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0e novel coronavirus disease (COVID-19) is regarded as one of the most imminent disease outbreaks which threaten public
health on various levels worldwide. Because of the unpredictable outbreak nature and the virus’s pandemic intensity, people are
experiencing depression, anxiety, and other strain reactions.0e response to prevent and control the new coronavirus pneumonia
has reached a crucial point. 0erefore, it is essential—for safety and prevention purposes—to promptly predict and forecast the
virus outbreak in the course of this troublesome time to have control over its mortality. Recently, deep learning models are playing
essential roles in handling time-series data in different applications. 0is paper presents a comparative study of two deep learning
methods to forecast the confirmed cases and death cases of COVID-19. Long short-term memory (LSTM) and gated recurrent
unit (GRU) have been applied on time-series data in three countries: Egypt, Saudi Arabia, and Kuwait, from 1/5/2020 to 6/12/
2020. 0e results show that LSTM has achieved the best performance in confirmed cases in the three countries, and GRU has
achieved the best performance in death cases in Egypt and Kuwait.

1. Introduction and Related Work

Coronavirus disease (COVID-19) is deemed one of the most
significant provocative challenges facing humanity in the
twenty-first century in terms of disease progression, fast
spread, infection ways, and the increasingmortality rate over
the world [1]. What makes things even worse is that there
had been no prediction of this novel virus and its illness
nature before its sudden spread in December 2019 in
Wuhan, China. 0e number of total infection cases
worldwide reached 7 410 510 patients, while the number of
demise cases recorded 294 418 deaths [2]. Recently, all
countries around the world are competing to find a vaccine

for the emerging coronavirus. Indeed, there are now some
vaccines that prevent COVID-19 such as Pfizer-BioNTech
COVID-19 vaccine [3] and Moderna’s COVID-19 vaccine
[4]. Recently, machine learning is playing an indispensable
role in predicting COVID-19. For example, Yan et al. [5]
provided a predictive model based on machine learning
using Tongji Hospital patients’ data from 10/1/2020 to 18/2/
2020. Yang et al. [6] built a predictive system using machine
learning to determine the height of China’s epidemic. 0e
predictive system showed that the peak time for the coro-
navirus was in late February. Rao and Vazquez [7] presented
new techniques based on an artificial intelligence framework
using a mobile phone to detect COVID-19 patients.
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Mohammad and Shakibi [8] used machine learning algo-
rithms to predict patients’ mortality rates with COVID-19.
Furthermore, time-series forecasting is playing an essential
role in predicting the number of deaths caused by COVID-
19 in the future.0e time-series forecasting (TSF) [9] system
involves predicting the system behaviour in the future, based
on information about the system’s current and past status.
Presently, TSF plays an imperative role in several real-world
problems, such as the healthcare [9], weather forecasting
[10], and others [11]. A deep neural network (DNN) is an
artificial neural network (ANN) with multiple layers be-
tween the input and output layers. Deep learning is part of a
broader family of machine learning methods based on ar-
tificial neural networks with representation learning [12].
Many scientific articles have appeared about forecasting
COVID-19. For example, Yahia et al. [13] proposed a new
technique using deep neural networks, long short-term
memory, and CNN to forecast daily confirmed cases. Hu
et al. [14] proposed new methods by using artificial intel-
ligence for real-time forecasting of COVID-19 to evaluate
the size, lengths, and ending time of COVID-19 across
China. Chimmula and Zhang [15] presented a new tech-
nique using long short-term memory networks to forecast
future COVID-19 cases in Canada. Tian et al. [16] used three
machine learning models, including the hidden Markov
chain model (HMM), the hierarchical Bayes model, and
LSTM, to predict confirmed COVID-19 cases in six coun-
tries from 22/1/2020 to 14/4/2020. Mohammed et al. [17]
presented a new model to predict confirmed cases of
COVID-19 in China for the next ten days based on previ-
ously confirmed cases by the Chinese government. Lamiaa
et al. [18] used different types of regression models to predict
the number of people infected with COVID-19 in Egypt
from 15/2/2020 to 15/6/2020. Wang et al. [19] presented the
patient information-based algorithm (PIBA) to predict the
number of deaths caused by COVID-19 in China. Ibrahim
et al. [20] presented a study on coronavirus’s epidemio-
logical situation in both Iraq and Egypt by using the
Gaussian model, logistic growth model, and compartmental
(generalized SEIR) model. Ceylan [21] used autoregressive
integrated moving average (ARIMA) to predict the epide-
miological trend of COVID-19 in Italy, Spain, and France
from 21/2/2020 to 15/4/2020. In this paper, we proposed two
deep neural network algorithms to predict death cases and
confirmed cases of COVID-19 in three countries: Egypt,
Saudi Arabia, and Kuwait. 0e experimental results were
made to time-series data from 1/5/2020 to 6/12/2020. Also,
the dataset is divided into 80% training dataset and 20%
testing dataset. 0e training dataset is used to train and
optimize long short-term memory (LSTM) and gated re-
current unit (GRU). 0e testing dataset is used to evaluate
models using three metrics, including the mean absolute
error (MAE), the mean absolute percentage error (MAPE),
and the root mean square error (RMSE).

0e remainder of this paper is organized as follows.
Section 2 presents the proposed system of forecasting
COVID-19 in three countries: Egypt, Saudi Arabia, and
Kuwait. Section 3 discusses the experimental results. Finally,
Section 4 concludes the paper.

2. Materials and Methods

In this paper, the proposed system forecasts the number of
death cases and confirmed cases of COVID-19 in three
countries: Egypt, Saudi Arabia, and Kuwait, from 1/5/2020
to 6/12/2020. 0e proposed system includes five steps which
are data collection, data preprocessing, data splitting, model
training and optimization, and evaluating the models as
shown in Figure 1.

2.1. Data Collection. 0e Novel Corona Virus 2019 Dataset
has been taken from Kaggle [22]. 0is dataset includes daily-
level information of the number of confirmed cases and
death cases of coronavirus. It consists of time-series data in
different countries from 22/1/2020 to 6/12/2020. We made
experimental results on three time series for the confirmed
cases and death cases in three countries: Egypt, Saudi Arabia,
and Kuwait.

2.2. Data Preprocessing. Two steps have been applied on
time-series data in three countries, namely, Egypt, Saudi
Arabia, and Kuwait: transforming data into supervised
learning and scaling data.

2.2.1. Transforming Data into Supervised Learning. We
divided the dataset into input samples (x) and targets (y)
because we trained the deep learning models by supervised
learning, and since we have only performed one-step-
ahead prediction (1 day), targets (y) are the next time step
(t + 1) data points. For input samples (x), we used 5 lags (5
days).

2.2.2. Scaling Data. A normalization, which is data
rescaling from the original range to a new range between 0
and 1, has been done. Specifically, the data have been scaled
to be within the range of 0 and 1, and the cause behind
doing this is that LSTM and GRUmodels favor working on
data in the range of its activation function. MinMaxScaler
(feature_range � (0, 1)) [9], that is, a library in Python
language to scaling dataset between 0 and 1, has been used.
Besides, the ReLU activation function has been used in
LSTM and GRU models. In the evaluation phase (i.e.,
model testing), the predictions have been transformed back
into the primary scale to evaluate the model’s performance
correctly. For reverse scaling, the inverse_transform
function that exists in the MinMaxScaler library in Python
has been used. It reverses data row scaling into original
values.

2.3. Splitting Dataset. 0e dataset has been split into two
parts for this step (80%) for the training set and (20%) for the
testing set. 0e training set is used to optimize and train the
models, while the testing dataset is used to evaluate the
models.
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2.4. Model Optimization and Training

2.4.1. Optimization Models. Long short-term memory
(LSTM) and gated recurrent units (GRUs) have been used as
two candidate forecasting models for our COVID-19
forecasting problem. For each model, a different number of
hidden layers was applied: one layer and two layers. Also, a
dropout layer with a hidden layer was used [23]. 0e output
layer includes one neuron, the ReLU activation function,
and the Adam optimizer [24]. We used the Keras Tuner
library [25] to optimize some parameters of deep neural
network models. Table 1 shows the value for a dropout rate
and the number of neurons.

2.5. Deep Learning Models

(i) Long short-term memory (LSTM) [26] is a special
kind of an artificial recurrent neural network (RNN)
architecture designed to model time-series and long-
term dependency problem. It works more accurately
than the conventional RNN. 0e key to LSTM is the
cell state. LSTM network consists of three gates: an
input gate (i), a forget gate (f ), and an output gate (o).
Each gate is a neuron that has the past state vector
(ht – 1) and the current input (xt) as its inputs and
outputs a number from 0 to 1 indicating the gating
rate (1).

COVID-19
pandemic

2. Data preprocessing
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Figure 1: Architecture of the proposed system for forecasting COVID-19.
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(ii) Gated recurrent unit (GRU) [27] is a simplified
LSTM. It has the same role in the network. It differs
from LSTM in the number of gates and weights.
GRU has two gates. It does not have an output gate
and has no control over the memory content. 0e
main controller in the flow of information or adding
new information is the update gate [28].

2.6. Evaluating the Models. For measuring models’ perfor-
mance, three errors were used to estimate the forecasting
precision of the models; two of these errors are scale-de-
pendent errors where these errors are on the same scale as
the data itself and therefore cannot be used to make com-
parisons between time-series datasets that are on different
scales. 0e two scale-dependent errors that were used in this
study are

(i) Root mean square error (RMSE), which can be given
as follows:
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(ii) Mean absolute error (MAE), which can be given as
follows:
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0e third measure used is a percentage error, namely,

mean absolute percentage error (MAPE), which can be given
as follows:
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0e percentage errors have the advantage of being scale-
independent, and therefore they can be used to compare
forecast performance between different scaled datasets.

3. Experimental Results and Discussion

0is section will compare the forecasting performances of
two neural network forecasting models, namely, GRU and
LSTM, for one layer and two layers. In this study, we focus
on the time-series data of daily COVID-19 confirmed cases
and death cases from 1/5/2020 to 6/12/2020 in three
countries: Egypt, Saudi Arabia, and Kuwait. Each model has
been trained using the training dataset and evaluated by the

testing dataset. 0e training data consist of a time-series
dataset of confirmed and death cases. Also, hyperparameter
tuning for each model will be described.

3.1. Experimental Setups. 0e experiments have been con-
ducted using a laptop with a specification of 20GB of RAM,
seven cores, and 100GB disk. 0e dataset is split into 80%
training dataset and 20% testing dataset. 0e deep learning
models have been implemented using the Keras package.
Some values of DL parameters are adapted: batch size—50
and number of epochs—100. 0e experimental results are
registered to confirmed cases and death cases of COVID-19
in three countries: Egypt, Saudi Arabia, and Kuwait.

3.2. 3e Results of Egypt. 0is section discusses the result of
applying DL in confirmed cases and death cases time-series
data in Egypt. Also, it presents the best value parameters of
DL models.

3.2.1. Confirmed Cases

(i) Hyperparameter Tuning. 0e best value parameters
for LSTM and GRU for the confirmed cases in Egypt
are shown in Table 2.

(ii) 3e Result of DL. Table 3 shows the results of LSTM
and GRU for the confirmed cases in Egypt. 0e GRU
with one layer registered the best performance
(MAPE of 0.46629, RMSE of 670.30478, and MAE of
531.85892), while the GRU with two layers recorded
the lowest performance (MAPE of 4.46410, RMSE of
5081.1000, and MAE of 4999.11193). Also, the sec-
ond-best performance is registered by LSTM with
one layer (MAPE of 0.81385, RMSE of 1067.02289,
and MAE of 922.83940).

Figure 2 shows the confirmed cases of COVID-19 in
Egypt for 220 days. 0e figure also shows the real values and
the predicted values that are registered by LSTM. 0e
confirmed cases started below 2000 and have increased
steadily for 220 days to record the highest values in 220 days
at 118432. 0e LSTM with one layer is registered as the best
model; its prediction line is the nearest to the real line.

Figure 3 shows the confirmed cases of COVID-19 in
Egypt for 220 days. 0e figure also shows the real values and
the predicted values that are registered by GRU. 0e con-
firmed cases started below 2000 and have increased steadily
for 220 days to record the highest values in 220 days at
118432. 0e GRU with one layer is registered as the best
model; its line prediction is the nearest to the real line.

3.2.2. Death Cases

(i) Hyperparameter Tuning. 0e best value parameters
for LSTM and GRU for death cases in Egypt are
shown in Table 4.

(ii) 3e Results of DL. Table 5 shows the results of LSTM
and GRU for the death cases in Egypt. 0e LSTM
with one layer registered the best performance

Table 1: 0e value range for hyperparameter.

Parameters 0e values
Dropout rate From 0.1 to 0.9
0e number of neurons From 10 neurons to 500 neurons

4 Complexity



Table 2: 0e best value parameters of DL for confirmed cases in Egypt.

Models No. of layers No. of neurons Dropout

LSTM One layer 390 0.3
Two layers [200, 460] [0.3, 0.2]

GRU One layer 360 0.2
Two layers [320, 190] [0.3, 0.2]

Table 3: 0e result of DL for confirmed cases in Egypt.

Models No. of Layers MAPE RMSE MAE

LSTM One layer 0.81385 1067.02289 922.83940
Two layers 3.90758 4477.69434 4380.06610

GRU One layer 0.46629 670.30478 531.85892
Two layers 4.46410 5081.1000 4999.11193

120000

Co
nf

irm
ed

 ca
se

s

100000

80000

60000

40000

20000

0 50 100
Time in days

150 200

Real values
Predicted values of LSTM (one layer)
Predicted values of LSTM (two layers)

Figure 2: Comparison between real confirmed cases and the predicted confirmed cases for LSTM (Egypt).
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Figure 3: Comparison between real confirmed cases and the predicted confirmed cases for GRU (Egypt).
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(MAPE of 0.44542, RMSE of 29.86051, and MAE of
28.59449), while the GRU with one layer recorded
the lowest performance (MAPE of 3.35898, RMSE of
221.54026, andMAE of 217.90819). Also, the second-
best performance is registered by LSTM with two
layers (MAPE of 2.65719, RMSE of 174.04480, and
MAE of 172.20877).

Figure 4 shows changes in real death rates and the
predicted death rates that are registered by LSTM in Egypt
during 220 days from 1/5/2020 to 6/12/2020.0e death rates
started below 500 and have increased steadily for 220 days to
record the highest values in 220 days at 6771.We can also see
that the two models have predicted values nearest to the real
values, but the best model is the LSTM with one layer.

Figure 5 shows changes in real death rates and the
predicted death rates that are registered by GRU in Egypt
during 220 days from 1/5/2020 to 6/12/2020.0e death rates
started below 500 and have increased steadily for 220 days to
record the highest values in 220 days at 6771.We can also see
that the two models of GRU have predicted values that are
nearest to real values.

3.3. 3e Results of Saudi Arabia. 0is section discusses the
result of applying DL in confirmed cases and death cases
time-series data for Saudi Arabia. Also, it presents the best
value parameters of DL models.

3.3.1. Confirmed Cases

(i) Hyperparameter Tuning. 0e best value parameters
of LSTM and GRU for the confirmed cases in Saudi
Arabia are shown in Table 6.

(ii) 3e Results of DL. Table 7 shows the results of LSTM
andGRU for the confirmed cases in Saudi Arabia.0e
LSTM with one layer registered the best performance
(MAPE of 0.07337, RMSE of 292.78232, and MAE of
259.10709), while the GRU with one layer recorded
the lowest performance (MAPE of 2.62286, RMSE of
9267.03761, andMAEof 9253.56777). GRU registered
the second-best performance with two layers (MAPE

of 0.98515, RMSE of 3505.32098, and MAE of
3478.44134).

Figure 6 shows the confirmed cases of COVID-19 in
Saudi Arabia for 220 days. 0e figure also shows the real
values and the predicted values that are registered by LSTM.
0e confirmed cases started below 24097 and have increased
steadily for 220 days to record the highest values in 220 days
at 358713. 0e LSTM with one layer is registered as the best
model; its prediction line is the nearest to the real line.

Figure 7 shows the confirmed cases of COVID-19 in
Saudi Arabia for 220 days. 0e figure also shows the real
values and the predicted values that are registered by GRU.
0e confirmed cases started below 24097 and have increased
steadily for 220 days to record the highest values in 220 days
at 358713. 0e GRU with two layers is registered as the best
model; its prediction line is the nearest to the real line.

3.3.2. Death Cases

(i) Hyperparameter Tuning. 0e best value parameters
for LSTM and GRU for death cases in Saudi Arabia
are shown in Table 8.

(ii) 3e Results of DL. Table 9 shows the results of LSTM
and GRU for the death cases in Saudi Arabia. 0e
LSTMwith one layer registered the best performance
(MAPE of 0.13875, RMSE of 12.35616, and MAE of
8.07489), while LSTM with two layers recorded the
lowest performance (MAPE of 3.48952, RMSE of
197.16462, and MAE of 197.06171). GRU registered
the second-best performance with two layers (MAPE
of 3.97765, RMSE of 64.71113, and MAE of
52.99585).

Figure 8 illustrates real death rates and the predicted
death rates registered by LSTM in Saudi Arabia during 220
days from 1/5/2020 to 6/12/2020. 0e death rate started
below 168 cases and increased rapidly to reach 5965 in 220
days. 0e figure also shows that the best model is LSTMwith
one layer, where its line (the red line) is the nearest to the
original line.

Figure 9 illustrates real death rates and the predicted
death rates registered by GRU in Saudi Arabia during 220

Table 4: 0e best value parameters of DL for death cases in Egypt.

Models No. of layers No. of neurons Dropout

LSTM One layer 380 0.2
Two layers [230, 490] [0.5, 0.3]

GRU One layer 200 0.3
Two layers [140, 240] [0.3, 0.2]

Table 5: 0e results of DL for death cases in Egypt.

Models No. of layers MAPE RMSE MAE

LSTM One layer 0.44542 29.86051 28.59449
Two layers 2.65719 174.04480 172.20877

GRU One layer 3.35898 221.54026 217.90819
Two layers 3.24256 213.06732 210.24962
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Figure 4: Comparison between real death cases and the predicted death cases for LSTM (Egypt).
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Figure 5: Comparison between real death cases and the predicted death cases for GRU (Egypt).

Table 6: 0e best value parameters of DL for the confirmed cases in Saudi Arabia.

Models No. of layers No. of neurons Dropout

LSTM One layer 130 0.2
Two layers [460, 330] [0.3, 0.3]

GRU One layer 280 0.3
Two layers [190, 390] [0.3, 0.4]

Table 7: 0e results of DL for the confirmed cases in Saudi Arabia.

Models No. of layers MAPE RMSE MAE

LSTM One layer 0.07337 292.78232 259.10709
Two layers 1.82578 6454.14155 6441.88022

GRU One layer 2.62286 9267.03761 9253.56777
Two layers 0.98515 3505.32098 3478.44134
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Figure 6: Comparison between real confirmed cases and the predicted confirmed cases for LSTM (Saudi Arabia).
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Figure 7: Comparison between real confirmed cases and the predicted confirmed cases for GRU (Saudi Arabia).

Table 8: 0e best value parameters of DL for death cases in Saudi Arabia.

Models No. of layers No. of neurons Dropout

LSTM One layer 330 0.4
Two layers [400, 240] [0.3, 0.3]

GRU One layer 360 0.3
Two layers [330, 430] [0.4, 0.3]

Table 9: 0e results of DL for death cases in Saudi Arabia.

Models No. of layers MAPE RMSE MAE

LSTM One layer 0.13875 12.35616 8.07489
Two layers 3.48952 197.16462 197.06171

GRU One layer 3.27710 188.98867 186.14481
Two layers 3.97765 64.71113 52.99585
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days from 1/5/2020 to 6/12/2020. 0e death rates started
below 168 cases and increased rapidly to reach 5965 in days
220. 0e figure also shows that the best model is GRU with
two layers, where its line (the green line) is the nearest to the
original line.

3.4.3eResults ofKuwait. 0is section discusses the result of
applying DL in confirmed cases and death cases time-series
data in Kuwait. Also, it presents the best value parameters of
DL models.

3.4.1. Confirmed Cases

(i) Hyperparameter Tuning. 0e best value parameters
for LSTM and GRU for confirmed cases in Kuwait
are shown in Table 10.

(ii) 3e Results of DL. Table 11 shows the results of
LSTM and GRU for the confirmed cases in Kuwait.

0e GRU with two layers registered the best per-
formance (MAPE of 0.73056, RMSE of 1150.09990,
and MAE of 957.22111), while the GRU with one
layer recorded the lowest performance (MAPE of
5.38244, RMSE of 7345.07808, and MAE of
7297.40818). LSTM registered the second-best per-
formance with one layer (MAPE of 0.90842, RMSE
of 1420.72388, and MAE of 1187.80330).

Figure 10 shows the confirmed cases of COVID-19 in
Kuwait for 220 days. 0e figure also shows the real values
and the predicted values that are registered by LSTM. 0e
confirmed cases started below 4377 and have increased
steadily during 220 days to record the highest values in 220
days at 144369. 0e two models are registered as the best
models; their line is the nearest to the real line.

Figure 11 shows the confirmed cases of COVID-19 in
Kuwait for 220 days. 0e figure also shows the real values
and the predicted values that are registered by GRU. 0e
confirmed cases started below 4377 and have increased
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Figure 8: Comparison between real death cases and the predicted death cases for LSTM (Saudi Arabia).
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Table 10: 0e best value parameters of DL for confirmed cases in Kuwait.

Models No. of layers No. of Neurons Dropout

LSTM One layer 150 0.2
Two layers [170, 460] [0.3, 0.3]

GRU One layer 360 0.3
Two layers [470, 250] [0.4, 0.3]

Table 11: 0e results of DL for confirmed cases in Kuwait.

Models No. of layers MAPE RMSE MAE

LSTM One layer 0.90842 1420.72388 1187.80330
Two layers 2.10001 2854.74525 2816.86537

GRU One layer 5.38244 7345.07808 7297.40818
Two layers 0.73056 1150.09990 957.22111
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Figure 10: Comparison between real confirmed cases and the predicted confirmed cases for LSTM (Kuwait).
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Figure 11: Comparison between real confirmed cases and the predicted confirmed cases for GRU (Kuwait).

10 Complexity



Table 12: 0e best value parameters of DL for death cases in Kuwait.

Models No. of layers No. of neurons Dropout

LSTM One layer 470 0.2
Two layers [340, 190] [0.4, 0.3]

GRU One layer 450 0.3
Two layers [440, 310] [0.5, 0.3]

Table 13: 0e results of DL for death cases in Kuwait.

Models No. of layers MAPE RMSE MAE

LSTM One layer 2.56185 23.75479 21.74834
Two layers 1.28359 11.08447 10.55966

GRU One layer 3.52966 29.53712 29.40379
Two layers 2.22638 18.65710 18.44505
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Figure 12: Comparison between real death cases and the predicted death cases for LSTM (Kuwait).
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Figure 13: Comparison between real death cases and the predicted death cases for GRU (Kuwait).
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steadily during 220 days to record the highest values in 220
days at 144369. 0e GRU with two layers is registered as the
best model; its line is the nearest to the real line.

3.4.2. Death Cases

(i) Hyperparameter Tuning. 0e best value parameters
of LSTM and GRU for death cases in Kuwait are
shown in Table 12.

(ii) 3e Results of DL. Table 13 shows the results of
LSTM and GRU for the death cases in Kuwait. 0e
LSTM with two layers registered the best perfor-
mance (MAPE of 1.28359, RMSE of 11.08447, and
MAE of 10.55966), while GRU with one layer
recorded the lowest performance (MAPE of 3.52966,
RMSE of 29.53712, and MAE of 29.40379). GRU
registered the second-best performance with two
layers (MAPE of 2.22638, RMSE of 18.65710, and
MAE of 18.44505).

Figure 12 shows changes in real death rates and the
predicted death rates registered by LSTM in Kuwait during
220 days from 1/5/2020 to 6/12/2020.0e death rates started
below 30 and have increased steadily to record the highest
values in 220 days at 891. We can also see that the line of
LSTM with two layers is the nearest to line of real values.

Figure 13 shows changes in real death rates and the
predicted death rates registered by GRU in Kuwait during
220 days from 1/5/2020 to 6/12/2020.0e death rates started
below 30 and have increased steadily to record the highest
values in 220 days at 891. We can also see that the line of
GRU with two layers is the nearest to the line of real values.

4. Conclusion

0is paper proposed a system to forecast the confirmed cases
and death cases of COVID-19 in three countries: Egypt,
Saudi Arabia, and Kuwait. 0e proposed system consists of
five stages: data collection, data preprocessing, data splitting,
model training optimization, and model evaluation. 0e six
time-series datasets have been divided into 80% training
dataset and 20% testing dataset. Two deep learning models,
LSTM and GRU, have been optimized and trained using a
training dataset. Both models have been evaluated using
three measures, including MAE, MAPE, and RMSE, using a
testing dataset. 0e results show that LSTM has achieved the
best performance in the confirmed cases for three countries,
and GRU has achieved the best performance in death cases
for Egypt and Kuwait.
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