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A new lifetime distribution, called exponential doubly Poisson distribution, is proposed with decreasing, increasing, and upside-
down bathtub-shaped hazard rates. One of the reasons for introducing the new distribution is that it can describe the failure time
of a system connected in the form of a parallel-series structure. Some properties of the proposed distribution are addressed. Four
methods of estimation for the involved parameters are considered based on progressively type II censored data.,ese methods are
maximum likelihood, moments, least squares, and weighted least squares estimations. ,rough an extensive numerical simu-
lation, the performance of the estimation methods is compared based on the average of mean squared errors and the average of
absolute relative biases of the estimates. Two real datasets are used to compare the proposed distribution with some other well-
known distributions. ,e comparison indicates that the proposed distribution is better than the other distributions to match the
data provided.

1. Introduction

Sometimes, there is a need to generate a new distribution from
a given distribution if the new distribution givesmore flexibility
to the data analysis in the sense of having a better fit, more
variations of the hazard rate function (HRF), etc. Several
methods can be implemented to generate new distributions.
One of them is the compounding of distribution functions.

Suppose that f(t | λ) and p(λ) are two probability
functions and λ can take countable numbers λ1, λ2, . . . with
masses pj at λj, j � 1, 2, . . .. ,en, the technique of com-
pounding distributions takes the form

f(t) � 
∞

j�1
pjfj(t), (1)

where pj � p(λj) and fj(t) � f(t|λj).
In lifetime testing experiments and reliability studies,

exponential distribution (ED) is one of the most discussed

distributions. However, for some practical applications
where associated hazard rates are not constant, presenting
monotone shapes, the exponential distribution does not
provide an appropriate parametric fit. In the last decades,
new classes of distributions have been proposed based on
modifications of the ED to overcome such a problem.

Kuş [1] presented the exponential Poisson distribution
(EPD), which has a decreasing hazard rate, as a lifetime
distribution of a system, connected as a series structure,
where the number of its components is a random variable
(RV) subjecting to the truncated Poisson distribution (at
zero) and the underlying lifetime distribution is exponential.
Cancho et al. [2] obtained the Poisson exponential distri-
bution (PED), which has an increasing hazard rate, as the
lifetime of a system, connected as a parallel structure, in
which the number of its components is a RV subjecting to
the truncated Poisson distribution (at zero). A distribution
named exponentiated exponential Poisson distribution
(EEPD) for the series-parallel structure in which the number
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of components included in the series subsystem is random
and that of the parallel subsystem is fixed was considered by
Ristić and Nadarajah [3]. For more details about the
compounding of distribution functions based on failures of a
system, see, for example, Louzada et al. [4, 5], Mahmoudi
and Sepahdar [6], Abdel-Hamid and Hashem [7, 8], and
Nadarajah et al. [9].

In the implemented paper, we use the compounding of
distributions concept to generate a new distribution based
on the failures of a system connected as a parallel-series
structure where the number of units in both the parallel and
series subsystems is random. We name the proposed dis-
tribution exponential doubly Poisson distribution (EDPD)
and then compare it with exponentiated Weibull Poisson
distribution (EWPD), EEPD, EPD, PED, and ED.,e EDPD
accommodates decreasing, increasing, and upside-down
bathtub-shaped hazard rates. ,ese various shapes make it
more versatile to suit multiple real data and are therefore
regarded as one of the motivations of the EDPD. Some
properties of the proposed distribution are studied. Four
estimation methods for the included parameters, based on
progressive type II censoring, are considered.

,e EDPD’s further motivation is focused on the failure
of a parallel-series system. Suppose the system of units in a
factory is designed according to the parallel-series structure.
As shown in Figure 1, let k denote the number of parallel
subsystems functioning independently at a certain time,
where K is a RV (with a realization k) subjecting to a discrete
distribution (geometric, power series, zero-truncated Pois-
son, etc.). Assume that each system of the parallel systems
consists of Lj (where Lj, j � 1, . . . , k, are RVs with reali-
zations lj) units, which are connected as a series structure.
,eir failure times, X1j, . . . , XLjj, j � 1, . . . , k, are inde-
pendent and identically distributed (iid) RVs subjecting to a
continuous lifetime distribution (Lomax, exponential,
Weibull, Burr type XII, etc.). ,e success of the j-th system
depends on the success of all the system units. In other
words, the system fails just a one unit fails, i.e.,
Zj � min(X1j, . . . , XLjj), j � 1, . . . , k. Since the k systems
are connected as a parallel structure, then the factory’s
system can succeed when at least one of its parallel sub-
systems succeeds. In other words, it fails if all of the included
subsystems fail. Let T represent the failure time of the
factory’s system. ,en

T � max
1≤j≤k

Zj � max
1≤j≤k

min
1≤i≤lj

Xij, (2)

where Xij, i � 1, . . . , lj, j � 1, . . . , k are iid RVs.
,e rest of the paper is structured as follows: the EDPD

and some of its properties are presented in Section 2. Section
3 explores several methods of estimation. In Section 4, a real
example is given. Section 5 presents a simulation analysis
accompanied by conclusions in Section 6.

2. Exponential Doubly Poisson Distribution

In the current section, we obtain the EDPD by compounding
Poisson and EDs based on failures of the parallel-series
system. ,e probability density function (PDF), cumulative

distribution function (CDF), survival function (SF), HRF,
r-th moment, mean, variance, PDF of the i-th order statistic,
Bonferroni curve, Lorenz curve, Rényi entropy, and Shan-
non’s entropy of the EDPD are obtained and studied in
detail.

,e distribution of the RV T, presented in (2), is
achieved in the following theorem.

Theorem 1. For i � 1, . . . , lj, j � 1, . . . , k, suppose that Xij,
are iid RVs with the PDF fX(x; θ) � θe− θx, (x, θ> 0) and the
CDF FX(x; θ) � 1 − e− θx. Suppose also that Lj and K are two
independent zero-truncated Poisson RVs with probability
mass functions P(Lj � lj; σ) � ((e− σσlj )/(lj!(1 − e− σ))),
lj � 1, 2, . . . and P(K � k; η) � ((e− ηηk)/k!(1 − e− η)), k �

1, 2, . . ., respectively. 2en, the distribution of the RV T,
presented in (2), has an EDPD with PDF and CDF given,
respectively, by

f(t) ≡ f(t; η, σ, θ) �
ησθ

e
η

− 1(  e
σ

− 1( 

· e
− θt+σe− θt

e
ηΔ(t)

, t> 0, (η, σ, θ> 0),

(3)

F(t) ≡ F(t; η, σ, θ) �
e
ηΔ(t)

− 1
e
η

− 1
, (4)

where

Δ(t) ≡ Δ(t; σ, θ) �
e
σe− θt

− e
σ

1 − e
σ . (5)

Proof. Suppose that Zj � min1≤i≤ljXij, j � 1, . . . , k.
,e conditional density function of Zj given Lj � lj is

then given by

f zj|lj; θ  � lj 1 − FX zj; θ  
lj− 1

fX zj; θ . (6)

Using equation (1), the marginal PDF of Zj and its corre-
sponding CDF are given, respectively, by

fZ zj; σ, θ  � 
∞

lj�1
f zj|lj; θ P Lj � lj; σ ,

�
σθe

− θzj

1 − e
− σ e

− σ 1− e
− θzj( 

,

FZ zj; σ, θ  �
1 − e

− σ 1− e
− θzj( 

1 − e
− σ .

(7)
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X1 K
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X2 K
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XLK K

Figure 1: System with a parallel-series structure.
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Since T � max1≤j≤kmin1≤i≤ljXij � max1≤j≤kZj, then the
conditional density function of T given K � k is given by

f(t|k; σ, θ) � k FZ(t; σ, θ) 
k− 1

fZ(t; σ, θ). (8)

,erefore, the marginal PDF of T is given by

f(t; η, σ, θ) � 
∞

k�1
f(t|k; σ, θ)P(K � k; η),

�
ησθ

e
η

− 1(  e
σ

− 1( 
e

− θt+σe− θt

e
ηΔ(t)

,

(9)

where Δ(t) is given by (5).,us, the CDF of T takes the form

F(t; η, σ, θ) �
e
ηΔ(t)

− 1 

e
η

− 1
⎛⎝ ⎞⎠. (10)

,e SF and HRF of the EDPD with CDF (4) are given,
respectively, by

S(t) �
e
η

− e
ηΔ(t)

e
η

− 1
, t> 0, (11)

h(t) �
ησθe

− θt+σe− θt

e
σ

− 1(  e
η(1− Δ(t))

− 1 
, t> 0, (12)

where Δ(t) is given by (5). □

Remark 1. ,e EDPD, with CDF (4), tends to the

(1) EPD, proposed by Kuş [1], if η⟶ 0+,
(2) PED, proposed by Cancho et al. [2], if σ⟶ 0+,
(3) ED if η⟶ 0+ and σ⟶ 0+.

Theorem 2. A sufficient condition for PDF (3) to be de-
creasing (unimodal) is σ + (ησ/(e− σ − 1)) + 1> 0 (<0).

Proof. ,ederivation of log[f(t)] with respect to t takes the
form

dlog[f(t)]

dt
� − θe

− θtΥ1(t), (13)

where

Υ1(t) � σ +
ησ

1 − e
σe

σe− θt

+ e
θt

. (14)

,e first derivative of the function Υ1(t) takes the form

Υ1′(t) � θe
θt

+
ησ2θ
e
σ

− 1
e

− θt+σe− θt

. (15)

It is clear that Υ1′(t)> 0, ∀t> 0. ,erefore, the function
Υ1(t) is increasing.

Now, if Υ1(0) � σ + (ησ/(e− σ − 1)) + 1> 0, then
Υ1(t)> 0, ∀t> 0 (since Υ1(t) is increasing). ,en
((dlog[f(t)])/dt) < 0, and hence, the log[f(t)] is a decreasing
function, which leads to f(t) (PDF (3)) is also decreasing.

But, if Υ1(0) � σ + (ησ/(e− σ − 1)) + 1< 0 and
Υ1(∞) �∞, then Υ1(t) has a unique root t0 and
Υ1(t)< 0, ∀t< t0 and Υ1(t)> 0, ∀t> t0, and hence, the
log[f(t)] is a unimodal function, which leads to f(t) (PDF
(3)) is also unimodal. □

Theorem 3. HRF (12) of the EDPD is

(1) a decreasing (an increasing) function if
η< ((1 − e− σ)/1 + σ) (η> eσ − 1),

(2) an upside-down bathtub-shaped function if
((1 − e− σ)/(1 + σ))< η< eσ − 1.

Proof. Suppose that ζ(t) � ((− f′(t))/f(t)), where
f′(t) � ((df(t))/dt). Hence,

ζ(t) � θ + σθe
− θt

+
ηθσe

− θt+σe− θt

1 − e
σ , (16)

and its first derivative is ζ′(t) � − σθ2e− θtΥ2(t), where

Υ2(t) � 1 + ηe
σe− θt

1 + σe
− θt

  / 1 − e
σ

(  . (17)

Its first derivative takes the form

Υ2′(t) �
ησθ

e
σ

− 1
2 + σe

− θt
 e

− θt+σe− θt

. (18)

It is clear that Υ2′(t)> 0, ∀t> 0. ,erefore, the function
Υ2(t) is increasing.

Now, if Υ2(0) � 1 + ((η(1 + σ))/
(e− σ − 1))> 0 ,⟺, η< ((1 − e− σ)/(1 + σ)), then
Υ2(t)> 0, ∀t > 0. ,us, ζ′(t)< 0, ∀t> 0, and from Glaser’s
theorem (see Glaser [10]), HRF (12) is decreasing.

If Υ2(0) � 1 + ((η(1 + σ))/(e− σ − 1))< 0⟺ η >
(1 − e− σ/1 + σ) and Υ2(∞) � 1 + (η/(1 − eσ))< 0⟺
η> eσ − 1, then Υ2(t)< 0, ∀t> 0. ,us, ζ′(t)> 0, ∀t> 0, and
from Glaser’s theorem, HRF (12) is increasing.

If Υ2(0) � 1 + ((η(1 + σ))/(e− σ − 1))< 0⟺ η > ((1 −

e− σ)/(1 + σ)) and Υ2(∞) � 1 + (η/(1 − eσ)) >
0⟺ η< eσ − 1, then Υ2(t) has a unique root t∗ and
Υ2(t)< 0, ∀ t< t∗, and Υ2(t)> 0, ∀ t> t∗. ,us, ζ′(t)> 0,
∀t< t∗, and ζ′(t)< 0, ∀ t> t∗, and from Glaser’s theorem,
HRF (12) is upside-down bathtub.

For different values of η, σ, and θ, PDF (3) and HRF (12)
of the EDPD are plotted in Figure 2. □

Theorem 4. Suppose that T1, . . . , Tn is a random sample
from the EDPD with CDF (4). 2en, the CDF and its
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Figure 2: (a) ,e PDF and (b) HRF of the EDPD for different values of η, σ, and θ.
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corresponding PDF of the i-th order statistic, say Ti: n, are
given, respectively, by

Fi:n(t) � 
n

k3�i



n− k3

k4�0


k3+k4

k5�0
(− 1)

k4+k5

n

k3

⎛⎜⎝ ⎞⎟⎠
n − k3

k4

⎛⎜⎝ ⎞⎟⎠
k3 + k4

k5

⎛⎜⎝ ⎞⎟⎠
e
ηk5Δ(t)

1 − e
η

( 
k3+k4

,

fi:n(t) � i
n

i

⎛⎝ ⎞⎠
ησθ

e
σ

− 1
e

− θt+σe− θt



n− i

k1�0


i+k1− 1

k2�0
(− 1)

k1+k2− 1
n − i

k1

⎛⎝ ⎞⎠
i + k1 − 1

k2

⎛⎝ ⎞⎠
e
η k2+1( )Δ(t)

1 − e
η

( 
i+k1

,

(19)

where Δ(t) is given by (5).

Proof. As shown in Arnold et al. [11] and David and
Nagaraja [12], the PDF fi: n(t) of the i-th order statistic can
be written as follows:

fi:n(t) � i
n

i
 f(t)[F(t)]

i− 1
[1 − F(t)]

n− i
. (20)

If the PDF f(t) and CDF F(t) are given by equations (3)
and (4), respectively, then

fi:n(t) � i

n

i

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ 

n− i

k1�0
(− 1)

k1

n − i

k1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠f(t)[F(t)]
i+k1− 1

� i

n

i

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
ησθ

e
σ

− 1
e

− θt+σe− θt



n− i

k1�0


i+k1− 1

k2�0
(− 1)

k1+k2− 1
n − i

k1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

i + k1 − 1

k2

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
e
η k2+1( )Δ(t)

1 − e
η

( 
i+k1

,

(21)

where Δ(t) is given by (5). ,e corresponding CDF Fi: n(t) is given by

Fi:n(t) � 
n

k3�i

n

k3

⎛⎜⎜⎝ ⎞⎟⎟⎠[F(t)]
k3[1 − F(t)]

n− k3

� 
n

k3�i



n− k3

k4�0


k3+k4

k5�0
(− 1)

k4+k5

n

k3

⎛⎜⎜⎝ ⎞⎟⎟⎠
n − k3

k4

⎛⎜⎜⎝ ⎞⎟⎟⎠
k3 + k4

k5

⎛⎜⎜⎝ ⎞⎟⎟⎠
e
ηk5Δ(t)

1 − e
η

( 
k3+k4

,

(22)

where Δ(t) is given by (5). □

Theorem 5. Let T1: n and Tn: n be the smallest and largest
order statistics of a random sample T1, . . . , Tn from the EDPD
with PDF (3) and CDF (4), respectively. 2en

lim
n⟶∞

P
T1: n − a

∗
n

b
∗
n

≤ t  � 1 − e
− t

, t> 0,

lim
n⟶∞

P
Tn: n − an

bn

≤ t  � e
− e− t

, t ∈ R,

(23)

where a∗n � 0,

b
∗
n � F

− 1 1
n

 

�
1
θ

− log log 1 − e
σ

( log − 1 + n + e
η

( (

+(η + log[n])e
σ

− log[n] − log[η] + log(σ),

an � F
− 1 1 −

1
n

 

�
1
θ

− log log ηe
σ

+ log 1 + ne
η

− e
η

  − log[n](

− e
σ log 1 + ne

η
− e

η
  + e

σ log[n] − log[η] + log[σ],

bn �
1

nf an( 
.

(24)

Complexity 5



Proof. ,e proof can be easily shown by ,eorem
8.3.1–,eorem 8.3.4 in Arnold et al. [11]. □

Theorem 6. Assume that T1: n <T2: n < · · · <Tn: n are order
statistics from the EDPD. 2en, for i � 1, . . . , n.

lim
n⟶∞

P
Ti: n − a

∗
n

b
∗
n

≤ t  � 1 − e
− t



i− 1

j�0

t
j

j!
, t> 0,

lim
n⟶∞

P
Tn− i+1: n − an

bn

≤ t  � e
− e− t



i− 1

j�0

e
− jt

j!
, t ∈ R,

(25)

where a∗n , b∗n , an, and bn are given in 2eorem 5.

Proof. Using equations (8.4.2) and (8.4.3) in Arnold et al.
[11], the proof yields directly. □

Theorem 7. If the RV T has the EDPDwith PDF (3), then the
r-th moment of T is given by

μr � 
N

ℓ�0
ϖℓ

2
1 − yℓ( 

2
1 + yℓ

1 − yℓ
 

r

f
1 + yℓ

1 − yℓ
 , r � 1, 2, . . . ,

(26)

where, as in Canuto et al. [13], yℓ and ϖℓ represent the zeros
and corresponding Christoffel numbers of the Legendre–Gauss
quadrature formula on the interval (− 1, 1).

Proof. ,e r-th moment of the RV T is given by

μr � 
∞

0
t
r
f(t)dt

� 
1

− 1

2
(1 − y)

2
1 + y

1 − y
 

r

f
1 + y

1 − y
 dy.

(27)

We can approximate the previous integral, by using
Legendre–Gauss quadrature formula as

μr � 
N

ℓ�0
ϖℓ

2
1 − yℓ( 

2
1 + yℓ

1 − yℓ
 

r

f
1 + yℓ

1 − yℓ
 , (28)

where

ϖℓ �
2

1 − y
2
ℓ  LN+1′ yℓ(  

2 , and LN+1′ yℓ(  �
dLN+1(y)

dy
aty � yℓ,

(29)

and LN(.) is the Legendre polynomial of degree N.
Figure 3 plots the relationship between the mean and the

degree N of the Legendre polynomial in which we can
observe the volume of N required to obtain a satisfactory
approximation to the true mean.

,e mean, variance, skewness, and kurtosis of the EDPD
are plotted in Figure 4. We observe the following:

(1) By increasing σ, the mean and variance decrease, but
they increase by increasing η.

(2) By increasing η, the skewness and kurtosis decrease,
but they increase-decrease by increasing σ.

,e Bonferroni and Lorenz curves have applications in
economics to study income and poverty, insurance, de-
mography, reliability, and medicine. In the following the-
orem, we discuss the Bonferroni and Lorenz curves of the
EDPD with PDF (3). □

Theorem 8. Suppose that the RV T has the EDPD with PDF
(3). 2en, the Bonferroni curve (BC(ξ)) and Lorenz curve
(LC(ξ)) are given, respectively, by

BC(ξ) �
q
2
ξ

4ξμ1


N

ℓ�0
ϖℓ yℓ + 1( f

qξ

2
yℓ + 1(  ,

LC(ξ) �
q
2
ξ

4μ1


N

ℓ�0
ϖℓ yℓ + 1( f

qξ

2
yℓ + 1(  ,

(30)

where ϖℓ is given by (29) and

qξ � F
− 1

(ξ) �
− 1
θ
log

1
σ
log

1 − e
σ

η
log ξ e

η
− 1(  + 1  + e

σ
  .

(31)

Proof. ,e Bonferroni curve of the EDPD is given by

BC(ξ) �
1
ξμ1


qξ

0
tf(t)dt

�
q
2
ξ

4ξμ1

1

− 1
(y + 1)f

qξ

2
(y + 1) dy

�
q
2
ξ

4ξμ1


N

ℓ�0
ϖℓ yℓ + 1( f

qξ

2
yℓ + 1(  .

(32)

,e Lorenz curve of the EDPD is given by

LC(ξ) �
1
μ1


qξ

0
tf(t)dt

�
q
2
ξ

4μ1


N

ℓ�0
ϖℓ yℓ + 1( f

qξ

2
yℓ + 1(  .

(33)
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Figure 3: ,e relationship between the mean and the degree N of
Legendre polynomial.
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,e Bonferroni and Lorenz curves are plotted in
Figure 5.

Entropy is applied to determine dynamical systems’
randomness or uncertainty and is commonly applied in

science and engineering. In the following theorem, we
discuss two popular entropy measures that are the Rényi
and Shannon’s entropies (see Shannon [14] and Rényi
[15]). □
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Figure 4: ,e mean, variance, skewness, and kurtosis of the EDPD.
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Theorem 9. Let the RV T have the EDPD with PDF (3).
2en, the Rényi and Shannon’s entropies of T are given,
respectively, by

JR(ρ) �
1

1 − ρ
ρ log

ησθ
e
η

− 1(  e
σ

− 1( 
 

+ log 

N

ℓ�0
ϖℓ

2
1 − yℓ( 

2Q1
1 + yℓ

1 − yℓ
 ⎡⎣ ⎤⎦⎞⎠,

H � log
e
η

− 1(  e
σ

− 1( 

ησθ
  + 

N

ℓ�0
ϖℓ

2
1 − yℓ( 

2Q2
1 + yℓ

1 − yℓ
 f

1 + yℓ

1 − yℓ
 ,

(34)

where Q1(t) � eρ[− θt+σe− θt+ηΔ(t)], Q2(t) � θt − σe− θt − ηΔ(t),
and ϖℓ is given by (29).

Proof. ,e Rényi entropy of T is given by

JR(ρ) �
1

1 − ρ
log 

∞

0
f
ρ
(t)dt , (35)

where ρ> 0 and ρ≠ 1. Based on PDF (3), we obtain


∞

0
f
ρ
(t)dt �

ησθ
eη − 1( ) eσ − 1( )

 

ρ


∞

0
Q1(t)dt

�
ησθ

eη − 1( ) eσ − 1( )
 

ρ

· 
N

ℓ�0
ϖℓ

2
1 − yℓ( 

2Q1
1 + yℓ

1 − yℓ
 .

(36)

,en,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
BC

 (ξ
)

ξ

σ = 3.0, θ = 2.5

η = 15
η = 5
η = 1

(a)
LC

 (ξ
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ξ

σ = 3.0, θ = 2.5

η = 15
η = 5
η = 1

(b)

Figure 5: (a) ,e Bonferroni and (b) Lorenz curves of the EDPD.
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JR(ρ) �
1

1 − ρ
ρ log

ησθ
e
η

− 1(  e
σ

− 1( 
 

+ log 

N

ℓ�0
ϖℓ

2
1 − yℓ( 

2Q1
1 + yℓ

1 − yℓ
 ⎡⎣ ⎤⎦⎞⎠.

(37)

Shannon’s entropy of T is given by

H � E[− log[f(t)]]

� log
e
η

− 1(  e
σ

− 1( 

ησθ
  + E Q2(t) 

� log
e
η

− 1(  e
σ

− 1( 

ησθ
 

+ 
N

ℓ�0
ϖℓ

2
1 − yℓ( 

2Q2
1 + yℓ

1 − yℓ
 f

1 + yℓ

1 − yℓ
 .

(38)

□

3. Estimation Methods under Progressively
Type II Censored Data

Censoring may occur in medical or industrial applications
when the experimenter is not able to obtain details of the
total lifetime of each device or reduce the overall testing time
and related cost. Types I and II are widely used censoring
schemes (CS); see, for example, Mann et al. [16], Meeker and
Escobar [17], and Lawless [18]. ,ese two types of censoring
cannot allow the experimenter to withdraw units from the
life test at different times during the experiment. ,e

experimenter can overcome this problem by using pro-
gressive type II censoring, which is a generalization of type II
control. ,is type of censoring enables the experimenter to
withdraw units from the life test at various times during the
experiment (see Balakrishnan and Aggarwala [19]).

,e progressive type II censoring can be performed as
follows: suppose that the values of m(< n) and R1, R2, . . ., Rm

are assigned prior to the experiment. Once the first failure
time occurs, R1 functioning units are randomly withdrawn
from the test. Also, once the second failure time occurs, R2
surviving units are randomly withdrawn from the test. ,e
test proceeds in the same way until occurring the m-th
failure at which all the remaining functioning units
Rm � n − m − 

m− 1
j�1 Rj are withdrawn from the test, thereby

terminating the life test. ,e data according to progressively
type II censored samples are as follows: (t1: m: n; R1), . . .,
(tm: m: n; Rm) where t1: m: n < · · · < tm: m: n denote the m or-
dered observed failure times, and R1, . . ., Rm denote the
number of units withdrawn from the experiment at failure
times t1: m: n, . . ., tm: m: n.

In what follows, based on progressive type II censoring,
we consider four estimation methods to estimate the pa-
rameters η, σ, and θ. ,e methods include the maximum
likelihood (ML), moments (M), least squares (LS), and
weighted least squares (WLS) estimations.

3.1. Maximum Likelihood Estimation Method. Let
t� (t1, . . . , tm), ti ≡ ti: m: n, i � 1, . . . , m be a progressively
type II censored sample of size m from the EDPD with PDF
(3) and CDF (4). ,en, the likelihood function is given by

L(η, σ, θ; t)∝

m

i�1
f ti(  1 − F ti(  

Ri �
ηmσmθm

e
η

− 1( 
n

e
σ

− 1( 
m e


m

i�1
Ψ1i ti( ), (39)

where

Ψ1i ti(  � − θti + σe
− θti + ηΔ ti(  + Rilog e

η
− e

ηΔ ti( ) .

(40)

,e logarithm of equation (39) is given by

E � log[L(η, σ, θ; t)]∝m log[ησθ]

− n log e
η

− 1  − m log e
σ

− 1  + 
m

i�1
Ψ1i ti( .

(41)

,e likelihood equations for η, σ, and θ are given in
Appendix A. No solution in a closed form could be obtained
for the nonlinear likelihood equations to get the maximum

likelihood estimates (MLEs) ηML, σML, and θML of η, σ, and
θ. ,erefore, the likelihood equations should be numerically
manipulated to get the MLEs.

3.2. Moments Estimation Method. Let Ts: m: n be the s-th
progressively censored order statistic from an arbitrary
continuous distribution with PDF f(t). ,en the r-th
moment of Ts: m: n is given by

E T
r
s: m: n(  � c

�


s− 1

i�0

ci,s− 1 R1 + 1, . . . , Rs− 1 + 1( 

Ri
″

μr
1: R

i
″, (42)

where

Complexity 9



c
�

� n n − R1 − 1(  . . . n − R1 − · · · − Rs− 1 − s + 1( ,

Ri
″ � R

∗
s + 1(  + 

s− 1

j�s− i

Rj + 1 ,

R
∗
s � n − s − R1 − · · · − Rs− 1,

ci,l bl(  �
(− 1)

i


i
j�1 

l− i+j

k�l− i+1bl  
l− i
j�1

l− i
k�jbl 

, bl � b1, . . . , bl( ,

(43)

and μr
1: R

i
″ is the r-th moment of the usual smallest order

statistic in a sample of size Ri
″ from f(t) (see Balakrishnan

et al. [20]).
Let us discuss the moments estimates (MEs) based on a

progressively type II censored data and consider the fol-
lowing system of equations:



m

s�1
E T

r
s: m: n(  � 

m

s�1
t
r
s: m: n, r � 1, 2, 3. (44)

,e MEs ηM, σM, and θM of η, σ, and θ can be obtained
by solving numerically the above system of equations, where
E(Tr

s: m: n) can be supplied by (42).

3.3. Least Squares and Weighted Least Squares Estimation
Methods. ,e LS and WLS methods were introduced by
Swain et al. [21] to estimate the beta distribution parameters.
,ey can be performed as follows: let T1: m: n , . . ., Tm: m: n be
the ordered progressively type II censored sample of size m

from the EDPD. As in Aggarwala and Balakrishnan [22], the
expectation and variance of the empirical CDF are given,
respectively, by

E F ti(   � 1 − 
m

j�m− i+1

Wj

1 + Wj

, i � 1, . . . , m,

V F ti(   � 
m

j�m− i+1

Wj

1 + Wj

⎛⎝ ⎞⎠ 

m

j�m− i+1

Wj

1 + Wj

+
1

Wj + 1  Wj + 2 
⎡⎢⎣ ⎤⎥⎦ − 

m

j�m− i+1

Wj

1 + Wj

⎛⎝ ⎞⎠,

(45)

where

Wj � j + 
m

s�m− j+1
Rs, j � 1, . . . , m. (46)

,e LS estimates (ηLσL, θL) and WLS estimates
(ηWσW, θW) of (η, σ, θ) could be obtained byminimizing the
next two quantities, respectively, with respect to (η, σ, θ).

Φ1 ≡ Φ1(λ; t) � 
m

i�1
F ti(  − E F ti(   

2
,

Φ2 ≡ Φ2(λ; t) � 
m

i�1

1
V F ti(  

F ti(  − E F ti(   
2
,

(47)

where λ � (λ1 � η, λ2 � σ, λ3 � θ).
It is possible to minimize the last two quantities by

solving the equations (zΦ1/zλr) � 0 and (zΦ2/zλr) � 0 with
respect to λr, r � 1, 2, 3.

4. Real Data Example

Two real datasets are proposed, in this section, to fit and
compare the EDPD, EEPD (Ristić and Nadarajah [3]),
EWPD (Mahmoudi and Sepahdar [6]), PED (Cancho et al.
[2]), EPD (Kuş [1]), and traditional ED.

(i) ,e first data:
,e first dataset presents the amount of annual
rainfall (in inches) recorded at Los Angeles Civic

Center from 1922 to 2006. ,e dataset consists of 85
observations as follows:
13.19, 37.96, 9.25, 16.44, 4.35, 17.94, 11.57, 9.09,
31.01, 12.40, 12.46, 24.35, 8.11, 27.36, 21.0, 11.99,
7.35, 8.08, 12.48, 7.66, 17.86, 12.82, 10.43, 31.25,
10.71, 8.98, 26.98, 19.67, 33.44, 12.31, 7.22, 14.35,
14.92, 21.26, 7.17, 12.32, 7.77, 27.47, 16.58, 22.41,
20.44, 13.69, 7.93, 8.38, 18.79, 4.85, 8.18, 5.58, 21.13,
9.54, 16.0, 11.94, 11.99, 9.46, 26.21, 8.21, 9.94, 7.99,
7.22, 12.66, 11.65, 11.59, 19.17, 18.17, 11.18, 32.76,
19.21, 13.07, 23.43, 22.41, 12.07, 21.66, 14.55, 11.88,
16.95, 12.53, 11.52, 12.66, 9.77, 17.7, 17.56, 7.94, 6.67,
9.59, and 19.66.

Madi and Raqab [23] and Raqab et al. [24] used the
amount of annual rainfall (in inches) recorded at Los
Angeles Civic Center as a real dataset.

(ii) ,e second data:
,e second dataset consists of the strengths of 1.5 cm
glass fibres, measured at the National Physical
Laboratory, England (see Smith and Naylor [25]).
,e dataset consists of 63 observations as follows:
0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13,
1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48,
1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55,
1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62,
1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70,
1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84,
2.00, 2.01, and 2.24.
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Some descriptive statistics for the two given datasets are
presented in Table 1.

Based on the above two datasets, the Kolmogor-
ov–Smirnov (K-S) statistic and its corresponding p value are
used to check the validity of the considered distributions as
shown in Table 2. A comparison among the EDPD, EWPD,
EEPD, EPD, PED, and the ED using some criteria such as the
Akaike information criterion (AIC), consistent AIC (CAIC),
and Bayesian information criterion (BIC) is also shown in
Table 2, where

AIC � 2r − 2E(β),

CAIC �
2rm

m − r − 1
− 2E(β),

BIC � r log[m] − 2E(β),

(48)

where E(β) stands for the log-likelihood function calculated
at theMLE β of β, r is the number of parameters, and m is the
sample size.

Based on the values of K-S statistic and its corresponding
p value presented in Table 2, it can be noticed that the EDPD
has the smallest (largest) K-S (p) values than those for the
EWPD, EEPD, EPD, PED, and ED.,erefore, the EDPD fits
the considered data better than the five mentioned distri-
butions. Since the EDPD has the smallest values of AIC,
CAIC, and BIC, then this is considered another indicator of
the superiority of the EDPD. ,e comparison is also shown
graphically by plotting the empirical CDF against the CDF of
EDPD, EWPD, EEPD, EPD, PED, and ED (see Figure 6).

It can be easily shown that the values of η, σ, and θ
presented in Table 2 maximize likelihood function (19). We
generate two progressively type II censored samples from the
above two datasets as follows:

(i) ,e First Progressively Type II Censored Sample
Suppose m � 50 and then apply the following to the
first dataset

Ri � 1, i � 1, . . . , 35,

Ri � 0, i � 36, . . . , 50.
(49)

,en the first progressively type II censored sample
is 4.35, 4.85, 5.58, 6.67, 7.17, 7.22, 7.22, 7.35, 7.66,
7.77, 7.93, 7.94, 7.99, 8.08, 8.18, 8.21, 8.38, 8.98, 9.46,
9.54, 9.59, 9.77, 9.94, 11.18, 11.52, 11.59, 11.65, 11.88,
11.94, 11.99, 12.07, 12.53, 12.66, 12.66, 13.07, 14.55,
16.00, 16.95, 17.56, 17.7, 18.17, 19.17, 19.21, 19.66,
21.13, 21.66, 22.41, 23.43, 26.21, and 32.76.

(ii) ,e Second Progressively Type II Censored Sample
Suppose m � 43 and then apply the following to the
second dataset,

Ri � 1, i � 1, . . . , 20,

Ri � 0, i � 21, . . . , 43.
(50)

,en the second progressively type II censored
sample is 0.55, 0.77, 0.84, 0.93, 1.11, 1.25, 1.27, 1.29,
1.36, 1.42, 1.49, 1.49, 1.50, 1.52, 1.54, 1.58, 1.59, 1.61,

1.61, 1.62, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69,
1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84,
1.84, 1.89, 2.00, 2.01, and 2.24. For the two pro-
gressively type II censored samples mentioned
above, the ML, M, LS, and WLS estimates of the
parameters η, σ, and θ are computed and presented
in Table 3.

5. Simulation Procedure

In what follows, estimations using the ML, M, LS, and WLS
methods for the parameters η, σ, and θ are computed and
compared using a Monte Carlo simulation according to the
following steps:

(1) According to the algorithm given in Balakrishnan
and Sandhu [26], generate a progressively type II
censored sample of size m from the EDPD with CDF
(4).

(2) ,eML,M, LS, andWLS estimates of the parameters
η, σ, and θ are computed as shown in Section 3.

(3) ,e above steps are repeated 5, 000 times.
(4) Let Λ be an estimate ofΛ.,en the estimates average,

mean squared error (MSE), and relative absolute bias
(RAB) of Λ over the 5, 000 samples are given, re-
spectively, by

Λ �
1

5, 000


5,000

i�1

Λi,

MSE(Λ) �
1

5, 000


5,000

i�1

Λi − Λ 
2
,

RAB(Λ) �
1

5, 000


5,000

i�1

Λi − Λ




Λ
.

(51)

(5) As shown in Step 4, calculate the estimates average of
the parameters η, σ, and θ and their MSEs and RABs.
Calculate also the mean of the MSEs (MMSE) and
the mean of the RABs (MRAB) using the next two
relations:

MMSE �
MSE(η) + MSE(σ) + MSE(θ)

3
,

MRAB �
RAB(η) + RAB(σ) + RAB(θ)

3
.

(52)

,e computational results are presented in Tables 4
and 5. ,e following four CSs are used through generat-
ing the samples:

(i) CS1:

Ri � 1, i � 1, . . . , n − m,

Ri � 0, otherwise,
(53)

Complexity 11



Table 1: Some descriptive statistics for the two datasets.

Data Mode (s) Median Mean Variance CV Skewness Kurtosis Range Min Max

1 7.22 11.99 12.48 14.888 52.838 0.488 1.052 3.623 33.61 4.35 37.96
12.66 22.41

2 1.61 1.59 1.507 0.105 0.215 -0.9 3.924 1.69 0.55 2.24
CV: coefficient of variation.

Table 2: ,e MLEs, K-S statistic, p value, AIC, CAIC, and BIC for the two datasets.

,e first dataset
Model η σ θ c K-S p value AIC CAIC BIC
EDPD 13.6983 11.8965 0.0219 — 0.0728 0.75786 559.9 560.242 567.3
EEPD 1.6066 3.1671 0.0905 — 0.1208 0.16727 573.6 573.899 580.9
EWPD 3.3840 1.4609 1.0781 0.3567 0.4733 2.20 × 10− 13 700.4 700.7 707.7
PED 0.5305 — 0.0741 — 0.2908 1.10 × 10− 6 624.6 624.7 629.4
EPD — 0.0038 0.0677 — 0.3267 2.60 × 10− 8 633.2 633.3 638.0
ED — — 0.0672 — 0.3241 3.50 × 10− 8 631.1 631.1 633.5

,e second dataset
EDPD 34.838 0.4619 2.4403 — 0.1872 0.0242 68.56 68.97 74.99
EEPD 6.6783 4.9030 0.6944 — 0.2368 0.0017 78.81 79.22 85.24
EWPD 0.7592 2.6799 0.9182 1.5689 0.2491 0.0008 80.73 81.13 87.16
PED 9.8176 — 1.9320 — 0.2728 0.0002 84.86 85.06 89.14
EPD — 0.0181 0.7267 — 0.4398 5.20 × 10− 11 182.6 182.8 186.8
ED — — 0.6636 — 0.4046 2.20 × 10− 9 179.7 179.7 181.8
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Figure 6: Empirical CDF versus CDF of EDPD, EWPD, EEPD, EPD, PED, and ED for the (a) first dataset and (b) second dataset.

Table 3: Estimations using the ML, M, LS, and WLS methods for the parameters η, σ, and θ.

,e first censored sample ,e second censored sample
Methods η σ θ η σ θ
ML 14.2867 17.3397 0.014948 36.1439 0.496282 2.24151
M 21.1755 13.2365 0.027392 45.5460 1.054180 2.74783
LS 13.1991 8.71130 0.031710 57.8003 0.234002 2.63281
WLS 15.0092 9.28229 0.031072 36.5016 0.278964 2.38832
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Table 4: ML and M estimates of η, σ, and θ with their MSEs, RABs, MMSE, and MRAB based on 5000 simulations. Population parameter
values are η � 4.0, σ � 4.0, and θ � 1.5.

MLE ME
ηML MSE (ηML) RAB(ηML) MMSE ηM MSE(ηM) RAB(ηM) MMSE
σML MSE(σML) RAB(σML) MRAB σM MSE(σM) RAB(σM) MRAB

n m CS θML MSE(θML) RAB(θML) θM MSE(θM) RAB(θM)

25

15

1
4.4880 4.0099 0.3820 2.0052 3.7856 5.5707 0.4311 5.4257
4.2135 1.7027 0.2206 0.2950 1.7172 7.0330 0.6139 0.6563
1.5684 0.3031 0.2825 2.8680 3.6736 0.9240

2
4.4683 4.2749 0.3922 2.0734 4.0441 4.9030 0.4390 4.5112
4.2713 1.6678 0.2252 0.2953 2.2982 5.6220 0.5256 0.5902
1.5267 0.2776 0.2685 2.6678 3.0086 0.8061

3
4.5508 4.1540 0.3845 2.0262 3.8039 5.9571 0.4854 5.2455
4.1972 1.5927 0.2192 0.2982 1.9483 6.8558 0.6093 0.6368
1.5934 0.3318 0.2908 2.6865 2.9236 0.8157

4
4.5078 4.1658 0.3868 2.0032 4.4974 9.1003 0.5329 6.4233
4.1923 1.5320 0.2171 0.2960 1.9950 6.3103 0.5592 0.6807
1.5723 0.3117 0.2840 2.9084 3.8593 0.9500

20

1
4.4747 3.9587 0.3763 2.0006 3.7620 4.5589 0.4111 4.0868
4.2838 1.7601 0.2350 0.2946 2.1579 4.9121 0.4830 0.5424
1.5406 0.2831 0.2724 2.5663 2.7893 0.7332

2
4.4206 3.7027 0.3644 1.9083 3.5770 4.0648 0.4008 3.6891
4.2969 1.7528 0.2340 0.2877 2.1758 4.8170 0.4819 0.5192
1.5139 0.2694 0.2648 2.4660 2.1854 0.6751

3
4.5069 3.9603 0.3743 1.9984 3.9556 6.9133 0.4834 5.0598
4.3009 1.7607 0.2324 0.2915 2.0338 5.5173 0.5235 0.5833
1.5296 0.2741 0.2679 2.5805 2.7488 0.7428

4
4.5106 3.9751 0.3756 1.9693 3.8776 6.2540 0.4743 4.9159
4.2642 1.6679 0.2303 0.2901 2.0042 5.5938 0.5255 0.5883
1.5435 0.2650 0.2644 2.6154 2.8999 0.7649

25 —
4.4320 3.6128 0.3584 1.9000 3.7933 5.2457 0.442 3.6996
4.3522 1.8298 0.2429 0.2878 2.4837 3.9823 0.4186 0.4827
1.4997 0.2574 0.2621 2.3169 1.8708 0.5874

50

30

1
4.2797 2.3832 0.2897 1.4005 3.2276 2.4115 0.3191 2.8905
4.2911 1.5536 0.2228 0.2585 2.1191 4.7406 0.4803 0.4592
1.5210 0.2646 0.2629 2.3080 1.5195 0.5783

2
4.2262 2.3459 0.2909 1.4124 3.5641 4.2177 0.4038 3.3436
4.3059 1.6422 0.2301 0.2595 2.4131 4.0116 0.4301 0.4677
1.5004 0.2490 0.2576 2.2752 1.8015 0.5692

3
4.2754 2.3806 0.2858 1.4292 2.8691 2.9306 0.3594 3.1818
4.3016 1.6340 0.2290 0.2601 2.1157 5.0001 0.4925 0.4724
1.5232 0.2731 0.2655 2.2889 1.6147 0.5654

4
4.2922 2.5213 0.2959 1.4527 3.2683 4.5953 0.4184 3.5313
4.2638 1.5854 0.2264 0.2599 2.1790 4.5737 0.4676 0.4736
1.5247 0.2515 0.2573 2.2463 1.4249 0.5348

40

1
4.2097 2.0664 0.2715 1.3102 3.7420 4.0931 0.3829 3.1515
4.3314 1.6268 0.2345 0.2531 2.4818 3.9559 0.4231 0.4502
1.4866 0.2374 0.2532 2.2267 1.4056 0.5447

2
4.2036 2.2132 0.2794 1.3507 4.8363 7.7696 0.5400 3.9701
4.3227 1.5991 0.2338 0.2555 2.9342 3.0713 0.3647 0.4682
1.4841 0.2397 0.2534 2.1884 1.0693 0.4997

3
4.2456 2.1781 0.2767 1.3533 3.9856 4.5764 0.4292 3.6425
4.3459 1.6397 0.2350 0.2547 2.2268 4.5080 0.4695 0.5280
1.4944 0.2420 0.2525 2.4627 1.8430 0.6853

4
4.1935 2.1201 0.2747 1.3267 4.4829 6.1933 0.4772 3.8678
4.3382 1.6128 0.2339 0.2557 2.4408 3.8008 0.4204 0.5052
1.4867 0.2472 0.2585 2.3681 1.6091 0.6179

50 —
4.1714 1.8511 0.2543 1.2189 2.3396 3.5492 0.4256 1.7983
4.3256 1.5803 0.2343 0.2451 3.2250 1.6318 0.2321 0.2965
1.4731 0.2254 0.2468 1.8108 0.2139 0.2318
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which means we eliminate one unit after every
failure observed in the first n − m failures in the
sample.

(ii) CS2:

Ri � n − m, i � 1,

Ri � 0, otherwise,
(54)

which means we eliminate n − m units after the first
failure observed in the sample.

(iii) CS3:

Ri � n − m, i �
m + 1
2

(m odd) or i �
m

2
(m even),

Ri � 0, otherwise,
(55)

which means we eliminate n − m units after the
middle failure observed in the sample.

(iv) CS4:

Ri �
3
5

(n − m) , i � 1,

Ri � n − m −
3
5

(n − m)  i �
m + 1
2

(m odd) or i �
m

2
(m even),

Ri � 0, otherwise,

(56)

which means we eliminate [(3/5)(n − m)] units
after the first observed failure and eliminate n − m −

[(3/5)(n − m)] units after the middle failure ob-
served in the sample. ,e [z] indicates the greatest
integer less than or equal to z.

Different values of m (�60%, 80%, and 100% of the
sample size) have been considered through the simulation
procedure. ,e values of the population parameters are
η � 4.0, σ � 4.0, and θ � 1.5.

It can be noticed that the WLS estimates are better than
the LS, ML, and M estimates via the MMSEs and MRABs,

Table 4: Continued.

MLE ME
ηML MSE (ηML) RAB(ηML) MMSE ηM MSE(ηM) RAB(ηM) MMSE
σML MSE(σML) RAB(σML) MRAB σM MSE(σM) RAB(σM) MRAB

n m CS θML MSE(θML) RAB(θML) θM MSE(θM) RAB(θM)

100

60

1
4.0679 1.0237 0.1935 0.8853 4.2069 1.8942 0.2429 1.7737
4.3006 1.4184 0.2190 0.2177 2.9985 2.3610 0.2956 0.3455
1.4846 0.2139 0.2408 2.1522 1.0658 0.4980

2
4.0723 1.2257 0.2144 0.9897 3.6262 1.5438 0.1878 0.9533
4.3519 1.5280 0.2330 0.2305 4.0883 0.9290 0.1534 0.1950
1.4621 0.2155 0.2442 1.8265 0.3872 0.2438

3
4.0846 1.0849 0.2024 0.9121 4.1135 0.0657 0.0306 0.3085
4.2877 1.4374 0.2204 0.2207 4.1716 0.4981 0.0835 0.1068
1.4875 0.2139 0.2392 1.8015 0.3616 0.2062

4
4.0722 1.1576 0.2074 0.9439 3.9421 0.2701 0.0439 0.5029
4.2924 1.4558 0.2233 0.2237 4.3331 0.8608 0.1266 0.1121
1.4872 0.2182 0.2405 1.7023 0.3779 0.1657

80

1
4.0469 0.9291 0.1868 0.8844 3.4705 1.7272 0.2219 1.2650
4.3393 1.5213 0.2301 0.2184 4.3732 1.5375 0.1667 0.2234
1.4645 0.2027 0.2382 1.8741 0.5303 0.2817

2
4.0082 0.9902 0.1924 0.8988 4.1911 1.6957 0.2111 0.9800
4.3153 1.4993 0.2310 0.2206 4.6798 1.0861 0.1984 0.1935
1.4609 0.2070 0.2384 1.7341 0.1582 0.1709

3
4.0811 0.9167 0.1850 0.8528 4.0304 0.3209 0.0476 0.5693
4.3001 1.4320 0.2240 0.2152 4.7319 1.1710 0.1984 0.1256
1.4836 0.2097 0.2365 1.6055 0.2160 0.1308

4
4.0452 0.9568 0.1886 0.8791 3.7794 1.0120 0.1352 0.7997
4.3120 1.4746 0.2262 0.2175 4.5011 1.0398 0.1450 0.1532
1.4680 0.2059 0.2375 1.7367 0.3474 0.1793

100 —
4.0063 0.8184 0.1752 0.8269 3.2165 0.8785 0.2044 0.4700
4.3327 1.4665 0.2270 0.2115 4.5539 0.4004 0.1394 0.1611
1.4543 0.1957 0.2323 1.7082 0.1312 0.1395
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Table 5: LS andWLS estimates of η, σ, and θwith their MSEs, RABs, MMSE, andMRAB based on 5, 000 simulations. Population parameter
values are η � 4.0, σ � 4.0, and θ � 1.5.

LSE WLSE
ηL MSE(ηL) RAB(ηL) MMSE ηW MSE(ηW) RAB(ηW) MMSE
σL MSE(σL) RAB(σL) MRAB σW MSE(σW) RAB(σW) MRAB

n m CS θL MSE(θL) RAB(θL) θW MSE(θW) RAB(θW)

25

15

1
4.2018 3.8547 0.3684 2.1198 4.2775 3.2795 0.3373 1.8863
4.1913 2.1909 0.2254 0.2934 4.1459 2.0644 0.2153 0.2790
1.5048 0.3138 0.2864 1.5483 0.3149 0.2843

2
4.2342 4.3133 0.3810 2.3266 4.3473 3.6601 0.3512 2.0175
4.2218 2.3387 0.2282 0.2956 4.2696 2.1016 0.2138 0.2793
1.4854 0.3277 0.2775 1.4957 0.2910 0.2728

3
4.2297 3.8954 0.3672 2.1470 4.2814 3.3869 0.3391 1.8355
4.1701 2.1944 0.2239 0.2955 4.0525 1.8140 0.2084 0.2760
1.5232 0.3511 0.2955 1.5678 0.3057 0.2804

4
4.2309 4.1101 0.3788 2.2403 4.3207 3.5594 0.3468 2.0196
4.1892 2.2634 0.2261 0.3004 4.2193 2.1714 0.2175 0.2850
1.5150 0.3473 0.2965 1.5332 0.3279 0.2909

20

1
4.2268 3.5707 0.3461 2.0226 4.3054 3.0713 0.3216 1.7824
4.2142 2.2062 0.2190 0.2762 4.2661 2.0199 0.2065 0.2610
1.4944 0.2908 0.2635 1.4944 0.2559 0.2548

2
4.1998 3.5906 0.3535 1.9432 4.2734 3.0718 0.3275 1.7414
4.1557 1.9528 0.2072 0.2734 4.2575 1.8905 0.2015 0.2618
1.4975 0.2864 0.2594 1.4821 0.2619 0.2564

3
4.1763 3.5149 0.3488 1.9955 4.2382 2.9586 0.3211 1.6911
4.1589 2.1746 0.2205 0.2785 4.1836 1.8553 0.2036 0.2606
1.503 0.2970 0.2661 1.5058 0.2595 0.2573

4
4.2168 3.6427 0.3497 2.0747 4.2818 3.0952 0.3228 1.7780
4.2207 2.3000 0.2227 0.2780 4.2651 1.9773 0.2046 0.2619
1.4914 0.2814 0.2617 1.4896 0.2617 0.2584

25 —
4.1975 3.2876 0.3299 1.8774 4.2474 2.8569 0.3113 1.6443
4.1717 2.0857 0.2076 0.2609 4.2778 1.8419 0.2000 0.2517
1.4959 0.2589 0.2453 1.4671 0.2340 0.2439

50

30

1
4.1671 2.6825 0.3021 1.5410 4.2294 2.1876 0.2712 1.2432
4.1100 1.6989 0.1938 0.2473 4.0173 1.3254 0.1771 0.2282
1.5239 0.2416 0.2460 1.5694 0.2165 0.2364

2
4.1593 2.8978 0.3113 1.6367 4.2344 2.3133 0.2796 1.3704
4.1470 1.7885 0.1963 0.2460 4.2121 1.5797 0.1868 0.2327
1.4955 0.2239 0.2304 1.4941 0.2181 0.2318

3
4.1583 2.8172 0.3105 1.5909 4.1947 2.0972 0.2699 1.2279
4.0803 1.7078 0.1909 0.2501 4.0203 1.3665 0.1819 0.2304
1.5267 0.2477 0.2490 1.5576 0.2199 0.2394

4
4.1557 2.8545 0.3093 1.6398 4.2266 2.2891 0.2791 1.3457
4.0962 1.8139 0.1979 0.2501 4.1001 1.5258 0.1832 0.2340
1.5214 0.2511 0.2430 1.5369 0.2222 0.2397

40

1
4.1554 2.2927 0.2774 1.4242 4.2138 1.8709 0.2555 1.1424
4.1277 1.7714 0.1888 0.2281 4.1709 1.3666 0.1750 0.2160
1.5167 0.2086 0.2179 1.5102 0.1897 0.2176

2
4.1382 2.3300 0.2819 1.4075 4.2014 1.9425 0.2584 1.1516
4.1258 1.6930 0.1900 0.2302 4.1836 1.3258 0.1755 0.2170
1.5049 0.1995 0.2187 1.4946 0.1866 0.2170

3
4.1329 2.3980 0.2853 1.4030 4.1742 1.9651 0.2573 1.1994
4.1038 1.6115 0.1876 0.2320 4.1378 1.4478 0.1790 0.2182
1.5131 0.1996 0.2231 1.5123 0.1854 0.2183

4
4.1497 2.4247 0.2868 1.4009 4.2040 2.0314 0.2632 1.1723
4.1246 1.5883 0.1843 0.2293 4.1606 1.2879 0.1724 0.2192
1.5057 0.1898 0.2168 1.5079 0.1977 0.2221

50 —
4.1168 2.0442 0.2584 1.2361 4.1589 1.7465 0.2426 1.0439
4.1196 1.4875 0.1748 0.2120 4.1824 1.2104 0.1684 0.2058
1.5028 0.1766 0.2028 1.4867 0.1749 0.2065
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and the MLEs are better than the MEs via the MMSEs and
MRABs, from the numerical results performed via simu-
lation studies.

From Tables 4 and 5, it can be noticed that MSEs, RABs,
MMSEs, and MRABs decrease by increasing m (or n) for
fixed values of n (or m), except for certain unusual cases, and
this may be due to data fluctuations.

6. Concluding Remarks

We have proposed a new lifetime distribution that could be
accomplished by compounding two zero-truncated dis-
tributions of Poisson with an ED. It accommodates mul-
tiple shapes of the hazard rate function such as decreasing,
increasing, and upside-down bathtub shapes. It may rep-
resent the failure time of a system connected in the form of
a parallel-series structure. Some properties of the EDPD
have been studied, including its PDF, shapes of the HRF,
r-th moments, PDF of the i-th order statistic, mean, var-
iance, Bonferroni curve, Lorenz curve, Rényi entropy, and
Shannon’s entropy. Two real datasets are considered to
compare the EDPD, EWPD, EEPD, EPD, PED, and ED.
,e comparison reveals that the EDPD is better than the

other five distributions to fit the data considered. We have
addressed four estimationmethods to estimate the involved
parameters on the basis of progressive type II censoring.
,e methods are estimations of ML, M, LS, and WLS. A
simulation analysis was conducted to determine the best
performing estimators, and numerical computations were
carried out based on four different progressive CSs.

Among the features and motivations of the EDPD are as
follows:

(1) ,e PDF and HRF of the EDPD have closed forms.
(2) ,e different shapes of the HRF of EDPD make it

more appropriate to fit multiple real data.
(3) It may be used to describe the lifetime of a system

connected as a parallel-series structure.
(4) It is better than some other distributions such as the

EWPD, EEPD, EPD, PED, and ED to suit multiple
real data.

Appendix

,e likelihood equations for η, σ, and θ are given by

Table 5: Continued.

LSE WLSE
ηL MSE(ηL) RAB(ηL) MMSE ηW MSE(ηW) RAB(ηW) MMSE
σL MSE(σL) RAB(σL) MRAB σW MSE(σW) RAB(σW) MRAB

n m CS θL MSE(θL) RAB(θL) θW MSE(θW) RAB(θW)

100

60

1
4.0515 1.3811 0.2218 0.9072 4.0952 1.0753 0.1972 0.7242
3.9961 1.1830 0.1620 0.1931 4.0126 0.9539 0.1533 0.1810
1.5458 0.1576 0.1955 1.5493 0.1433 0.1924

2
4.1471 1.8059 0.2461 1.0887 4.1839 1.4089 0.222 0.8912
4.0761 1.3043 0.1672 0.2027 4.1414 1.1082 0.1614 0.1935
1.5257 0.1560 0.1947 1.5114 0.1564 0.1971

3
4.0942 1.4625 0.2289 0.9976 4.1236 1.1084 0.1993 0.7193
4.0590 1.3701 0.1735 0.2002 3.9928 0.9058 0.1521 0.1811
1.5323 0.1601 0.1982 1.5562 0.1437 0.1920

4
4.1208 1.6778 0.2411 1.0733 4.1595 1.3026 0.215 0.8431
4.0733 1.3761 0.1722 0.2042 4.0636 1.0716 0.1610 0.1912
1.5266 0.1660 0.1993 1.5375 0.1551 0.1977

80

1
4.0775 1.2080 0.2047 0.7785 4.0888 0.9761 0.1851 0.6866
4.0369 0.9978 0.1484 0.1764 4.1004 0.9465 0.1530 0.1739
1.5239 0.1296 0.1760 1.5078 0.1373 0.1835

2
4.0657 1.2917 0.2141 0.8152 4.0865 1.0466 0.1953 0.6878
4.0455 1.0233 0.1498 0.1798 4.1164 0.8923 0.1494 0.1741
1.5185 0.1307 0.1754 1.4952 0.1244 0.1775

3
4.0845 1.2750 0.2112 0.8451 4.095 0.9718 0.1875 0.7049
4.0575 1.1227 0.1579 0.1838 4.0669 1.0079 0.1535 0.1750
1.5244 0.1376 0.1824 1.5266 0.1350 0.1841

4
4.0828 1.2696 0.2117 0.8306 4.1005 1.0218 0.1916 0.7248
4.0519 1.0819 0.1560 0.1830 4.0914 1.0142 0.1553 0.1775
1.5246 0.1402 0.1812 1.5169 0.1384 0.1855

100 —
4.0629 1.0169 0.1909 0.7348 4.0905 0.8740 0.1783 0.6133
4.0753 1.0702 0.1473 0.1678 4.1021 0.8487 0.1444 0.1644
1.5173 0.1173 0.1653 1.5078 0.1172 0.1705
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