), where ϕ � (ϕ1, ϕ1, . . . , ϕr)
T:

Rn⟶ Rr and φ � (φ1,φ1, . . . ,φr)
T: Rm⟶ Rr are both

continuously differentiable functions; then, it is well known
that the fixed-time synchronization problem between
driving system (9) and response system (12) can be trans-
formed to the equivalent problem of the fixed-time stabi-
lization for the following error system:

_ei(t) � Jϕ xi(  Fi xi(  + 
N

j�1
aijxj(t) + fi xi( Φi

⎛⎝ ⎞⎠

− Jφ yi(  Gi yi(  + 

N

j�1
aijyj(t) + gi yi( Ψi + ui(t)⎛⎝ ⎞⎠,

(14)

where

Jϕ xi(  �

zϕ1 xi( 

zxi1

zϕ1 xi( 

zxi2
· · ·

zϕ1 xi( 

zxin

zϕ2 xi( 

zxi1

zϕ2 xi( 

zxi2
· · ·

zϕ2 xi( 

zxin

⋮ ⋮ ⋱ ⋮

zϕr xi( 

zxi1

zϕr xi( 

zxi2
· · ·

zϕr xi( 

zxin

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Jφ yi(  �

zφ1 yi( 

zyi1

zφ1 yi( 

zyi2
· · ·

zφ1 yi( 

zyim

zφ2 yi( 

zyi1

zφ2 yi( 

zyi2
· · ·

zφ2 yi( 

zyim

⋮ ⋮ ⋱ ⋮

zφr yi( 

zyi1

zφr yi( 

zyi2
· · ·

zφr yi( 

zyim

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(15)

denote the Jacobin matrices of functions ϕ(xi) and φ(yi),
respectively.

For simplicity, error system (14) is inferred to be in the
following form:

_e(t) � Jϕ(x) F(x(t)) + A⊗ In( x(t) + f(x(t))Φ( 

− Jφ(y) G y(x(t)) + A⊗ Im( y(t)((

+ g(y(x(t))Ψ + u(t),

(16)

where Jϕ(x) � diag Jϕ(x1), Jϕ(x2), . . . , Jϕ(xN)  and
Jφ(y) � diag Jφ(y1), Jφ(y2), . . . , Jφ(yN) .

Assumption 1. Let r≤min m, n{ } and matrix Jφ be row full
rank.

Now, two novel fixed-time synchronization control
methodologies are given in the following two theorems.

Theorem 1. Under Assumption 1, for error system (14) of
driving system (9) and response system (12) with unknown
parameters, the controller u(t) is designed as
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ui(t) � −Gi yi(  − 
N

j�1
aijyj(t) − gi yi(  Ψi

+ J
−1
φ yi(  Jϕ xi(  Fi xi(  + 

N

j�1
aijxj(t) + fi xi(  Φi

⎛⎝ ⎞⎠⎛⎝

+ α1 · sig m1/n1( ) ei(  + β1 · sig p1/q1( ) ei( ,

(17)

where Φi, Ψi denote the estimations of Φi and Ψi,
α1 > 0, β1 > 0 and m1, n1, p1, q1 are all positive odd integers
satisfying m1 > n1, p1 < q1. And the following adaptive update
laws are proposed to estimate the unknown parameters Φi

and Ψi:
_Φi � Jϕ xi( fi xi(  

T
ei(t) − α1 · sig m1/n1( ) Φi(  − β1 · sig p1/q1( ) Φi( ,

(18)

_Ψi � − Jφ yi( gi yi(  
T
ei(t) − α1 · sig m1/n1( ) Ψi(  − β1

· sig p1/q1( ) Ψi( ,
(19)

where Φi � Φi −Φi, Ψi � Ψi − Ψi. -en, systems (9) and (12)
are fixed-time synchronized with the setting time
T1 � (1/(2((m1+n1)/ 2n1)α1N

((n1−m1)/2n1)
1 ))(2n1/(m1 − n1)) +

(1/(2((p1+q1)/2q1)β1))(2q1/(q1 − p1)), where N1 � N(r + p

+ q).

Proof. Substituting controller (17) into the error system (14)
yields

_ei(t) � −Jϕ xi( fi xi(  Φi + Jφ yi( gi yi(  Ψi − α1

· sig m1/n1( ) ei(  − β1 · sig p1/q1( ) ei( .
(20)

Consider the following Lyapunov function:

V(t) �
1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1

ΦT

i
Φi +

1
2



N

i�1

ΨT

i
Ψi. (21)

-en, the time derivative of V(t) along (20) with the
adaptive tuning laws (18) and (19) can be calculated as

_V(t) � 
N

i�1
e

T
i (t) _ei(t) + 

N

i�1

ΦT

i
_Φi + 

N

i�1

ΨT

i
_Ψi

� 
N

i�1
e

T
i (t) −Jϕ xi( fi xi(  Φi + Jφ yi( gi yi(  Ψi − α1 · sig m1/n1( ) ei(  − β1 · sig p1/q1( ) ei(  

+ 
N

i�1

ΦT

i Jϕ xi( fi xi(  
T
ei(t) − α1 · sig m1/n1( ) Φi(  − β1 · sig p1/q1( ) Φi(  

+ 
N

i�1

ΨT

i − Jφ yi( gi yi(  
T
ei(t) − α1 · sig m1/n1( ) Ψi(  − β1 · sig p1/q1( ) Ψi(  

� −α1 

N

i�1
e

T
i (t) · sig m1/n1( ) ei(  − α1 

N

i�1

ΦT

i · sig m1/n1( ) Φi(  − α1 

N

i�1

ΨT

i · sig m1/n1( ) Ψi( 

− β1 

N

i�1
e

T
i (t) · sig p1/q1( ) ei(  − β1 

N

i�1

ΦT

i · sig p1/q1( ) Φi(  − β1 

N

i�1

ΨT

i · sig p1/q1( ) Ψi( 

� −α1 

N

i�1


r

j�1
eij(t)




m1+n1( )/n1( )

− α1 

N

i�1


p

j�1

Φij




m1+n1( )/n1( )

− α1 

N

i�1


q

j�1

Ψij




m1+n1( )/n1( )

− β1 

N

i�1


r

j�1
eij(t)




p1+q1( )/q1( )

− β1 

N

i�1


p

j�1

Φij




p1+q1( )/q1( )

− β1 

N

i�1


q

j�1

Ψij




p1+q1( )/q1( )

.

(22)

Applying the Lemma 1 yields

Complexity 5



_V(t)≤ − 2 m1+n1( )/2n1( )α1N
n1−m1( )/2n1( )

1
1
2



N

i�1


r

j�1
eij(t) 

2
+
1
2



N

i�1


p

j�1

Φ2i +
1
2



N

i�1


q

j�1

Ψ2i⎛⎝ ⎞⎠

m1+n1( )/2n1( )

− 2 p1+q1( )/2q1( )β1
1
2



N

i�1


r

j�1
eij(t) 

2
+
1
2



N

i�1


p

j�1

Φ2ij +
1
2



N

i�1


q

j�1

Ψ2ij⎛⎝ ⎞⎠

p1+q1( )/2q1( )

� −2 m1+n1( )/2n1( )α1N
n1−m1( )/2n1( )

1
1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1

ΦT

i
Φi +

1
2



N

i�1

ΨT

i
Ψi

⎛⎝ ⎞⎠

m1+n1( )/2n1( )

− 2 p1+q1( )/2q1( )β1
1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1

ΦT

i
Φi +

1
2



N

i�1

ΨT

i
Ψi

⎛⎝ ⎞⎠

p1+q1( )/2q1( )

� −2 m1+n1( )/2n1( )α1N
n1−m1( )/2n1( )

1 V(t)
m1+n1( )/2n1( ) − 2 p1+q1( )/2q1( )β1V(t)

p1+q1( )/2q1( ).

(23)

According to Lemma 2, error system (20) is fixed-time
stable with the setting time

T1 �
1

2 m1+n1( )/2n1( )α1N
n1−m1( )/2n1( )

1

2n1

m1 − n1

+
1

2 p1+q1( )/2q1( )β1

2q1

q1 − p1
.

(24)

-e proof is completed. □

For driving system (9) and response system (12) with
unknown parameters, the proposed control scheme in
-eorem 1 can be extended to design a new adaptive
controller.

Theorem 2. Under Assumption 1, for driving system (9) and
response system (12) with unknown parameters, the controller
u(t) is designed as

ui(t) � −Gi yi(  − 
N

j�1
aijyj(t) − gi yi(  Ψi

+ J
−1
φ yi(  Jϕ xi(  Fi xi(  + 

N

j�1
aijxj(t) + fi xi(  Φi

⎛⎝ ⎞⎠⎛⎝

+ α2 · sig m2/n2( ) ei(  + β2 · sig p2/q2( ) ei(  + c(t) · sig p2/q2( ) ei( ,

(25)

where Φi, Ψi denote the estimations of Φi and Ψi,
α2 > 0, β2 > 0 and m2, n2, p2, q2 are all positive odd integers
satisfying m2 > n2, p2 < q2. -e following adaptive update
laws are proposed to estimate the unknown parameters Φi

and Ψi:

_Φi � Jϕ xi( fi xi(  
T
ei(t) − α2 · sig m2/n2( ) Φi(  − β2

· sig p2/q2( ) Φi(  − c(t) · sig p2/q2( ) Φi( ,

(26)

_Ψi � − Jφ yi( gi yi(  
T
ei(t) − α2 · sig m2/n2( ) Ψi(  − β2

· sig p2/q2( ) Ψi(  − c(t) · sig p2/q2( ) Ψi( ,

(27)
where Φi � Φi −Φi, Ψi � Ψi − Ψi. And the adaptive updated
law c(t) is designed as

_c(t) � 
N

i�1
e

T
i (t) · sig p2/q2( ) ei(  + 

N

i�1

ΦT

i · sig p2/q2( ) Φi( 

+ 

N

i�1

ΨT

i · sig p2/q2( ) Ψi( 

− α2 · sign(c(t))|c(t)|
m2/n2( )

− β2 · sign(c(t))|c(t)|
p2/q2( ).

(28)

-en, systems (9) and (12) are fixed-time synchronized
with the setting time

T2 �
1

2 m2+n2( )/2n2( )α2N
n2−m2( )/2n2( )

2

2n2

m2 − n2

+
1

2 p2+q2( )/2q2( )β2

2q2

q2 − p2
,

(29)

where N2 � N(r + p + q) + 1.

6 Complexity



Proof. Substituting controller (25) into error system (14)
yields

_ei(t) � −Jϕ xi( fi xi(  Φi + Jφ yi( gi yi(  Ψi − α2

· sig m2/n2( ) ei(  − β2 · sig p2/q2( ) ei(  − c(t) · sig p2/q2( ) ei( .

(30)

Consider the following positive definite function:

V(t) �
1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1

ΦT

i
Φi +

1
2



N

i�1

ΨT

i
Ψi +

1
2
c
2
(t).

(31)

-en, the time derivative of V(t) along (30) with the
adaptive tuning laws (26)–(28) can be calculated as

_V(t) � 
N

i�1
e

T
i (t)_ei(t) + 

N

i�1
Φ T

i
_Φi + 

N

i�1
Ψ

T

i
_Ψi + c(t) _c(t)

� 
N

i�1
e

T
i (t) −Jϕ xi( fi xi(  Φi + Jφ yi( gi yi(  Ψi − α2 · sig m2/n2( ) ei(  − β2 · sig p2/q2( ) ei(  − c(t) · sig

p2/q2( ) ei(  

+ 
N

i�1

ΦT

i Jϕ xi( fi xi(  
T
ei(t) − α2 · sig m2/n2( ) Φi(  − β2 · sig p2/q2( ) Φi(  − c(t) · sig p2/q2( ) Φi(  

+ 
N

i�1

ΨT

i − Jφ yi( gi yi(  
T
ei(t) − α2 · sig m2/n2( ) Ψi(  − β2 · sig p2/q2( ) Ψi(  − c(t) · sig

p2/q2( ) Ψi(  

+c(t) 
N

i�1
e

T
i (t) · sig p2/q2( ) ei(  + 

N

i�1

ΦT

i · sig p2/q2( ) Φi(  + 
N

i�1

ΨT

i · sig p2/q2( ) Ψi( ⎛⎝

−α2 · sign(c(t))|c(t)|
m2/n2( ) − β2 · sign(c(t))|c(t)|

p2/q2( )

� −α2 
N

i�1
e

T
i (t) · sig m2/n2( ) ei(  − α2 

N

i�1

ΦT

i · sig m2/n2( ) Φi( 

−α2 
N

i�1

ΨT

i · sig m2/n2( ) Ψi(  − α2c(t) · sign(c(t))|c(t)|
m2/n2( )

−β2 
N

i�1
e

T
i (t) · sig p2/q2( ) ei(  − β2 

N

i�1

ΦT

i · sig p2/q2( ) Φi(  − β2 
N

i�1

ΨT

i · sig p2/q2( ) Ψi( 

−β2c(t) · sign(c(t))|c(t)|
p2/q2( )

� −α2 

N

i�1


r

j�1
eij(t)




m2+n2( )/n2( )

− α2 

N

i�1


p

j�1

Φij




m2+n2( )/n2( )

− α2 

N

i�1


p

j�1

Ψij




m2+n2( )/n2( )

−α2c(t) · sign(c(t))|c(t)|
m2/n2( ) − β2 

N

i�1


r

j�1
eij(t)




p2+q2( )/q2( )

− β2 

N

i�1


p

j�1

Φij




p2+q2( )/q2( )

−β2 

N

i�1


q

j�1

Ψij




p2+q2( )/q2( )

− β2c(t) · sign(c(t))|c(t)|
p2/q2( ).

(32)

Applying Lemma 1 yields

Complexity 7



_V(t)≤ − 2 m2+n2( )/2n2( )α2N
n2−m2( )/2n2( )

2
1
2



N

i�1


r

j�1
eij(t) 

2
+
1
2



N

i�1


p

j�1

Φ2ij +
1
2



N

i�1


q

j�1

Ψ2ij +
1
2
c
2
(t)⎛⎝ ⎞⎠

m2+n2( )/2n2( )

− 2 p2+q2( )/2q2( )β2
1
2



N

i�1


r

j�1
eij(t) 

2
+
1
2



N

i�1


p

j�1

Φ2ij +
1
2



N

i�1


q

j�1

Ψ2ij +
1
2
c
2
(t)⎛⎝ ⎞⎠

p2+q2( )/2q2( )

� −2 m2+n2( )/2n2( )α2N
n2−m2( )/2n2( )

2
1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1

ΦT

i
Φi +

1
2



N

i�1

ΨT

i
Ψi +

1
2
c
2
(t)⎛⎝ ⎞⎠

m2+n2( )/2n2( )

− 2 p2+q2( )/2q2( )β2
1
2



N

i�1
e

T
i (t)ei(t) +

1
2



N

i�1

ΦT

i
Φi +

1
2



N

i�1

ΨT

i
Ψi +

1
2
c
2
(t)⎛⎝ ⎞⎠

p2+q2( )/2q2( )

� −2 m2+n2( )/2n2( )α2N
n2−m2( )/2n2( )

2 V(t)
m2+n2( )/2n2( ) − 2 p2+q2( )/2q2( )β2V(t)

p2+q2( )/2q2( ).

(33)

According to Lemma 2, error system (30) is also fixed-
time stable with the setting time

T2 �
1

2 m2+n2( )/2n2( )α2N
n2−m2( )/2n2( )

2

2n2
m2 − n2

+
1

2 p2+q2( )/2q2( )β2

2q2

q2 − p2
.

(34)

-e proof is completed. □

Remark 4. In this paper, we provide two adaptive control
strategies to ensure the fixed-time synchronization of CNS.
Compared with the adaptive controller (17) of -eorem 1,
controller (25) of -eorem 2 includes an additional control
term c(t); such a control strategy can guarantee the fixed-
time synchronization which is easier to be achieved, but the
whole settling time will be increased.

Remark 5. -e proposed controllers (17) of -eorem 1 and
(25) of -eorem 2 can make the driving system (9) reach the
response system (12) in the predefined time.

Remark 6. Note that the dynamic behavior of node in the
error system (14) is discontinuous, which is different from
the continuous dynamics of the traditional networks. In this
paper, by designing the novel discontinuous feedback

control schemes with sig function, chattering will occur. In
order to weaken the chattering effect, by using new adaptive
dynamic parameter estimations, a unified control frame-
work is designed to guarantee the fixed-time synchroniza-
tion of the discontinuous network driving system (9) reach
response system (12).

Remark 7. -e fixed-time impulsive synchronization con-
trol for network systems is inferred as follows: for the first
stage, only impulsive control is exerted to make the syn-
chronization error converge to one prescribed region. -en,
for the second stage, only fixed-time control is exerted to
realize the synchronization error converge to zero. Fur-
thermore, it is worth noting that, in many practical appli-
cations, the dynamic behavior of CNS is often unknown.
-us, it is significant to develop an effective adaptive syn-
chronization scheme for network systems via impulsive
control and fixed-time control; more theoretical and prac-
tical aspects can be explored in the future work.

4. Numerical Simulation

In this section, a numerical example is presented to show the
effectiveness of the proposed schemes obtained in the
previous section. We consider the CNS with 10 nodes and
choose node dynamics following different dimensional
Lorenz and Chen hyperchaotic systems:

8 Complexity



_xi1(t)

_xi2(t)

_xi3(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0

−xi2 − xi1xi3

xi1xi2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√√√√√√√√√√
Fi xi(t)( )

+

xi2 − xi1 0 0

0 xi1 0

0 0 −xi3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√√√√√√√√√√√√√√
fi xi(t)( )

Φi1

Φi2

Φi3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√√
Φi

+



10

j�1
aijxj1(t)



10

j�1
aijxj2(t)



10

j�1
aijxj3(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i � 1, 2, . . . , 10,

(35)

_yi1(t)

_yi2(t)

_yi3(t)

_yi4(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

yi4

−yi1yi3

yi1yi2

−yi2yi3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√√√√√√
Gi xi(t)( )

+

yi2 − yi1 0 0 0 0
0 yi1 yi2 0 0
0 0 0 −yi3 0
0 0 0 0 yi4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√√√√√√√√√√√√√√√√√√√√√√
gi xi(t)( )

Ψi1

Ψi2

Ψi3

Ψi4

Ψi5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√√
Ψi

+



10

j�1
aijyj1(t)



10

j�1
aijyj2(t)



10

j�1
aijyj3(t)



10

j�1
aijyj4(t)



10

j�1
aijyj5(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

ui1(t)

ui2(t)

ui3(t)

ui4(t)

ui5(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√√√√√√√√
ui(t)

, i � 1, 2, . . . , 10.

(36)

As can be seen in Figure 1, the weight configuration
matrix A is given by
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A �

−4 0 0 1 1 0 0 0 1 1

0 −4 1 1 0 1 0 1 0 0

0 1 −5 1 0 1 0 1 1 0

1 1 1 −6 0 1 1 1 0 0

1 0 0 0 −3 1 0 0 1 0

0 1 1 1 1 −7 1 1 1 0

0 0 0 1 0 1 −3 0 0 1

0 1 1 1 0 1 0 −6 1 1

1 0 1 0 1 1 0 1 −5 0

1 0 0 0 0 0 1 1 0 −3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

-e associated parameters are chosen as Φi1 � 10,Φi2 �

28,Φi3 � (8/3) and Ψi1 � 35,Ψi2 � 7,Ψi3 � 12,Ψi4 � 3,

Ψi5 � 0.5, (i � 1, 2, . . . , 10) such that system (35) and
system (36) are chaotic. According to the designing strategy
of -eorems 1 and 2, select (35) as the driving system and
(36) as the controlled system (n<m).

Assume that ϕ(xi) � (xi1xi2, xi1 − xi3)
T and

φ(yi) � (0.5yi1 − 0.5yi2, 0.5yi3 − 0.5yi4)
T, (i � 1, 2, . . . ,

10). -e Jacobian matrices of functions ϕ(xi) and φ(yi) are
obtained, respectively, as follows:

Jϕ xi(  �
xi2 xi1 0

1 0 −1
 ,

Jφ yi(  �
0.5 −0.5 0 0

0 0 0.5 −0.5
 ,

(38)

and the right inverse matrix of Jφ(yi) is as follows:

J
−1
φ yi(  �

1 0

−1 0

0 1

0 −1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (39)

Compared with the controller in [53], the designed
controllers can show better convergence performance in this
article. Based on the controller design (27) and the error
dynamics (28) in [53], we obtain

_ei1(t) � −k · sign ei1(  ei1



α

− p · ei1,

_ei2(t) � −k · sign ei2(  ei2



α

− p · ei2,

⎧⎨

⎩ (40)

where k � 0.3, p � 3, α � (3/5). Moreover, the initial values
of the state variable for systems (35) and (36) are given by
(xi1(0), xi2(0), xi3(0))T � (1 + 0.05i, −0.05i, 0.05i)T, (yi1
(0), yi2(0), yi3(0), yi4(0))T � (1 + 0.05i, −1 − 0.05i, −0.05i,

0.05i)T, (i � 1, 2, . . . , 10), and the settling time can be
estimated by T � ((ln(1 + (p/k))‖e(t0)‖

((1− α)/2))/
((1 − α)p)) � 2.1384. However, the initial values of the state
variable for systems (35) and (36) are chosen as
(xi1(0), xi2(0), xi3(0))T � (1 + is, −is, is)T, (yi1(0), yi2(0),

yi3(0)yi4(0))T � (1 + is, −1 − is, −is, is)T, (i � 1, 2,

. . . , 10), where s is chosen randomly on the interval [0, 0.1];
by computation, the max settling time can be estimated by
Tmax � 2.5903, and the trajectories of errors are shown in
Figure 2.

Based on expressions (26)–(28), by simple computations,
we can obtain the adaptive updating laws in following form:

5 7

610

8

4

2

1

3

9

Figure 1: A simple complex dynamical network systems with ten nodes.
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_Φi1(t) � xi2 − xi1(  xi2ei1 + ei2(  − α2·sign Φi1(  Φi1



m2/n2( )

− β2 · sign Φi1(  Φi1



p2/q2( )

− c(t) · sign Φi1(  Φi1



p2/q2( )

,

_Φi2(t) � x
2
i1ei1 − α2 · sign Φi2(  Φi2




m2/n2( )
− β2 · sign Φi2(  Φi2




p2/q2( )
− c(t)·sign Φi2(  Φi2




p2/q2( )
,

_Φi3(t) � xi3ei2 − α2 · sign Φi3(  Φi3



m2/n2( )

− β2 · sign Φi3(  Φi3



p2/q2( )

− c(t) · sign Φi3(  Φi3



p2/q2( )

,

_Ψi1(t) � −0.5 yi2 − yi1( ei1 − α2 · sign Ψi1(  Ψi1



m2/n2( )

− β2 · sign Ψi1(  Ψi1



p2/q2( )

− c(t)·sign Ψi1(  Ψi1



p2/q2( )

,

_Ψi2(t) � 0.5yi1ei1 − α2 · sign Ψi2(  Ψi2



m2/n2( )

− β2 · sign Ψi2(  Ψi2



p2/q2( )

− c(t)·sign Ψi2(  Ψi2



p2/q2( )

,

_Ψi3(t) � 0.5yi2ei1 − α2 · sign Ψi3(  Ψi3



m2/n2( )

− β2 · sign Ψi3(  Ψi3



p2/q2( )

− c(t)·sign Ψi3(  Ψi3



p2/q2( )

,

_Ψi4(t) � 0.5yi3ei2 − α2 · sign Ψi4(  Ψi4



m2/n2( )

− β2 · sign Ψi4(  Ψi4



p2/q2( )

− c(t)·sign Ψi4(  Ψi4



p2/q2( )

,

_Ψi5(t) � 0.5yi4ei2 − α2 · sign Ψi5(  Ψi5



m2/n2( )

− β2 · sign Ψi5(  Ψi5



p2/q2( )

− c(t) · sign Ψi5(  Ψi5



p2/q2( )

,

_c(t) � 
10

i�1


2

j�1
eij(t)




p2+q2( )/q2( )

+ 
10

i�1


3

j�1

Φij




p2+q2( )/q2( )

+ 
10

i�1


5

j�1

Ψij




p2+q2( )/q2( )

− α2 · sign(c(t))|c(t)|
m2/n2( ) − β2 · sign(c(t))|c(t)|

p2/q2( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)
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Figure 2: -e synchronization errors between systems (35) and (36) by controller (27) in [53]. (a) ei1(t)(i � 1, 2, . . . , 10).
(b) ei2(t)(i � 1, 2, . . . , 10).

Complexity 11



e i1
 (t

), 
1 

≤ 
i ≤

 1
0

T1 = 2.3283

–2.5

–2

–1.5

–1

–0.5

0

0.5

0.5 1 1.5 2 2.50
Time (s)

e11 (t)
e21 (t)
e31 (t)
e41 (t)

e51 (t)
e61 (t)
e71 (t)

e81 (t)
e91 (t)
e101 (t)

(a)
e i2

 (t
), 

1 
≤ 

i ≤
 1

0

T1 = 2.3283

–0.5

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.50
Time (s)

e12 (t)
e22 (t)
e32 (t)
e42 (t)

e52 (t)
e62 (t)
e72 (t)

e82 (t)
e92 (t)
e102 (t)

(b)

Figure 3:-e synchronization errors between systems (35) and (36) by controller (17). (a) ei1(t)(i � 1, 2, . . . , 10). (b) ei2(t)(i � 1, 2, . . . , 10).
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Figure 4: -e synchronization errors between systems (35) and (36) by controller (25). (a)ei1(t)(i � 1, 2, . . . , 10). (b)ei2(t)(i � 1, 2, . . . , 10).
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Figure 5: -e estimations of unknown parameters for systems (35) and (36) by controller (17). (a) Φi(t)(i � 1, 2, . . . , 10).
(b) Ψi(t)(i � 1, 2, . . . , 10).

Φ
ij 

(t)
, 1

 ≤
 i 

≤ 
10

, 1
 ≤

 j 
≤ 

3

0

5

10

15

20

25

30

0.5 1 1.5 2 2.50
Time (s)

Φi1 (t)
Φi2 (t)
Φi3 (t)

(a)

0

5

10

15

20

25

30

35

40

0.5 1 1.5 2 2.50
Time (s)

Ψ
ij 

(t)
, 1

 ≤
 i 

≤ 
10

, 1
 ≤

 j 
≤ 

5

Ψi1 (t)
Ψi2 (t)
Ψi3 (t)

Ψi4 (t)
Ψi5 (t)

(b)

Figure 6: -e estimations of unknown parameters for systems (35) and (36) by controller (25). (a) Φi(t)(i � 1, 2, . . . , 10). (b)
Ψi(t)(i � 1, 2, . . . , 10).
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According to (30), the error dynamics are derived as
follows:

_ei1(t) � −xi2 xi2 − xi1(  Φi1 − x
2
i1

Φi2 + 0.5 yi2 − yi1(  Ψi1 − 0.5yi1
Ψi2 − 0.5yi2

Ψi3

− α2 · sign ei1(  ei1



m2/n2( )

− β2 · sign ei1(  ei1



p2/q2( )

− c(t) · sign ei1(  ei1



p2/q2( )

,

_ei2(t) � − xi2 − xi1(  Φi1 − xi3
Φi3 − 0.5yi3

Ψi4 − 0.5yi4
Ψi5

− α2 · sign ei2(  ei2



m2/n2( )

− β2 · sign ei2(  ei2



p2/q2( )

− c(t) · sign ei2(  ei2



p2/q2( )

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where the parameters are given as
m2 � 7, n2 � 5, p2 � 9, q2 � 11, α2 � 20, and β2 � 20. -e
initial values of the state variable for systems (35) and (36)
are (xi1(0), xi2(0), xi3(0))T � (1 + is, −is, is)T, (yi1(0),

yi2(0), yi3(0), yi4(0))T � (1 + is, −1 − is, −is, is)T, (i �

1, 2, . . . , 10), where s is chosen randomly on the interval
[0, 0.1]. Let the initial values of estimations be
Φi(0) � ( Φi1(0), Φi2(0), Φi3(0)) � (1, 1, 1) and Ψi(0) �

( Ψi1(0), Ψi2(0), Ψi3(0), Ψi4(0 ), Ψi5(0)) � (2, 2, 2, 2, 2), and
the initial value of c(t) is given as c(0) � 2.

First, according to -eorem 1, systems (35) and (36) can
realize fixed-time synchronization under controller (17), and
settling time T1 � 2.3283 by computation.-e trajectories of
error states ei(t) are shown in Figure 3. -e trajectories of
estimations Φi(t) and Ψi(t) are depicted in Figures 4(a) and
4(b). Secondly, according to -eorem 2, systems (35) and
(36) can realize fixed-time synchronization under controller
(25), and the settling time T2 � 2.4471 by computation.
-en, the trajectories of error states ei(t) are shown in
Figure 5. -e trajectories of estimations Φi(t) and Ψi(t) are
depicted in Figures 6(a) and 6(b). Moreover, the trajectory of
c(t) is illustrated in Figure 7. Finally, as shown in Figures 3
and 4, we can find that the chaotic oscillation has been

suppressed completely. Moreover, one can see from Fig-
ures 3 and 4 that systems (35) and (36) achieve synchro-
nization within the fixed settling time T1 and T2,
respectively.

Compared with the simulation results (see Figure 2 in
the work of [53]), our adaptive law with simulation results
(Figures 3 and 4) is faster in convergence. From Figures 5
and 6, we can see that the estimations of unknown pa-
rameters converge to the true values rapidly. It can be
concluded that with the proposed adaptive control ap-
proach, better synchronization performances are obtained
compared with the previous results.

5. Conclusions

-is paper has addressed the fixed-time synchronization of
different dimensional complex network driving and re-
sponse systems with unknown parameters. Two suitable
controllers and adaptive update laws are established to
guarantee the synchronization realized in a given fixed time,
respectively. Sufficient conditions have been obtained to
guarantee the fixed-time synchronization for the driving and
response systems. Meanwhile, our results can be easily
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20

25
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35

0.5 1 1.5 2 2.50
Time (S)
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Figure 7: -e trajectory of adaptive updated law c(t) by controller (25).
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extended to the cases of projective synchronization and
complete synchronization. Finally, the effectiveness of the-
oretical analysis has been verified by a numerical simulation.
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