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A major challenge for semantic video segmentation is how to exploit the spatiotemporal information and produce consistent
results for a video sequence. Many previous works utilize the precomputed optical flow to warp the feature maps across adjacent
frames. However, the imprecise optical flow and the warping operation without any learnable parameters may not achieve
accurate feature warping and only bring a slight improvement. In this paper, we propose a novel framework named Dynamic
Warping Network (DWNet) to adaptively warp the interframe features for improving the accuracy of warping-based models.
Firstly, we design a flow refinement module (FRM) to optimize the precomputed optical flow. (en, we propose a flow-guided
convolution (FG-Conv) to achieve the adaptive feature warping based on the refined optical flow. Furthermore, we introduce the
temporal consistency loss including the feature consistency loss and prediction consistency loss to explicitly supervise the warped
features instead of simple feature propagation and fusion, which guarantees the temporal consistency of video segmentation. Note
that our DWNet adopts extra constraints to improve the temporal consistency in the training phase, while no additional
calculation and postprocessing are required during inference. Extensive experiments show that our DWNet can achieve consistent
improvement over various strong baselines and achieves state-of-the-art accuracy on the Cityscapes and CamVid
benchmark datasets.

1. Introduction

Semantic segmentation aims to assign a specific semantic
label to each pixel for a given image. In recent years, the
models based on deep learning [1–5] have brought the
performance of the task to a new level. However, most
existing methods are only designed for parsing images and
may produce inconsistent results to video frames, due to lack
of temporal information.

To address the problem, many methods tend to incor-
porate temporal information of the video to improve the
accuracy of video segmentation. And optical flow, which
encodes the temporal consistency across frames in the video,
has been widely used for semantic video segmentation.
Gaddel et al. [6] propose to combine the features wrapped
from previous frames with optical flow and those from the
current frame to enhance the features. Studies of [7–9] use
feature warping for acceleration.

However, there are two main problems with existing
warping-based methods. Firstly, the optical flow obtained by
the traditional algorithms or optical flow estimation net-
works [10–12] cannot accurately estimate the motion of all
pixels across adjacent frames. Second, the warping operation
adopted by previous methods [6, 7, 13] is implemented with
standard bilinear interpolation and does not contain any
learnable parameters. (erefore, warping features relying on
the imprecise optical flow may result in feature misalign-
ment between the warped features and expected ones.
TWNet [9] introduces a correction stage after warping to
refine the warped features. However, the method has some
limitations, because it needs motion vectors and residuals in
the compressed video according to a specific compression
standard.

In this paper, we propose a novel framework named
Dynamic Warping Network (DWNet) to adaptively warp
the interframe features for improving the accuracy of
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warping-based models. First, we design a flow refinement
module (FRM) to optimize the precomputed optical flow
and produce more accurate pixel displacement for every
pixel location. Besides, we propose a flow-guided convo-
lution (FG-Conv) to achieve the adaptive feature alignment
based on the refined optical flow instead of the original
warping operation. Furthermore, we introduce the temporal
consistency loss including the feature consistency loss and
prediction consistency loss to explicitly supervise the warped
features and guarantee the temporal consistency of video
segmentation, as shown in Figure 1. Our DWNet adopts
extra constraints to improve the temporal consistency in-
stead of simple feature fusion and feature propagation [6, 7],
which makes the network explicitly model the temporal
consistency of the video in the training phase. And, in the
inference phase, the optical flow network, the flow refine-
ment module, and the flow-guided convolution can be re-
moved. Hence, the final network can be regarded as a
semantic image segmentation network with no post-
processing during inference.

We evaluate our DWNet on two semantic video seg-
mentation benchmarks: Cityscapes and CamVid. Extensive
experiments show that our DWNet can significantly out-
perform existing warping-based methods and achieve state-
of-the-art accuracy on the two benchmark datasets. In
particular, our DWNet can achieve consistent improvement
over various strong baselines, which demonstrates the
generalization ability of our method.

To conclude, our main contributions are five-fold:

(i) We propose a novel framework named Dynamic
Warping Network (DWNet) to adaptively warp the
interframe features

(ii) We design a flow refinement module (FRM) to
optimize the optical flow and propose a flow-guided
convolution (FG-Conv) to adaptively align features
across adjacent frames according to the refined
optical flow

(iii) We explicitly model the temporal consistency of the
video and introduce the temporal consistency loss
to supervise the warped features

(iv) Our DWNet needs no additional parameters and
calculation during inference because the optical
flow network, the flow refinement module, and the
flow-guided convolution can be removed in the
inference phase

(v) (e experimental results demonstrate that our
DWNet can outperform previous warping-based
methods and achieve state-of-the-art accuracy on
the Cityscapes and CamVid datasets

2. Related Work

2.1. Semantic Video Segmentation. Semantic video seg-
mentation aims to carry out dense labeling for all pixels in
each frame of a video sequence. Compared with semantic
image segmentation, semantic video segmentation needs to
focus more on the temporal consistency of consecutive

frames and produces a more consistent interframe predic-
tion. (erefore, many works tend to incorporate temporal
information of the video to improve the video segmentation
accuracy, including optical flow-based feature warping
[6, 8, 9, 13–17], propagation-based [18, 19], LSTM-based
[15, 20], 3D CNN-based method [21], and the weakly su-
pervised method [22]. And optical flow, which encodes the
temporal consistency across frames in the video, has been
most widely used for semantic video segmentation. (e
optical flow-based methods first compute the optical flow
between the current frame and the previous frame and then
enhance the features of the current frame by warping the
features of the previous frame or utilize the warped features
from the keyframe as the features of the current frame for
acceleration. Despite its relative strength, the optical flow-
based feature warping contains two main problems as
discussed above. TWNet [9] and DMNet [23] propose to
correct the warped features by utilizing the postprocessing,
which only brings a slight improvement. To our best
knowledge, we are the first to directly optimize the warping
operation and propose the learnable dynamic warping op-
eration instead of the original one.

2.2.DynamicConvolution. (e study [24] proposes dynamic
filters or kernels to generate context-aware filters which are
adaptive to the input and are predicted by the network.
Many works [25, 26] have adopted the predicted dynamic
filters to obtain better feature representations. Deformable
convolution [27, 28] utilizes the input features to generate
different offsets and weights for each sample position.
Motivated by deformable convolution, we observe that the
optical flow can be regarded as the offset and we can utilize
the offset to adaptively align interframe features. Different
from the deformable convolution whose offsets are gener-
ated by the input features, we utilize the flow refinement
module to optimize the optical flow and obtain more ac-
curate pixel displacement. Furthermore, we propose a flow-
guide convolution to dynamically warp the features based on
the refined optical flow and achieve better feature warping.

3. Methods

In the section, we first give an overview of our DWNet
framework and then describe each of its components in
detail. Finally, we describe how to optimize the whole
network for improving semantic video segmentation.

3.1. Overview. (e overall structure of our DWNet frame-
work is illustrated in Figure 2. (e inputs of our DWNet are
a pair of RGB images It and It+k, where It represents the
labeled frame and It+k represents the unlabeled frame
randomly selected from the near-by frames of It with
k ∈ [− 5, 5]. (e two images are first sent to the shared
segmentation network to extract the semantic features Ft

and Ft+k. Meanwhile, the two images are also sent to the
optical flow estimation network to predict the coarse optical
flow Ot+k⟶t. (en, we utilize the flow refinement module to
optimize the optical flow and produce more accurate optical
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flow 􏽢Ot+k⟶t for every pixel position. After that, we adopt the
flow-guided convolution to dynamically warp Ft+k to 􏽢Ft

according to the refined optical flow 􏽢Ot+k⟶t. Finally, Ft and
􏽢Ft are sent to the shared classifier to produce the segmen-
tation map Pt and 􏽢Pt respectively, and we introduce two
kinds of temporal consistency losses as extra constraints to
supervise the warped features 􏽢Ft and 􏽢Pt, respectively. In the
following, we will introduce each key component of our
DWNet in detail.

3.2. Flow Refinement Module. We first utilize the existing
optical flow estimation network to obtain the optical flow
Ot+k⟶t. (e optical flow network computes the pixel dis-
placement (Δx,Δy) for every pixel location (x, y) in It to
the spatial locations (x′, y′) in It+k, which means that
(x′, y′) � (x + Δx, y + Δy). And Δx and Δy are floating
point numbers and denote pixel displacements in horizontal
and vertical directions, respectively [6]. However, the optical
flow estimated by the optical flow network may not be

enough accurate due to occlusion and new objects. (ere-
fore, we propose the flow refinement module to optimize the
coarse optical flow. We concatenate the two input images,
the difference of the two images, and the coarse optical flow,
resulting in an 11 channel tensor as the input to the flow
refinement module. (e flow refinement module consists of
4 convolution layers. (e first 3 layers are made up of 3 × 3
kernels with stride 2 following BatchNorm and ReLU, and
the number of the output channels is set to 64, 128, and 256,
respectively. (e output of the third layer is then passed on
to the last 3 × 3 convolution layer with 2s2 output channels
to attain the refined optical flow 􏽢Ot+k⟶t, whose spatial size is
corresponding to the feature Ft and Ft+k. s represents the
kernel size of the flow-guided convolution which will be
discussed in Section 3.3 and is set to 1 as default. We vi-
sualize the original optical flow and the refined optical flow,
as shown in Figure 3. (e refined optical flow has sharper
motion boundaries for moving objects and semantics, such
as humans and cars, which demonstrates the effectiveness of
the flow refinement module. Next, we will introduce how to

Ground truthImages Baseline Warping-based Ours

Figure 1: Qualitative results from the Cityscapes dataset. Baseline method: training the model on single frames and inferring the seg-
mentation maps on single frames. Warping-based method: adopting the original warping operation implemented with standard bilinear
interpolation to propagate and fuse the features brings a slight improvement. Our method: utilizing the flow-guided convolution to
adaptively warp the interframe features and introducing temporal consistency loss to explicitly supervise the warped features instead of
simple feature propagation and fusion, hence producing more accurate segmentation results.
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Figure 2: (e overall structure of our DWNet framework. FRM denotes the flow refinement module. FG-Conv denotes the flow-guided
convolution. Feature consistency loss and prediction consistency loss are both the temporal consistency loss, which improves the temporal
consistency of video segmentation. (e dotted lines denote that the components are only used in the training phase and will be removed in
the inference phase.
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use the refined optical flow to achieve better features
warping.

3.3. Flow-Guided Convolution. (e flow refinement module
utilizes the original optical flow and images to produce more
precise optical flow estimation. Given the optical flow,
previous methods utilize the warping operation to transform
the feature Ft+k to the feature of the current frame 􏽢Ft:

􏽢Ft � warp Ft+k, Ot+k⟶t( 􏼁. (1)

However, it cannot accurately align the warped feature
and the feature of the current frame due to the imprecise
optical flow and the original warping operation without any
learnable parameters. Hence, we firstly utilize the flow
refinement module to optimize the optical flow as discussed
in Section 3.2. Besides, we propose the flow-guided con-
volution to adaptively warp the interframe features. (e
standard convolution samples the input feature map at
fixed locations, and the DCNv1 [27] adds 2D offsets to the
regular grid sampling locations to enable free form de-
formation of the sampling grid. Motivated by this work, we
observe that the optical flow which encodes the pixel

displacement across frames can be regarded as a specific
offset, and we can utilize the optical flow to dynamically
warp the interframe features. Formally, the standard 2D
convolution can be written as

y[i] � 􏽘
P

p

w[p] · x[i + p], (2)

where y denotes the output after the convolution, i denotes
the location, x denotes the input features, w denotes the
convolution filters with a length of P, and p enumerates P. p

is usually the regular sampling locations in a s × s kernel, and
we propose the flow-guided convolution by adding the lo-
cation offsets into p as follows:

y[i] � 􏽘
P

p

w[p] · x[i + p − Δp], (3)

where Δp ∈ 􏽢Ot+k⟶t. (e refined optical flow is regarded as
the offsets for the flow-guided convolution to adaptively
sample more corresponding pixel locations between inter-
frame features. (e kernel size s is the key parameter for the
flow-guided convolution, and we will discuss the parameter
in 4.2.2. Compared with the DCNv1 [27], we obtain the

Input frame Coarse optical flow Refined optical flow

Figure 3: Visual comparison on the Cityscapes dataset for the original optical flow. (e first column denotes the input frame. (e middle
column denotes the coarse optical flow produced by the optical flow network.(e last column denotes the refined optical flow optimized by
the flow refinement module. (e refined optical flow has sharper motion boundaries than the original optical flow.
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offsets from the flow refinement module instead of applying
a convolution layer to the input feature. Hence, we can attain
more accurate offsets and achieve better feature warping.

3.4. Temporal Consistency Loss. (e flow-guided convolu-
tion can dynamically warp the feature Ft+k and produce the
estimated feature 􏽢Ft of the current frame. Previous methods
concatenate or do the weighted sum of the warped feature 􏽢Ft

and the original feature Ft to achieve feature fusion and
propagation. However, we argue that the warped feature 􏽢Ft

is expected to be consistent with the original feature Ft, and
the two features should be the same ideally. Hence, we
propose the temporal consistency loss to explicitly supervise
the feature 􏽢Ft and the segmentation map 􏽢Pt respectively.
Compared with the previous methods using feature fusion
or fusion propagation, we utilize extra constraints to im-
prove the temporal consistency of video segmentation,
which is more reasonable and does not introduce additional
calculation or postprocessing in the inference phase. (e
temporal consistency loss contains the feature consistency
loss and the prediction consistency loss, which are related to
the feature 􏽢Ft and the segmentation map 􏽢Pt, respectively.

3.4.1. Feature Consistency Loss. We attempt to constraint
both features of Ft and 􏽢Ft to be similar enough by designing
a feature consistency loss. Instead of per-pixel similarity
calculation, we measure the similarity between the self-at-
tention maps At and 􏽢At of both features. Since the self-
attention maps present high-order relationships among
pixels, such a similarity measurement is more robust than
the typical per-pixel one. Let ai,j denote the similarity be-
tween the ith pixel and the jth pixel of the original feature Ft,
and let 􏽢ai,j denote the similarity between the ith pixel and the
jth pixel of the warped feature 􏽢Ft, where ai,j ∈ At and
􏽢ai,j ∈ 􏽢At. (e ai,j is computed from the feature Ft,i and Ft,j as

ai,j �
F

T
t,iFt,j

Ft,i

����
����2 Ft,j

�����

�����2
􏼒 􏼓

. (4)

And, we adopt the squared difference to formulate the
feature consistency loss:

ℓfc Ft,
􏽢Ft􏼐 􏼑 �

1
N

2 􏽘

N

i�1
􏽐
N

j�1
aij − 􏽢aij􏼐 􏼑

2
, (5)

where N denotes the total number of the pixels. (e warped
feature and the original feature should produce a similar
attention map that encodes the pixel correlations. Hence,
this loss can strengthen the feature consistency by explicitly
supervising the attention maps.

3.4.2. Prediction Consistency Loss. (e segmentation map 􏽢Pt

produced by the feature 􏽢Ft should be also consistent with the
segmentation map Pt of the current frame. Hence, we in-
troduce the prediction consistency loss [17] to improve the
temporal consistency of video segmentation as follows:

ℓpc It, It+k( 􏼁 �
1
N

􏽘

N

i�1
Mt+k⟶t,i Pt,i − 􏽢Pt+k⟶t,i

����
����
2
2. (6)

Due to the occlusion and new objects across frames, we
predict a mask Mt+k⟶t to assign different weights to each
pixel according to the warping error Et+k⟶t, where
Et+k⟶t � |It − 􏽢It| and 􏽢It denotes the warped input frame
from It+k. (en, Mt+k⟶t is denoted as

Mt+k⟶t � exp −
Et+k⟶t

δ
􏼒 􏼓, (7)

where δ is a hyperparameter which controls the amplitude of
the difference between high error and low error. (e pixels
with higher warping errors are assigned to lower weights and
vice versa, because higher warping error represents that the
optical flow and the warped feature are more inaccurate.
Mt+k⟶t can speed up the convergence of the prediction
consistency loss and improve the accuracy of video seg-
mentation by considering the pixels with more precise
optical flow and ignoring the noise produced by occlusion
and new objects.

3.5. Optimization. (e loss of our DWNet consists of the
conventional cross-entropy loss ℓce and the temporal con-
sistency loss including the feature consistency loss ℓfc and the
prediction consistency loss ℓpc. Hence, our final objective
function is

ℓ � ℓce + λ1ℓfc + λ2ℓpc, (8)

where λ1 and λ2 denote the weights for multiple losses. As
illustrated in Figure 2, our DWNet can be trained in an end-
to-end fashion. And in the inference phase, the optical flow
network, the flow refinement module, and the flow-guided
convolution in the dotted line can be removed. Hence, the
final network can be regarded as a semantic image seg-
mentation network with no additional calculation or
postprocessing during inference.

4. Experiments

4.1. Experimental Setup

4.1.1. Datasets. We evaluate our proposed DWNet on two
semantic video segmentation benchmarks datasets City-
scapes [29] and CamVid [30].

Cityscapes is an urban scene dataset and contains 5000
video snippets collected from 50 cities in different seasons.
Each snippet contains 30 frames and only the 20th frame is
pixel-level finely annotated, leading to the dataset containing
5000 images which are divided into 2975, 500, and 1525
images for training, validation, and testing respectively.
Besides, the dataset also contains 20000 coarsely annotated
images, but we do not utilize these data in all experiments
except otherwise stated.

CamVid is composed of 701 densely annotated images
from five video sequences. (e images are labeled every 30
frames with 11 semantic classes. Following the previous
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work [6], the dataset is split into 367 training, 101 validation,
and 233 testing images.

4.1.2. Models. To validate the effectiveness of our proposed
method, we conduct extensive experiments with different
network configurations. We adopt the ResNet50 [31],
ResNet101 [31], and MobileNetv2 [32] as the backbone to
extract the high-level features. And we choose the PSPNet
[33], DeeplabV3+ [3], and DANet [5] as the segmentation
model. (e segmentation network is combined with dif-
ferent backbones and segmentation models. We conduct the
ablation experiments on ResNet50 with the structure of
PSPNet, namely, PSPNet50. Because the optical flow net-
work can be removed in the inference phase, we adopt the
more powerful optical flow estimation network FlowNetV2
[11] to extract the more accurate optical flow, though it is
slower and with more parameters during training compared
with the lightweight FlowNet, like [10, 12].

4.1.3. Implementation Details. We implement our method
based on PyTorch. We employ an SGD optimizer and a poly
learning rate policy, where the initial learning rate is mul-
tiplied by (1 − (epoch/max− epoch))power with power � 0.9
after each iteration. (e base learning rate is set to 0.01 for
both datasets. Momentum and weight decay are set to 0.9
and 0.0001, respectively. We utilize the synchronized batch
normalization [4] with a batch size of 8 for both datasets. For
data augmentation, we apply random scaling of the input
images (from 0.5 to 2.2 on Cityscapes, from 0.5 to 2.0 on
CamVid), random cropping (768×768 for Cityscapes,
384×384 for CamVid), and random left-right flipping during
training. Note that the optical flow network FlowNetV2 is
also joint optimized with the base learning rate 0.00001. We
employ the standard pixel-wise cross-entropy loss function
as the main loss to train the whole network with 8 cards of
NVIDIA TITAN RTX. (e loss weights are set to be λ1 � 10
and λ2 � 0.1 for all experiments. After training, we utilize the
original images to inference unless otherwise stated. Fol-
lowing the previous works [6, 8], we apply mean intersec-
tion-over-union (mIoU) as the evaluation metric to validate
our method.

4.2. Ablation Study. We build the DWNet based on the
single-frame segmentation model. And, we adopt the
PSPNet50 as the single-frame model to conduct all the
ablation experiments on the Cityscapes dataset.

4.2.1. Effectiveness of the Proposed Method. In this section,
we evaluate the different components of our DWNet with
different settings, and the results are shown in Table 1. (e
baseline model is the PSPNet50 with single-frame training
and inference. When we utilize the original warping oper-
ation and adopt the feature consistency loss as a constraint,
the performance is only improved by 0.55%. However, when
we replace the original warping operation with our proposed
flow-guided convolution, it brings a further improvement by
0.57%, which demonstrates that the dynamic warping is

better than the original warping operation. Besides, the flow
refinement module and the prediction consistency loss can
improve the performance by 0.47% and 0.38%, respectively.
And introducing the two components simultaneously can
further improve the accuracy to 75.62%. We also verify
whether the two components are beneficial to the warping-
based method, and the results show that the accuracy can be
improved from 74.3% to 74.76%, whose improvement is
lower than our proposed method (from 74.87% to 75.62%).

4.2.2. Flow-Guided Convolution. (e flow-guided convo-
lution is the core operation of our DWNet, which utilizes the
refined optical flow to adaptively warp the interframe fea-
tures. (e kernel size s is the key parameter for the flow-
guided convolution. According to the original warping
operation, each pixel corresponds to a specific offset, and we
can utilize the offset to warp each pixel independently.
However, we argue that we can consider more adjacent
pixels to judge the warped result of each pixel. Hence, we can
adjust s to achieve more precise feature warping. When s is
equal to 1, the flow-guided convolution is similar to the
original warping operation which treats each pixel inde-
pendently. However, our flow-guided convolution contains
the learnable parameters and can adaptively adjust the
warped features. As shown in Table 2, when we set s to 3, the
flow-guided convolution yields the best performance. Be-
sides, the flow-guided convolution with different values of s

all outperforms the original warping operation, which
demonstrates that our proposed method can achieve better
feature warping. When s is set to 5, the accuracy gets worse.
We think that the larger s may bring more noise and in-
fluence the stable training of the whole model.

4.2.3. Prediction Consistency Loss. (e prediction consis-
tency loss aims to improve segmentation stability. We
calculate the occlusion mask to speed up the convergence
and improve the accuracy of video segmentation by con-
sidering the pixels with more precise optical flow and ig-
noring the noise produced by occlusion and new objects.
And the δ is a hyperparameter that controls the amplitude of
the difference between high error and low error. Hence, we
provide a discussion about the δ, and the results are shown in

Table 1: Ablation study of our DWNet on the Cityscapes validation
set.

Warp ℓfc FG-Conv FRM ℓpc mIoU %

73.75
√ √ 74.30

√ √ 74.87
√ √ √ 75.34
√ √ √ 75.25

√ √ √ √ 74.76
√ √ √ √ 75.62

Warp denotes the original warping operation. ℓfc and ℓpc denote the feature
consistency loss and prediction consistency loss, respectively. FG-Conv
denotes the flow-guided convolution. FRM denotes flow refinement
module. (e bold values denote our method can achieve the best accuracy
compared with other methods.
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Table 3. We first try the prediction consistency loss without the
occlusionmask, and we find the performance decrease by 0.22%
comparedwith the baseline, which demonstrates the importance
of the occlusionmask. If we treat all pixels equally, the pixels with
high warping errors will seriously affect the training and the final
segmentation accuracy. And when we introduce the mask and
set δ to 2, it can obtain the best performance.

In fact, the first designs for both temporal consistency losses
consider the occlusion and new objects. However, the impact on
the feature consistency loss is slight (from 74.87% to 74.89%).
(e occlusion and new objects usually reflect some small and
local changes across different frames, and the feature consistency
loss aims to model the long-range and high-order relationships
and is more robust to such small changes, while the prediction
consistency loss aims to model the per-pixel similarity and is
susceptible to the occlusion and new objects. Hence, we only add
the occlusion mask in the prediction consistency loss.

4.2.4. Feature Fusion and Propagation. To mask the use of
the warped features, previous methods try to do weighted
sum or concatenate the warped features and the original
features for feature fusion and propagation. We compare the
previous methods with our proposed method in Table 4.(e
results show that our proposed method is obviously better
than the previous methods, which demonstrates our con-
jecture to the warped feature reuse.

4.3. Comparative Results on Cityscapes Dataset

4.3.1. Effectiveness of Different Network Structures. To vali-
date the effectiveness of our DWNet, we apply different net-
work configurations. (e results are shown in Table 5. SWarp
(Static Warping) denotes the original warping operation and
DWarp (Dynamic Warping) denotes our proposed DWNet.
(e results demonstrate that our DWNet has a strong gen-
eralization ability for different network structures and can
significantly improve the accuracy compared with the SWarp.

4.3.2. Comparison with State-of-the-Art. We compare our
DWNet with existing methods on the Cityscapes test dataset.
(e results are shown in Table 6, and our DWNet can out-
perform the existing methods with a significant advantage. In
particular, with the PSPNet as the backbone, our method with
the only fine set for the train can improve the mIoU score by
0.9%, which is superior to previousmethods with both fine and
coarse sets for the train, like [6, 13, 15]. And when we also

utilize both fine and coarse images for the train, our method
can bring a further improvement by 0.7%, which demonstrates
the effectiveness of our method. Besides, we utilize the DANet
as the segmentation network and the accuracy is improved to
82.1%, which shows that our method has a strong general-
ization for different segmentation networks.

4.3.3. Qualitative Results. (e qualitative comparison is
shown in Figure 4. Existing warping-based methods adopt
the standard bilinear interpolation without any learnable
parameters to warp the interframe features based on im-
precise precomputed optical flow and produce the negative

Table 2: Ablation study of the flow-guided convolution on the
Cityscapes validation set.

Method mIoU %
Baseline 73.75
Baseline +warp 74.30
Baseline + FG-Conv (s � 1) 75.02
Baseline + FG-Conv (s � 3) 75.34
Baseline + FG-Conv (s � 5) 75.16
s denotes the kernel size of the flow-guided convolution. (e bold values
denote our method can achieve the best accuracy when s is set to 3.

Table 3: Ablation study of the prediction consistency loss on the
Cityscapes validation set.

Method mIoU %
Baseline 75.34
Baseline + ℓpc + w/o mask 75.13
Baseline + ℓpc + w/mask (δ � 1) 75.46
Baseline + ℓpc + w/mask (δ � 2) 75.62
Baseline + ℓpc + w/mask (δ � 5) 75.44

δ denotes the amplitude of the difference between high warping error and
low warping error. (e bold values denote our method can achieve the best
accuracy when delta is set to 2.

Table 4: Ablation study of feature fusion and propagation on the
Cityscapes validation set.

Method mIoU %
Baseline 73.75
Baseline + sum 74.30
Baseline + concatenate 74.25
Baseline +TCLoss (ℓfc) 74.87
Baseline +TCLoss (ℓfc + ℓpc) 75.25
Sum and Concatenate denote the weighted sum and concatenation of the
warped features and the original features for feature fusion, respectively.
TCLoss denotes the temporal consistency loss, including feature consis-
tency loss and prediction consistency loss. (e bold values denote our
method can achieve the best accuracy using both the feature consistency
loss and prediction consistency loss.

Table 5: Comparison of our DWNet with different network
structures on the Cityscapes validation set.

Method Backbone SWarp DWarp mIoU %
PSPNet MNV2

√
72.34

PSPNet MNV2 73.52
PSPNet MNV2 √ 74.46
PSPNet ResNet101

√
78.90

PSPNet ResNet101 79.32
PSPNet ResNet101 √ 79.85
DeeplabV3+ ResNet101

√
80.15

DeeplabV3+ ResNet101 80.32
DeeplabV3+ ResNet101 √ 80.78
DANet ResNet101

√
79.94

DANet ResNet101 80.21
DANet ResNet101 √ 80.67
SWarp (Static Warping) denotes the original warping operation. DWarp
(Dynamic Warping) denotes our proposed DWNet. MNV2 denotes the
MobileNetV2. (e bold values denote our method can achieve the higher
accuracy than the static warp with different baseline models.
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Table 6: Comparison of state-of-the-art semantic video segmentation models on the Cityscapes test set.

Method Source mIoU %
Clockwork [34] ECCV2016 66.4
PEARL [35] ICCV2017 75.4
LLVSS [18] CVPR2018 76.8
Accel [8] CVPR2019 75.5
TDNet [19] CVPR2020 79.9
ESVS [17] ECCV2020 76.6
PSPNet [33] CVPR2017 80.2
PSPNet +NetWarp ‡ [6] ICCV2017 80.5
PSPNet +GRFP ‡ [15] CVPR2018 80.6
PSPNet + EFC ‡ [13] AAAI2020 81.0
PSPNet + ours 81.1
PSPNet + ours‡ 81.8
DANet [5] CVPR2019 81.5
DANet + ours 82.1
Methods trained using both fine and coarse sets are marked with “‡.” (e bold values denote our method can achieve the best accuracy compared with other
state-of-the-art methods.

Frame k

Frame k + 1

Frame k + 5

Frame k + 7

Images Baseline Warping-based Ours

Figure 4: Qualitative results of consecutive frames on the Cityscapes dataset. Baseline methods: training and inferring on single frames.
Warping-based method: adopting the original warping operation to enhance the feature. Our method: utilizing the flow-guided convolution
to adaptively warp the interframe features. Compared with the baseline, the warping-based method brings a slight improvement in the
moving objects, and our method can produce more accurate and consistent segmentation results.

Table 7: Comparison of state-of-the-art semantic video segmentation models on the CamVid test set.

Method Source mIoU %
STFCN [20] arXiv2016 65.9
DFF [7] CVPR2017 66.0
NetWarp [6] ICCV2017 70.3
GRFP [15] CVPR2018 66.1
Accel [8] CVPR2019 69.3
EFC [13] AAAI2020 67.4
TDNet [19] CVPR2020 76.0
ESVS [17] ECCV2020 76.3
PSPNet [33] CVPR2017 75.4
PSPNet + ours 76.5
(e bold values denote our method can achieve the best accuracy compared with other methods on the CamVid test set.
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results in the highlighted regions. Compared with the
existing warping-based methods, our method adopts the
dynamic warping operation to achieve more precise feature
alignment based on the refined optical flow and improve
temporal consistency of video segmentation.

4.4.ComparativeResults onCamVidDataset. To evaluate the
generalization of our method on different datasets, we
conduct experiments on the CamVid dataset. We use the
ResNet101 as the backbone with the architecture of PSPNet.
(e results are shown in Table 7, and our method outper-
forms the current state-of-the-art methods, which demon-
strates the generalization for different datasets.

5. Conclusion

In this paper, we propose a novel framework named DWNet
to adaptively warp the interframe features.We design the flow
refinement module to optimize the optical flow and propose
the flow-guide convolution to achieve adaptive feature
alignment. Besides, we introduce the temporal consistency
loss to explicitly supervise the warped features to guarantee
the temporal consistency of video segmentation. Extensive
experiments have shown that our method outperforms
existing warping-based methods and achieves state-of-the-art
on the Cityscapes and CamVid benchmark datasets.

Data Availability

(e Cityscapes and CamVid data can be downloaded freely at
https://www.cityscapes-dataset.com/file-handling/?packageID
�3 and http://mi.eng.cam.ac.uk/research/projects/VideoRec/
CamVid/.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by the Fundamental Research
Funds for the China Central Universities of USTB (FRF-DF-
19-002), Scientific and Technological Innovation Founda-
tion of Shunde Graduate School, USTB (BK20BE014).

References

[1] J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional
Networks for Semantic Segmentation, CVPR, London, UK, 2015.

[2] L. C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Re-
thinking atrous convolution for semantic image segmenta-
tion,” 2017.

[3] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
Encoder-decoder with Atrous Separable Convolution for Se-
mantic Image Segmentation, ECCV, London, UK, 2018.

[4] H. Zhang, K. Dana, J. Shi et al., Context Encoding for Semantic
Segmentation, CVPR, London, UK, 2018.

[5] J. Fu, J. Liu, H. Tian et al., “Dual attention network for scene
segmentation,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, vol. 22, pp. 3146–3154, 2019.

[6] R. Gadde, V. Jampani, and P. V. Gehler, Semantic Video Cnns
through Representation Warping, ICCV, London, UK, 2017.

[7] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei, Deep Feature
Flow for Video Recognition, CVPR, London, UK, 2017.

[8] S. Jain, X.Wang, and J. E. Gonzalez,Accel: A Corrective Fusion
Network for Efficient Semantic Segmentation on Video, CVPR,
London, UK, 2019.

[9] J. Feng, S. Li, Y. Chen, F. Huang, J. Cui, and X. Li, How to
Train Your Dragon: Tamed Warping Network for Semantic
Video Segmentation, 2020.

[10] A. Dosovitskiy, P. Fischer, E. Ilg et al., Flownet: Learning
Optical Flow with Convolutional Networks, ICCV, London,
UK, 2015.

[11] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox, “Flownet 2.0: evolution of optical flow estimation
with deep networks,” CVPR, London, UK, 2017.

[12] D. Sun, X. Yang, M. Y. Liu, and J. Kautz, Pwc-net: Cnns for
Optical Flow Using Pyramid, Warping, and Cost Volume,
CVPR, London, UK, 2018.

[13] M. Ding, Z. Wang, B. Zhou, J. Shi, Z. Lu, and P. Luo, Every
Frame Counts: Joint Learning of Video Segmentation and
Optical Flow, AAAI, London, UK, 2020.

[14] S. Chandra, C. Couprie, and I. Kokkinos, Deep Spatio-Tem-
poral Random Fields for Efficient Video Segmentation, CVPR,
London, UK, 2018.

[15] D. Nilsson and C. Sminchisescu, Semantic Video Segmenta-
tion by Gated Recurrent Flow Propagation, CVPR, London,
UK, 2018.

[16] Y. S. Xu, T. J. Fu, H. K. Yang, and C. Y. Lee, Dynamic Video
Segmentation Network, CVPR, London, UK, 2018.

[17] Y. Liu, C. Shen, C. Yu, and J. Wang, Efficient Semantic Video
Segmentation with Per-Frame Inference, ECCV, London, UK,
2020.

[18] Y. Li, J. Shi, and D. Lin, Low-Latency Video Semantic Seg-
mentation, CVPR, London, UK, 2018.

[19] P. Hu, F. Caba, O. Wang, Z. Lin, S. Sclaroff, and F. Perazzi,
Temporally Distributed Networks for Fast Video Semantic
Segmentation, CVPR, London, UK, 2020.

[20] M. Fayyaz, M. H. Saffar, M. Sabokrou, M. Fathy, R. Klette, and
F. Huang, “STFCN: spatio-temporal FCN for semantic video
segmentation,” 2016.

[21] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
Deep End2end Voxel2voxel Prediction, CVPR, London, UK,
2016.

[22] F. S. Saleh, M. S. Aliakbarian, M. Salzmann, L. Petersson, and
J. M. Alvarez, Bringing Background into the Foreground:
Making All Classes Equal in Weakly-Supervised Video Se-
mantic Segmentation, ICCV, London, UK, 2017.

[23] J. Zhuang, Z. Wang, and B. Wang, “Video semantic seg-
mentation with distortion-aware feature correction,” 2020.

[24] D. B. Bert, J. Xu, T. Tinne, and V. G. Luc, Dynamic Filter
Networks, NIPS, London, UK, 2016.

[25] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and
J. Kautz, Pixel-Adaptive Convolutional Neural Networks,
CVPR, London, UK, 2019.

[26] J. Liu, J. He, S. R. Jimmy, Y. Qiao, and H. Li, Learning to
Predict Context-Adaptive Convolution for Semantic Segmen-
tation, ECCV, London, UK, 2020.

[27] J. Dai, H. Qi, Y. Xiong et al., Deformable Convolutional
Networks, ICCV, London, UK, 2017.

[28] X. Zhu, H. Hu, S. Lin, and J. Dai, Deformable ConvNets V2:
More Deformable, Better Results, CVPR, London, UK, 2019.

Complexity 9

https://www.cityscapes-dataset.com/file-handling/?packageID=3
https://www.cityscapes-dataset.com/file-handling/?packageID=3
http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/


[29] M. Cordts, M. Omran, S. Ramos et al.,De Cityscapes Dataset
for Semantic Urban Scene Understanding, CVPR, London,
UK, 2016.

[30] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, Seg-
mentation and Recognition Using Structure fromMotion Point
Clouds, ICCV, London, UK, 2008.

[31] K. He, X. Zhang, S. Ren, and J. Sun,Deep Residual Learning for
Image Recognition, CVPR, London, UK, 2016.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L. C. Chen, MobileNetV2: Inverted Residuals and Linear
Bottlenecks, CVPR, London, UK, 2018.

[33] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid Scene
Parsing Network, CVPR, London, UK, 2017.

[34] E. Shelhamer, K. Rakelly, J. Hoffman, and T. Darrell,
Clockwork Convnets for Video Semantic Segmentation, ECCV,
London, UK, 2016.

[35] X. Jin, X. Li, H. Xiao et al., Video Scene Parsing with Predictive
Feature Learning, ICCV, London, UK, 2017.

10 Complexity


