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+is article focuses on circle formation control problem of multiagent systems based on event-triggered strategy under limited
communication bandwidth. In such system, each agent can only perceive the angular distance of its nearest neighbor in the
counterclockwise direction, and the angular distance of the nearest neighbor in the clockwise direction needs to be obtained by
communicating with each other. In order to address the aforementioned problem, a novel distributed algorithm based on the
combination of nonuniform quantitative communication technology and event-triggered control is proposed. Sufficient con-
ditions on circle formation control are derived under which the states of all agents can be confirmed to converge to some desired
equilibrium point. Different from the traditional uniform quantization communication framework, nonuniform quantization can
be beneficial for handling small signals and improving the performance of multiagent systems concerned. Furthermore, under the
proposed policy, all the designed quantizers do not emerge saturated. Numerical simulation results are provided to verify the
effectiveness of the proposed algorithm.

1. Introduction

According to the new research literature, formation control of
multiagent systems (MASs), which is oriented to design an
appropriate control protocol so that all agents can maintain a
prescribed geometric shape, has received significant attention
owing to its broad applications [1–3]. Circle formation control
as a datum problem in formation control of MASs is widely
investigated in sundry areas [4–6]. In many actual application
scenarios, the components of the system will be scattered in a
wide area, and the exchange of information between compo-
nents (including controllers, actuators, and wireless sensors) is
mainly implemented via digital communication networks [7].
In theoretical analysis, the system is usually regarded as an ideal
state. More specifically, for this ideal situation, it is assumed that
each agent does not experience packet loss and distortion when
performing information interaction with its neighbors [8]. +e

requirement of the basic assumption is that all communication
channels between agents possess a sufficiently large bandwidth
or unlimited capacity. However, it is contradictory to actual
system applications, that is to say, for the practical application
case, digital network resources oftenmay be limited by different
degrees of energy and communication bandwidth due to some
reasons [9]. In particular, when it comes up to the large-scale
MASs, the limitation of network communication bandwidth
will not only affect the quality of data transmission but also
cause the overall performance of the system to decrease. As a
result, considering the limited communication capacity of the
whole digital network, it is necessary to pay much attention
when designing the control protocols with close to practical
applications.

In view of the limitation of network resources of MASs, a
variety of control algorithms involving information quan-
tification have gradually emerged. In the pioneering works
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[10, 11], the quantization communication based on integer-
valued and real-valued has been analyzed, respectively.
Aiming at the shortcomings of the static quantizer designed
in [10, 11], the authors of [12] have further proposed a
dynamic encoder-decoder quantization algorithm. +en, Li
et al. [13] characterized a novel control method that can be
symmetrically compensated by adjusting the corresponding
parameters of the controller to reduce the number of bits
transmitted by each digital channel to only 1 bit. +ereafter,
the theory that is closely related to the quantization algo-
rithm of networked systems has been systematically studied
in [14], where the authors provided a comprehensive
analysis of the average consensus of MASs with a finite
number of quantization levels by introducing a scaling
function into the encoding-decoding quantizer. +e ex-
tensions of the authors’ work in [13] are further investigated
for cases: the agents being governed by the second-order
linear dynamics [15, 16], discrete linear systems [17, 18], and
nonlinear systems [19, 20], respectively, the presence of
communication channel time-delays, and so on. Xu et al.
[21] have considered the leader-following fixed-time
quantitative consensus problem of the nonlinear multiagent
systems with a novel way of impulse control.

Owing to the limited bandwidth and energy resource,
circle formation control of multiagent systems over directed
graph with quantized communications is significant from
both theoretical and engineering points of view. Further-
more, as the questions arising pointed out in [14], the
designed protocols in the existing literature aforementioned
are executed synchronously, and they need to be updated at
each time step. +is may cause much unnecessary energy
consumption, especially in an environment with limited
resources. With the growing demand in industry on sys-
tematic methods to model, analyze, and design systems,
event-triggered control (ETC) has been proposed as a
promising control mode to solve the above problems
[22, 23]. Fortunately, this ETC framework has been applied
to deal with the quantized consensus problems of MASs. In
[24, 25], the authors introduced ETC into the second-order
system, which proved that it can effectively reduce the
calculation amount of the system and reduce the update
frequency of the controller. In [26], a nonlinear decom-
position method of asymmetric hysteresis quantizer is
proposed by using the fuzzy logic system to estimate random
perturbation term and unknown nonlinear function, and the
sector constraint property is used. In [27–30], the authors
have investigated the quantized consensus problem of the
general linear systems and nonlinear systems, respectively,
with the couple of ETC fashion. To the best knowledge of the
authors, most studies have focused on the analysis and
design of uniform quantification combined with ETC
strategy to solve the formation control problem of MASs,
and few results are devoted to concentrate on the co-design
structure between nonuniform quantification and ETC
scheme compared with the former counterpart, especially
few for the datum problem of circle formation. +us, it is
natural to motivate us to consider the novel combination
involving nonuniform quantizer together with the ETC
mechanism, in which nonuniform quantization can enhance

the quantization signal-to-noise ratio of the small signal and
the key information, which is extracted in the small signal,
can be ignored easily [31–33].

+e core of this paper is dedicated to consider the circle
formation problem of MASs under the constraints of
communication bandwidth and limited energy as close to
reality as possible. Here, we focus on the special case that
each agent can only perceive the angular distance from itself
to the nearest neighbor in the counterclockwise direction,
while the counterpart in the clockwise direction be acquired
via the digital communication network. +e main contri-
butions of this paper mainly are threefold. First, a novel
algorithm is proposed to tackle the circle formation problem
of MASs, in which the nonuniform dynamic quantizer plays
a crucial role in data compression and transmission. Second,
a distributed event-triggered condition that only relies on
the local information of neighboring agents is constructed.
Finally, the proof that the designed nonuniform dynamic
quantizers will never be saturated is strictly provided, and
the comprehensive comparison of advantages and disad-
vantages of uniform and nonuniform quantizer is shown in
detail. In summary, the algorithm proposed in this paper
may be favorable to reveal the practical constraints that
originated from physical control systems.

An outline of this paper is organised as follows. In
Section 2, some basic background and problem statements
are given. In Section 3, a new encoder-decoder nonuniform
quantizer is designed and the ETC conditions are proposed.
Section 4 analyzes the convergence of the proposed control
law and proves that the nonuniform quantizer is always in an
unsaturated state. Section 5 verifies the feasibility and su-
periority of the new algorithm through comparative analysis.
+e conclusion of this article and the prospect of subsequent
research directions are referred in Section 6.

2. Preliminaries and Problem Statement

In this section, some symbols and basic concepts of algebraic
graph theory are collected together. +en, the definition of
circle formation and its related properties is mentioned.

2.1. Preliminaries. R,R>0,R≥0, andN denote the sets of real,
positive real, nonnegative real, and positive integers, re-
spectively. AT, ‖A‖, and ‖A‖∞ denote the transpose, Eu-
clidean norm, and infinite norm for a vector or matrix A,
respectively. +e set of all real matrices with m rows and n
columns is denoted as Rm×n. For an arbitrary vector x, x≥0
means that each element in the vector x is nonnegative. N-
dimensional column vector whose elements are 1 and 0 is
denoted as 1N and 0N, respectively. IN is defined as an N-
dimensional identity matrix. Given a positive number z, ⌊z⌋

represents the integer round-down of x. ⊗ represents the
Kronecker product, which has the following properties:

(1) (A⊗B)(C⊗D) � (AC)⊗ (B D)

(2) (A⊗B)T � AT ⊗BT

For a weighted directed graph G � (V,EG,AG), it
contains a set of vertices V � 1, 2, . . . , N{ }, the edge set
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EG ⊆V × V, and weighted adjacency matrix AG ∈ RN×N
≥0 .

Self-edges (i, i) are not allowed, i.e., (i, i) ∉ EG for all i ∈V.
For G, the corresponding weighted adjacency matrix AG �

[aij] ∈ RN×N
≥0 is defined element-wise with aij > 0 if

(i, j) ∈ EG and aij � 0 otherwise. If there exists an edge
(i, j) ∈ EG, then we refer to j as an out-neighbor of i and i as
an in-neighbor of j. For a given node i, the sets of out- and
in-neighbors are denoted by N+

i and N−
i , respectively. A

directed path from vertex i to j in a digraph is an ordered
sequence of edges starting with i and ending with j. If there
exists a directed path for any two distinct vertices i and j in
G, the digraph G is called strongly connected. Accordingly,
both the out- and in-degree matrices D+ � [d+

1 , d+
2 , . . . , d+

N]

and D− � [d−
1 , d−

2 , . . . , d−
N] are diagonal matrices, where

d+
i (t) � 

N
j∈N+

i
aij and d−

i (t) � 
N
j∈N−

i
aij. A digraph is called

weight-unbalanced if D+ ≠D− , and the degree of G is
defined as d∗ � maxi∈Vd+

i . +e Laplacian matrix is defined
as L � D+ − A, which is given in this paper.

Lemma 1 (see [4]). For a weighted directed graph G, there
exists the following properties:

(1) 9e Laplace matrix L has a zero eigenvalue with
associated eigenvector 1N.

(2) If the graph G contains a spanning tree, the algebraic
multiplicity of eigenvalue zero is simple, and the rest of
eigenvalues have positive real parts.

(3) If graph G is strongly connected, then its Laplacian
matrixL is irreducible and satisfiesL1N � 0N. And,
there exists a vector ξ � [ξ1, ξ2, . . . , ξN]T > 0 satisfying
ξT
L � 0T

N and ξT1N � 1.

Lemma 2 (see [13]). If the unbalanced directed graph G is
strongly connected and defines ρλ � max2≤i≤N|1− hλi|

,
h ∈ (0, 1/d∗), then the Laplacian matrix L can be decom-
posed into L � T∗, where T∗ � [ξ,ϕ2, . . . ,ϕN] ∈ RN×N

and T � [1N, υ2, . . . , υN] ∈ RN×N are both nonsingular
matrices. M ∈ RN×N is the matrix L corresponding to the
Jordan standard shape, and its first diagonal element is zero.
A variable ρ(ζ , h) � ρ1(h)/ζ, ζ ∈ (ρλ, 1), is defined, where
ρ1(h) represents the matrix IN − hM. A submatrix is re-
moved from the first row and the first column, and existing
real numbers are as follows:

(1) Mλ′(ξ, h) � maxl∈N‖ρl(ξ, h)‖

(2) Mλ(ξ, h) � liml⟶∞
l
m ‖ρl(ξ, h)‖

2.2. Problem Statement. Consider a system composed of N

agents, N≥ 2, in which each agent is an independent in-
dividual with autonomous ability and moves along a preset
circle. Initially, all agents are randomly located in different
positions on the circle. Here, for the ease of analysis, we
marked the agents as 1 to N in the counterclockwise di-
rection, denoted as x � [x1, x2, . . . , xN]T ∈ RT , as shown in
Figure 1. In a fixed coordinate system, the state of the an-
gular position of the agent i at time t is denoted by xi(t).
+en, the initial positions of all agents are set to satisfy

0≤ x1(0)≤ · · · ≤xi(0)≤ xi+1(0)≤ · · · ≤ xN(0)≤ 2π. (1)

In this paper, we mainly focus on the case that each agent
only has two neighbors that are immediately in front of or
behind itself. We denote the set of agent i’s two neighbors by
Ni � [i+, i− ], where

i
+

�
i + 1, i � 1, 2, . . . , N − 1,

1, i � N,


i
−

�
N, i � 1,

i − 1, i � 2, 3, . . . , N.


(2)

Denote di ∈ R as the desired angular distance between
individual i and its neighbor i+. +e information exchange
relationship between agents is further established in such a
network, where each agent i (equipped with a unidirectional
sensor) can only perceive an angular distance from i to i+

and from i to i− . +e counterpart is obtained through the
shared communication network. In this setting, the com-
munication network between agents can be described by a
weight-unbalanced directed graphG � (V,EG,AG), where
V � 1, 2, . . . , N{ }, EG � (1, 2), (2, 3), . . . , (N − 1, N){ }, and
AG � [aij] ∈ RN×N

≥0 , as shown in Figure 2.
We consider the network of N agents with the dynamics

xi(t + 1) � xi(t) + hui(t), t � 0, 1, 2, . . . ; i � 1, 2, . . . , N,

(3)

where xi(t) ∈ R is the scalar state and ui(t) ∈ R is the
control input of the agent i. Let
yi(t) ∈ (0, 2π), i ∈ 1, 2, . . . , N{ }, denote the actual angular
distance between the agent i and its counterclockwise
neighboring agent i+. +us,

yi(t) �
xi+ (t) − xi(t) i � 1, 2, . . . , N − 1,

xi+ (t) − xi(t) + 2π i � N.
 (4)

Stack vector y(t) � [y1(t), y2(t), . . . , yN(t)]T ∈ RT .
Note that yi(t) is local information that can be acquired by a

yi–

yi

xi–

xi+ xN
yN

xi

x1

y1

x2

Figure 1: Mobile agents located on a circle.

Complexity 3



unidirectional sensor equipped with agent i. In addition,


N
i�1 yi(t) ≡ 2π is always satisfied. +e desired circle for-

mation of the MAS is determined by the vector

d � [d1, d2, . . . , dN]T ∈ RT , where di represents the required
angular distance between agents i and i+. If d satisfies
di > 0,∀i ∈V, and 

N
i�1 di � 2π, it means that the formation

of this desired circle is acceptable.
Now, we are ready to draft the definition of the circle

formation problem.

Definition 1 (circle formation problem, see [9]). Given an
admissible circle formation characterized by d ∈ RN

≥0, design
distributed control laws ui(t) ∈ R, i � 1, 2, . . . , N, such that,
under any initial condition (1), the solution to system (2)
converges to some equilibrium point x∗, which satisfies
y∗ � d.

Based on the interaction between agents, our main goal
in this paper is to explore a meaningful hybrid design
nonuniform between quantization techniques and event-
triggered mechanisms to solve the circle formation problems
with limited communication bandwidth and limited energy:

L �

d2

d2 + d1
+

d1

d1 + dN

−
d1

d2 + d1
0 . . . 0 −

d1

d1 + dN

−
d2

d2 + d1

d3

d3 + d2
+

d2

d3 + d1
−

d2

d3 + d2
. . . 0 0

0 −
d3

d3 + d2

d4

d4 + d3
+

d3

d4 + d3
· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · ·
dN

dN + dN− 1
+

dN− 2

dN− 1 + dN− 2
−

dN− 1

d1 + dN− 1

−
dN

d1 + dN

0 0 . . . −
dN

dN + dN− 1

d1

d1 + dN

+
dN− 1

dN + dN− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

3. Distributed Control Law Design

With reference to the communication protocol based on
sampling data proposed in [4–6, 9], the following definition
is obtained:

ui(t) �
di−

di + di−
yi(t) −

di

di + di−
yi− (t), t � 0, 1, 2, . . . ; i � 1, 2, . . . , N, (6)

where i− represents the neighbor of agent i. In (6), for the
agent i, the fulfillment of the control input requires the exact
state information of the agent i− . However, the case con-
sidered in this paper is that the sensor is unidirectional, and

we assume that exact information on the angular distance
from the agent i to i− is unavailable. To this end, the agents in
each pair (i, i− ) need to use digital communication channels
to exchange information. As described in [4], compared with

a23

a34

aN1

a(N–1)N

a12

1

23

4

NN–1

Figure 2: A weight-unbalanced digraph G with N agents.
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analog signals, digital signals showmany advantages, such as
signal security, robustness, strength, and less noise inter-
ference. +erefore, before transmission, the actual value of
the corresponding number of agents i− should be quantified.
+e quantitative communication scheme between agents i

and i− consists of a dynamic encoder-decoder pair.+en, the
corresponding information exchange can be regarded as
such a process, at each time step, the relevant state value of
the sender is first encoded into symbol data and then
transmitted. After receiving the data, the receiver will ac-
tivate the decoder to obtain an estimate of the relevant state
value of the sender.

Following the design of distributed control law (6), some
intermediate variables need to be introduced. Define δj(t) �

yj(t)/dj and δj(t) � yj(t)/dj � ξj(t
j

k), where ξj(t
j

k) rep-
resents the sample value of agent j at t

j

kth event instant,
j ∈V. It is worth pointing out that variable conversion will
not affect the design of the encoder to the decoder nor will it
affect the system stability analysis of the entire encoder.

Next, in a sense, a collaborative design idea is adopted,
which is to propose an event-triggered law of nonuniform

quantization algorithms combined to solve the problem of
circle formation. For each agent j � 1, 2, . . . , N{ }, the cor-
responding event-triggered encoder Φj is designed as
follows:

ξj(0) � 0,

ξj(t) � g(t)sj(t) + ξj t
j

k ,

sj(t) � qt

1
g(t)

xj(t) − ξj t
j

k   .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

We use qt(z) to represent a nonuniform quantizer with a
finite number of levels. Its role is to map the state deviation
value of the agent to the discrete level value of the quantizer.
Let z � [z1, z2, . . . , zN]T ∈ RT and Q(z) � [qt(1),

qt(2), . . . , qN(z)]T ∈ RT.
eqi � (sj(t) − (1/g(t))(xj(t) − tξjn(t

j

k))) denotes the
quantization error. qt(z) can be described as

qt(z) �

0, e
− (1/2)β

− 1< z< e
(1/2)β

− 1, e
((2k− 1)/2)β

− 1≤ z< e
((2k+1)/2)β

− 1,

kβ, k ∈ 1, 2, . . . ,Ω{ },

Ωβ, z≥ e
(Ω+(1/2)β)

− 1,

− qt(− z) z≤ e
− (1/2)β

− 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

where β> 0 is the quantization interval and Ω is the number
of quantization level. In each iteration, the communication
channel (i, j) ∈ EG, i≠ j, is required to have ability of
transmitting log2(2Ω + 1) bits. If the conditions
z≤ e(Ω+(1/2)β) − 1 and |qt(z) − z|≤ e(Ω+(1/2)β) − 1 are satisfied
in the process of information interaction between agents,
then the quantizer is not saturated.

Further, the neighboring agent i receives sj(t), which
will be estimated by the decoder Ψji to obtain the state value
of agent j. +ere is a fact that the communication channel is
considered to have no noise in the encoding-decoding
process. Ψji is described as

δji(0) � 0,

δji(t) � g(t − 1) e
sj(t)

− 1  + δji t
j

k ,

⎧⎪⎨

⎪⎩
(9)

where t � 1, 2, . . . , N and δji(t) ∈ R denotes the output of
Ψji. Relying on the information transmission scheme of the
dynamic encoder-decoder described above, the distributed
event-triggered circle formation control law of agent i is
further designed as

ui(t) �
didi−

di + di−
ξi t

i
k  − δi− t

i−

k  . (10)

In above formula (10), i− represents the counterclock-
wise neighbor of the agent i in the clockwise direction. +e

latest update time and the next update time of the agent i are,
respectively, represented as ti

k and ti
k+1, t ∈ [ti

k, ti
k+1).

Remark 1. It can be observed from encoder-decoder pair (7)
and (9) that the advantages are as follows:

(1) At zero initial conditions, the encoder Φj and de-
coder Ψji meet the condition Φj � Ψji, which can
ensure that both sender and receiver sides have the
same estimate of each sender’s state.

(2) +e term δj(t) − ξj(t
j

k) is quantified rather than the
state δj(t), which can save communication bits and
enhance the communication robustness.

(3) +e aperiodic event-triggered state δj(t
j

k) is used to
construct the encoder-decoder pair. Compared with
the periodic event-triggered, the aperiodic event-
triggered only needs to store the key information
when triggering the event conditions rather than
each period, and it can save memory for the device
equipped with each agent.

Remark 2. In the process of designing the dynamic non-
uniform encoder-decoder pair, a scaling function g(t) that
has a monotonously decreasing characteristic and attenuates
to 0 as t approaches∞ is introduced. It enables the quantizer
to be continuously stimulated to strengthen the information
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interaction between agents. At the same time, g(t) should be
large enough to ensure that the quantizer is never saturated.

Remark 3. Uniform quantization is also realized by en-
coder-decoder pairs and an integral way to quantize in-
formation in a uniform and fixed interval, which allows both
large and small signals to have the same signal-to-noise ratio
[34]. However, nonuniform quantization is to quantify the
signal in the nonuniform and unfixed interval through its
unique compression and spread characteristics, which can
improve the signal-to-noise ratio of small signals and thus
interpret the information contained in small signals, espe-
cially when the event-triggered control strategy is adopted,
the event will not be triggered when the signal is small, so it
will be ignored, which leads to a large final error of the
system. Nonuniform quantization can effectively avoid this
problem and improve the consistency of the system.

+en, substituting the protocol (6)–(9) into system (3)
and noting (10), we obtain the following closed-loop system:

xi(t + 1) � xi(t) + hui(t)

� xi(t) + h 
N

j∈N+
i

aijxj t
j

kj  − 
N

j∈N−
i

aijxi t
i
ki ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� xi(t) + h 
N

j∈N+
i

aij xj t
j

kj  − xi t
i
ki  ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(11)

Assume that the following conditions exist:

haii � 1 − 
N

j�1,j≠i
haij,

ωij � haij,

ei(t) � xi t
i
ki  − xi(t).

(12)

System (11) can be simplified as

xi(t + 1) � xi(t) + h 
N

j�1
aijxj t

j

kj  − xi t
i
ki 

� − ei(t) + 
N

j�1
wijxj t

j

kj .

(13)

Denote

X(t) � x1(t), x2(t), . . . , xn(t) 
T ∈ RNn×1

,

X(t) � x1(t), x2(t), . . . , xn(t) 
T ∈ RNn×1

,

e(t) � e1(t), e2(t), . . . , en(t) 
T ∈ RNn×1

,

θ(t) � X(t) − ϑNX(t) ∈ RNn×1
.

(14)

4. Convergence Analysis

In this section, we need to prove the issues raised in this
paper. Towards this end, some assumptions need to be
clearly made at the start.

Assumption 1. Mx ≤max‖xi(0)‖ and Mθ ≤max‖θi(0)‖,
whereMx andMθ are known nonnegative constants. For the
reason that each agent is defined to accept symbol data only
from its neighbors, event-triggered calculations depend only
on the local information available to each agent. We propose
that the following distributed sampling event-triggered
condition for the ith agent satisfies

e
2
i (t)≥ 

N

j�1,j≠i
wijαi wii − αi(  xj t

j

kj  − xi t
i
ki  

2
. (15)

Remark 4. Zeno behavior generally refers to event-triggered
control, where the control is triggered infinitely within a
limited time. If Zeno behavior occurs in the system, it will
cause a certain degree of delay to the system, which will
result in poor system stability and even system hardware
failure. It is necessary to strictly consider avoiding Zeno
behavior in a continuous-time ETC system, but not in a
discrete counterpart. Because there is at least one time step
between two consecutive samples in a discrete-time system,
Zeno behavior does not occur.

Theorem 1. Based on the condition of strongly connected
weight-unbalanced digraph G, combining of the system (2),
encoder-decoder pair (4) and (6), and the designed control law
(7) as well as the event-triggered condition (11) is achieved.
9e circle formation problem can be realized when the as-
sumption is valid and the numbers of quantization levels are
satisfied.

Proof. A Lyapunov function candidate can be taken as

V � 
N

i�1
x
2
i (t). (16)

+en,

ΔV � V(t + 1) − V(t)

� 
N

i�1
x
2
i (t + 1) − 

N

i�1
x
2
i (t)

� 
N

i�1
e
2
i (t) − 2

N

j�1
ei(t)wijxj t

j

kj  + 
N

j�1
wijxj t

j

kj ⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

− 
N

i�1
x
2
i (t).

(17)
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Since



N

j�1
wijei(t)xj t

j

kj 

� 
N

j�1,j≠i
wijei(t)xj t

j

kj 

+ 1 − 
N

j�1,j≠i
wij

⎛⎝ ⎞⎠ei(t)xi t
i
ki 

� 
N

j�1,j≠i
wijei(t) xj t

j

kj  − xi t
i
ki  

− ei(t)xi t
i
ki  

N

j�1
wijxj t

j

kj ⎛⎝ ⎞⎠

2

� 
N

j�1
w

2
ijx

2
j t

j

kj  + 2
N

j�1


N

r<j
wijwirxj t

j

kj xr t
r
kr( ,

(18)

we have

ΔV � 
N

i�1


N

j�1
w

2
ijx

2
j t

j

kj  + 2
N

j�1


N

r<j
wijwirxj t

j

kj xr t
r
kr( ⎡⎢⎢⎣ ⎤⎥⎥⎦

− 2
N

i�1


N

j�1,j≠i
wijei(t) xj t

j

kj  − xi t
i
ki  

+ 
N

i�1
e
2
i (t) − x

2
i (t) + 2ei(t)xi t

j

kj 

� 

N

i�1


N

j�1
w

2
ijx

2
j t

j

ij  + 

N

j�1


N

r<j
wijwir x

2
j t

j

kj  + x
2
r t

r
kr(  ⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 

N

i�1


N

j�1


N

r<j
wijwir − x

2
j t

j

kj  

− x
2
r t

r
kr(  + 2xj t

j

kj xr t
r
kr( 

− 2
N

i�1


N

j�1,j≠i
wijei(t) xj t

j

kj  − xi t
i
ki  

+ 
N

i�1
e
2
i (t) − x

2
i (t) + 2ei(t)xi t

i
ki .

(19)

Note that



N

i�1


N

j�1
w

2
ijx

2
j t

j

kj  + 
N

j�1


N

r<j
wijwir x

2
j t

j

kj  + x
2
r t

r
kr(  ⎡⎢⎢⎣ ⎤⎥⎥⎦

� 
N

i�1


N

j�1
w

2
ijx

2
j t

j

kj  + 
N

j�1


N

r�1,r≠j
wijwirxj t

j

kj ⎡⎢⎢⎣

� 
N

i�1


N

j�1


N

r�1
wijwirx

2
j t

j

kj 

� 
N

i�1
x
2
j t

j

kj ,

(20)



N

i�1


N

j�1


N

r<j
wijwir − xj t

j

kj  − xr t
r
kr(  + 2xj t

j

kj xr t
r
kr(  

� − 

N

i�1


N

j�1


N

r<j
wijwir xj t

j

kj  − xr t
r
kr(  

2

� − 

N

i�1


N

j�1,j≠i


N

r�j,r≠i
wijwir xj t

j

kj  − xr t
r
kr(  

2
⎡⎢⎢⎣

+ 
N

j�1,j≠i
wijwii xj t

j

kj  − xr t
r
kr(  ⎤⎥⎥⎦.

(21)

Under the Young inequality [35], for any x andy ∈ R
and τ ∈ R, τ > 0, it has the following properties
xy≤ (τ/2)x2 + (1/2τ)y2, and we have

− 2
N

i�1


N

j�1,j≠i
wijei(t) xj t

j

kj  − xi t
i
ki  

≤ 
N

i�1


N

j�1,j≠i
2wij

e
2
i (t)

2αi

+
αi

2
xj t

j

kj  − xi t
i
ki  

2
 

≤ 
N

i�1


N

j�1,j≠i
wij

e
2
i (t)

αi

+ αi xj t
j

kj  − xi t
i
ki  

2
 ,

(22)



N

i�1
e
2
i (t) − x

2
i (t) − 2ei(t)xi t

i
ki  

� 
N

i�1
e
2
i (t) − xi t

i
ki  − ei(t) 

2
− 2ei(t)xi t

i
ki  

� − 
N

i�1
x
2
i t

i
ki .

(23)

Combining (20)–(23), we can obtain
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ΔV≤ 
N

j�1
x
2
j t

j

kj  − 
N

i�1


N

j�1,j≠i


N

k�j,r≠i
wijwir xj t

j

kj  − xr t
r
kr(  

2
⎡⎢⎢⎢⎣

+ 

N

j�1,j≠i
wijwii xj t

j

kj  − xr t
r
kr(  ⎤⎥⎥⎦

− 
N

i�1


N

j�1,j≠i
wij

e
2
i (t)

αi

+ αi xj t
j

kj  − xi t
i
ki  

2
  − 

N

i�1
x
2
i t

i
ki 

≤ 
N

i�1


N

j�1,j≠i
wij

e
2
i (t)

αi

− wii − αi(  xj t
i
kj  − xi t

i
ki  

2
 

≤ 
N

i�1

e
2
i (t)

αi

− 
N

j�1,j≠i
wij wii − αi(  xj t

j

kj  − xi t
i
kt  

2
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(24)

Based on the event-triggered conditions (15) given
above, we can obtain that the system is stable when ei(t)

meets the following conditions:

e
2
i (t)< 

N

j�1,j≠ i

wijαi wii − αi(  xj t
j

kj  − xi t
i
ki  

2
. (25)

Theorem 2. If Assumption 1 is satisfied, given any admissible
circle formation characterized by d, consider the system in (3)
with the combination between dynamic encoder-decoder pair
(7) and (9), designed control law (10), and scaling function
sj(t) − s0ξ over a strongly connected weight-unbalanced di-
graph G. For given h ∈ (0, 1/d∗) and ξ ∈ (ρλ, 1), the solv-
ability of the circle formation problem is achieved when the
upper bound of quantization H1(ξ, h) satisfies

H1(ξ, h) � ⌊E(ξ, h) −
1
2
β⌋ + β, (26)

where

E(ξ, h) �
1 + 2 hd

∗
( 

ξ
e

((2Ω+1)/2)β
− 1  +

2 h
2
d
∗2

‖v‖∞‖ϕ‖∞
ξ ξ − ρλ( 

,

(27)

and the condition

s0 >max
2Mx

(2H − 1)ε
,
ξ − ρλ(  ξMθ + 2 hd

∗
Mx( 

hd
∗ , (28)

holds simultaneously, where β represents the quantization
interval and H≤ (H1(ξ, h)/β). 9at is to say, system (3)
satisfies limt⟶∞y(t) � d. Furthermore, all the quantizers
will never be saturated.

Proof. Combining equations (7)–(9), we have

X(t + 1) � IN − hL( ⊗ In( X(t) − hL⊗ In( e(t),

X(t + 1) � g(t) e
qt((1/g(t))(x(t+1)− x(t)))

+ 1  + X(t).

⎧⎪⎨

⎪⎩

(29)

According to JNL � LJN � 0, we can get

X(t + 1) − X(t)

� IN − hL( ⊗ In( X(t) + hL⊗ In( e(t) + g(t) e
qt((1/g(t))(X(t+1)− X(t)))

+ 1  + X(t)

� IN − hL( ⊗ In( e(t) − hL⊗ In(  X(t) − JNX(t)( 

� IN − hL( ⊗ In( e(t) − hL⊗ In( θ(t).

(30)

+en,

θ(t + 1) � IN − hL( ⊗ In( θ(t) + hL⊗ In( e(t),

e(t + 1) � IN − hL( ⊗ In( e(t) + hL⊗ In( θ(t) − g(t) e
qt((1/g(t))(X(t+1)− X(t)))

+ 1 .

⎧⎪⎨

⎪⎩
(31)
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To make it easier to calculate, some new variables are
introduced as

φ(t) �
e(t)

g(t)
,

μ(t) �
θ(t)

g(t)
,

g(t) � s0ξ
t
.

(32)

From sj(t) − s0ξ and (31), we can get

μ(t + 1) � ξ− 1
IN − hL( ⊕In( θ(t) + ξ− 1

hL⊗ In( φ(t),

φ(t + 1) � ξ− 1
IN − hL( ⊕In( φ(t) − hL⊗ In( μ(t) − e

qt((1/g(t))(X(t+1)− X(t)))
+ 1 .

⎧⎪⎪⎨

⎪⎪⎩
(33)

For a clear expression, we summarize the procedure of
proof by dividing into two cases:

Case 1: when t � 0 and X(0) � 0N, we get

‖φ(0)‖∞ �
e(0)

s0

��������

��������∞
≤

Mx

s0
,

IN − hL( ⊗ In( φ(0) − hL⊗ In( μ(0)
����

����∞ �
X0

s0

��������

��������∞
≤

Mx

s0
≤ e

((2Ω+1)/2)β
− 1.

(34)

Obviously, when t � 0, the quantizer is not saturated.
Case 2: when t≥ 0, define a nonnegative integer
r � 1, 2, . . . , t; then, we assume that

sup
0<t<r

IN − hL( ⊗ In( φ(t) − hL⊗ In( μ(t)
���� − exp qt

1
g(t)

IN − hL( ⊗ In( φ(t) − hL⊗ In( u(t)   − 1 

��������∞
≤ e

(1/2)β
− 1,

(35)

then

sup
0≤r

‖φ(t)‖∞ ≤
1
ξ

e
(1/2)β

− 1 . (36)

Let μ(t) � T∗μ(t), relying on Lemma 2,
μ(t) � [μ1(t), μ2(t)]T, μ1(t) ∈ R1×Nn, and
μ2(t) ∈ R(N− 1)n×Nn. Here, μ1(t) � 0, which is available:

μ(t + 1) � T
∗μ(t + 1)

� ξ− 1
T
∗

− hMT
∗

( ⊗ In( μ(t) + ξ− 1
hMT
∗ ⊗ In( φ(t).

(37)

Let ϕ � [ϕ2, . . . , ϕN] ∈ R(N− 1)n×Nn and
υ � [υ2, . . . , υN] ∈ RNn×(N− 1)n. Define t � r + 1,
μ2(t) � ϕμ(t), and μ(t) � υμ2(t), and formula (40) can be
organized as

μ(r + 1) � vρr+1
(ξ, h)ϕμ2(0) − vρr

(ξ, h)ξ− 1
hϕL⊗ In( φ(0) − v 

r− 1

m�0
ρm

(ξ, h)ξ− 1
hϕL⊗ In( φ(r − m), (38)

where
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vρr+1
(ξ, h)ϕμ2(0)

����
����∞≤ ‖v‖∞ ρr+1

(ξ, h)
����

����∞‖ϕ‖∞ μ2(0)
����

����∞≤
‖v‖∞‖ϕ‖∞Mθ

s0

ρλ
ξ

 

r

. (39)

Based on ‖L‖∞ � d∗, ξ ∈ (ρλ, 1), and we have
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Figure 3: Simulation results of the uniform quantification algorithm in [9]. (a) Represents the evolution of the difference between current
angular distance and the desired one between each pair of neighboring agents. (b) Represents the event sequences of N� 6 agents.
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Figure 4: Simulation results of the nonuniform quantification algorithm. (a) Represents the evolution of the difference between current
angular distance and the desired one between each pair of neighboring agents. (b) Represents the event sequences of N� 6 agents.
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Figure 5: Uniform quantization error eqi(t)(i � 1, 2, . . . , 6).
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Figure 6: Nonuniform quantization error eqi(t)(i � 1, 2, . . . , 6).
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vρr
(ξ, h)ξ− 1

hϕL⊗ In( φ(0)
����

����∞

≤ ‖v‖∞ ρr
(ξ, h)

����
����∞ξ

− 1
h‖ϕ‖∞ L⊗ In

����
����∞‖φ(0)‖∞

≤
2 hd
∗
‖v‖∞‖ϕ‖∞M∞

s0ξ
ρλ
ξ

 

r

.

(40)

Next,

v 
r− 1

m�0
ρm

(ξ, h)ξ− 1
hϕL⊗ In( φ(r − m)

���������

���������∞
≤
2hd
∗
‖u‖∞‖ϕ‖∞

ξ ξ − ρλ( 
1 −

ρλ
ξ

 

r

 . (41)

Depending on +eorem 2 and formulas (39)–(41), we
have

‖μ(r + 1)‖∞ ≤
‖v‖∞‖ϕ‖∞Mθ

s0

ρλ
ξ

 

r

+
2 hd
∗
‖v‖∞‖ϕ‖∞Mx

s0ξ
ρλ
ξ

 

r

+
2hd
∗
‖v‖∞‖ϕ‖∞

ξ ξ − ρλ( 
1 −

ρλ
ξ

 

r

 

≤max
ξ‖μ‖∞‖ϕ‖∞Mθ + 2 hd

∗
‖v‖∞‖ϕ‖∞Mx

s0ξ
ξ∗ +

hd
∗
‖v‖∞‖ϕ‖∞

ξ ξ − ρλ( 
1 − ξ∗(  .

(42)

+en,

IN − hL( ⊗ In( φ(r − 1) − hL⊗ In( μ(r − 1)
����

����∞

≤ IN − hL( ⊗ Inφ(r − 1)
����

����∞ + hL⊗ In( μ(r − 1)
����

����∞

≤
1 + 2 hd

∗
( 

ξ
e

((2Ω+1)/2)β
− 1  + 2 hd

∗max
ξ‖v‖∞

����∞

����∞Mθ +2 hd
∗
‖v‖∞

����∞M
����∞M∞

s0ξ
ξ∗ +

hd
∗
‖v‖∞‖ϕ‖∞

ξ ξ − ρλ( 
1 − ξ∗(  

�
1 + 2 hd

∗
( 

ξ
e

((2Ω+1)/2)β
− 1  +

2 h
2
d
∗2

‖v‖∞‖ϕ‖∞
ξ ξ − ρλ( 

� E(ξ, h)≤ e
E(ξ,h)

− 1≤ e
⌊E(ξ,h)− (1/2)β⌋+(3/2)β

− 1

� e
H1(ξ,h)+(1/2)β

− 1 � e
((2Ω+1)/2)β

− 1.

(43)

+at is to say, all the quantizers are not saturated when
the above condition is satisfied by quantizer level number
(2Ω − 1).

5. Numerical Examples

In this section, a multiagent system composed of N � 6
agents is used to simulate and verify the superiority of the
nonuniform quantization algorithm. Under the condition
that the initial conditions of each agent in the system satisfy
(1), h � 0.06 s is selected as the sampling period of the
system. Under the condition that the proposed algorithm
can be realized, the expected angular distance between

agents is set to d � [(π/8), (π/6), (π/4), (π/3), (3π/8),

(3π/4)]. We set the quantization interval correlation amount
β � 0.2, s0 � 10, and ξ � 0.98288. +e simulation results are
shown in the figure.

Comparing the simulation results of uniform quanti-
zation algorithm (Figure 3) and nonuniform quantization
algorithm (Figure 4) can get some conclusions. Due to the
characteristics of nonuniform quantization, a better quan-
tized signal-to-noise ratio can be obtained when processing
small signals. +e error of nonuniform quantization will be
more smaller. In other words, nonuniform quantization can
effectively improve the system accuracy. It is obvious that the
nonuniform quantization tracking effect is better and the
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final error is significantly reduced when the event-triggered
mechanism is considered. +e reason why nonuniform
quantization triggers less than uniform quantization is that
nonuniform quantization can improve the SNR of small
signals and trigger events to update the control protocol even
when the signal is small. However, uniform quantization
tends to ignore this signal, which leads to the accumulation
of errors and ultimately increases the frequency of events. In
summary, the nonuniform quantization algorithm proposed
in this paper can better improve the system accuracy and can
improve the system performance under the same conditions.

As shown in Figures 5 and 6, the quantization error of
each agent is eqi(t) � sj(t) − ((1/g(t))(xj(t) − tξjn(t

j

k))). In
the nonuniform quantization algorithm, sj(t) is log-scaled,
so the quantization error exhibits the phenomenon in
Figure 6. It is worth noting that the quantization error of
each agent’s quantizer is less than its upper limit and sat-
uration will never occur.

6. Conclusions

+is paper mainly explores the existing uniform quantiza-
tion method further and designs a new nonuniform
quantization algorithm combined with the event-triggered
mechanism. First of all, in order to improve the information
exchange between agents, we propose a scheme based on
nonuniform dynamic codec, which effectively solves the
problem of small signal loss during information exchange
between agents. +en, a distributed control algorithm based
on the coordinated control of the event-triggered mecha-
nism and nonuniform encoder is given to reduce system
energy consumption. In addition, all designed quantizers do
not appear to be saturated. Finally, numerical simulation
results verify the effectiveness of the algorithm. Future work
will focus on solving practical problems, such as the rapid
convergence of multiagents under limited input and the
consistency of general nonlinear systems.
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