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*ere are three main problems in track fastener defect detection based on image: (1) *e number of abnormal fastener pictures is
scarce, and supervised learning detectionmodel is difficult to establish. (2)*e potential data features obtained by different feature
extraction methods are different. Some methods focus on edge features, and some methods focus on texture features. Different
features have different detection capabilities, and these features are not effectively fused and utilized. (3)*e detection of the track
fastener clip will be interfered by the track fastener bolt subimage. Aiming at the above three problems, a method for track fastener
defects detection based on Local Deep Feature Fusion Network (LDFFN) is proposed. Firstly, the track fastener image seg-
mentationmethod is used to obtain the track fastener clip subimage, which can effectively reduce the interference of bolt subimage
features on the track fastener clip detection. Secondly, the edge features and texture features of track fastener clip subimages are
extracted by Autoencoder (AE) and Restricted Boltzmann Machine (RBM), and the features are fused. Finally, the similarity
measurement method Mahalanobis Distance (MD) is used to detect defects in track fasteners. *e effectiveness of the proposed
method is verified by real Pandrol track fastener images.

1. Introduction

With the continuous growth of the world economy, railway
transportation plays a more and more important role in the
economic lifeline. In order to meet the growing demand for
economic development, railway construction has also in-
creased year by year. Railway track is composed of several
key parts, such as sleeper, rail, and fastener. As the con-
necting part of fixed track and sleeper, track fastener is an
important part to ensure the safety of railway operation.
Huge safety risks and even major accidents were caused by
the defective track fasteners, such as breaks or missing.
Defective track fastener is caused by the contact friction and
vibration impact between the hub and the track, as well as
the impact of the natural environment [1, 2].

At present, the state of track fasteners is mainly detected
by manual inspection. Manual inspection method is inef-
ficient, and many uncontrollable risk factors may be caused
by manual inspection, such as missed inspection and false
inspection. With the rapid development of automation

technology [3–6], manual inspection has been difficult to
adapt to the rapid development of track transit. *e in-
spection of track traffic needs to be automated. Automating
the track fastener detection technology [7, 8] is significant to
track operation and maintenance. However, the existing
track fastener defect detection methods are limited, and the
detection accuracy is low.

In recent years, with the rapid development of artificial
intelligence technology [9, 10], image processing methods
based on deep learning have become a research hotspot
[11–13]. Deep learning networks have achieved important
research results in image classification [14, 15]. *e defect
detection method of track fastener based on deep learning
avoids complicated feature extraction. *e manual design
and selection of image features are replaced by automatic
extraction of image features by computer. *e deep learning
network automatically learns the pattern recognition system
of features from the data set, and the information in the
image can be extracted more comprehensively [16]. Al-
though the feature extraction of deep learning is shown to be
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far superior to traditional “artificial design features,” the
existing track fastener defect detection network based on
deep learning is a supervised network, and a large amount of
labeled sample data is required for a supervised network. For
example, when using convolutional neural networks to
detect defects in track fasteners [17], a large number of
labeled training sample images are required. However, the
actual situation is that the number of abnormal samples of
track fastener is rare, which is limited for the establishment
of supervised learning model.

Because the supervised network is limited by the number
of abnormal fastener images, it is difficult to establish, so the
unsupervised network is adopted. However, different deep
learning networks have different structure and depth. With
different deep learning networks, the features of track fas-
tener image are extracted differently, and the detection
ability of different features is also different. *e feature
information of track fastener image extracted by single
network is not comprehensive enough, and the feature in-
formation of track fastener image cannot be used well. For
example, the edge feature of the track fastener image is
extracted [18–20]. Edge feature is an important feature of
image, and image edge is the discontinuity of image features
such as pixel gray distribution. Image edge is the set of pixels
whose characteristics around the image change step or ridge.
*e edge extraction is mainly to retain the sharply changed
area of the image, and the contour edge of the track fastener
can be obtained. *e edge contour feature of the track
fastener image is helpful to distinguish the state of track
fastener loss and track fastener clip loosening. *e texture
feature of track fastener is extracted [21–23]. *e image
texture feature is a global feature, and the visual features of
homogeneity in the image are reflected. *e arrangement
properties of the surface structure of the object surface with
slow or periodic changes are reflected. *e texture feature
can effectively represent the clip detail feature of track
fastener image, and the clip detail feature of track fastener
image is helpful to identify the fracture state of track fastener
clip. *ese features are not well integrated and utilized at the
same time, and the feature information of track fastener
image is not fully expressed, which leads to a high rate of
missing alarm in track fastener defect detection [24–26].

Because, for Pandrol fasteners, the track fastener picture
is composed of the track fastener clip subimage and the track
fastener bolt subimage, the defect of the track fastener is
mainly determined by the state of the track fastener clip
subimage.When the deep learning network is used to extract
the full image feature, the bolt subimage feature in the image
will also be extracted into the discriminant feature, which
will interfere with the detection of track fastener defects.

*erefore, in view of the above-mentioned problems in
the detection of track fastener defects: the number of ab-
normal samples of track fastener images is sparse; image
features are not fully utilized; and track fastener detection is
interfered by the feature of track fastener bolt subimage. A
method that is based on LDFFN to detect the Pandrol track
fastener defects is proposed. Firstly, the Pandrol track fas-
tener picture is segmented by the automatic segmentation
algorithm of track fastener pictures. *e bolt information in

the picture is removed to obtain the track fastener clip
subpicture, so as to avoid the interference of the bolt sub-
graph feature on the track fastener defect detection. Sec-
ondly, AE [27, 28] and RBM [29, 30] are used to extract clip
subimage features of track fastener, because AE focuses on
edge feature for extracting subimage features of track fas-
tener clip [31], while RBM focuses on texture feature
[32, 33]. Considering that the edge feature is advantageous
for detecting the state of track fastener loss and track fastener
clip loosening, the texture feature is advantageous for
detecting the broken state of the track fastener clip.
*erefore, the subimage features of the track fasteners
extracted by AE and RBM are fused to obtain the locally
deeply integrated track fastener features [34]. Finally, the
similarity measurement method MD [35] is used to detect
the status of track fasteners. *e image features of track
fastener can be fully extracted by unsupervised LDFFN, the
interference of bolt diagram of track fastener on defect
detection of track fastener can be avoided, and the problem
that the number of abnormal images of track fastener is rare
can be solved.

*e second part of this article briefly introduces two deep
learning networks, AE and RBM.*e third part describes the
proposed defect detection method of track fasteners based
on LDFFN. *e fourth part verifies the effectiveness of the
LDFFN-based track fastener defect detection method
through experimental comparative analysis. *e fifth part
summarizes and prospects the full text.

2. Neural Network

2.1. AE. AE is an unsupervised neural network model that
can learn the hidden features of the input data, which is
called encoding. At the same time, the original input data
can be reconstructed with the learned new features, which is
called decoding [36]. From an intuitive point of view, AE can
be used for feature dimensionality reduction, similar to
principal component analysis but more compared to the
performance of principal component analysis, which is due
to the fact that AE has stronger nonlinear feature extraction
capabilities. *e main structure of AE is shown in Figure 1.

X is represented as the input of AE encodes, H is
represented as the new feature, and X′ is represented as the
output of AE decodes.

*e encoding process is as follows:

H � f(WX + b). (1)

*e decoding process is as follows:

X′ � g W′H + d( , (2)

where f and g are represented as activation functions of the
encoding network and the decoding network, respectively;
{W, b} and {W′, d} are represented as the connection weights
and biases corresponding to the network. Usually, W′ � WT,
and θ � W, b, d{ } is represented as the parameter of AE.
When S � [X(j)]

N

i�1 is represented as the sample data set, the
overall loss function of AE is
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JAE(θ) � 
x∈S

L(X, g(f(X))), (3)

where L(X, g(f(X))) is represented as the reconstruction
error function and L(X, g(f(X))) is determined by func-
tions f and g. By calculating the minimum value of JAE(θ),
the parameter θ of the AE neural network can be solved.

2.2. RBM. Boltzmann machines are a large class of neural
network models, but the most used model in practical ap-
plications is RBM.*e RBMmodel itself is very simple, just a
two-layer neural network. *e main structure of RBM is
shown in Figure 2.

(v1, v2, . . . , vm) is represented as the RBM network
visible nodes. (h1, h2, . . . , hn) is represented as the RBM
network hidden nodes. Each visible node is only related to n

hidden nodes and is independent of other visible nodes.*at
is, the state of this visible node is only affected by the in-
fluence of nhidden nodes. For each hidden node, it is only
affected by m visible nodes. a � (a1, a2, . . . , am) is repre-
sented as the offset of the visible node. b � (b1, b2, . . . , bn) is
represented as the offset of the hidden node.

3. Defect Detection Method of Track Fasteners
Based on LDFFN

3.1. Automatic Segmentation of Track Fastener Pictures.
*e Pandrol track fastener image is composed of the track
fastener clip subgraph and the track fastener bolt subgraph.
Normally, if the fastener bolt is damaged, it will not be reflected
in the image, and the damage of the fastener clip will be reflected
in the image. Track fastener defect detectionwill be disturbed by
the track fastener bolt which is not damaged. In this paper, in
order to reduce the interference of track fastener bolts, the
image of track fastener will be automatically segmented.

In the first step, the input image is grayscale processed
[37]. Because the color image data of track fasteners is
relatively large, the calculation is time-consuming. *e
grading empirical formula is expressed as follows:

Gray(x, y) � 0.299∗Red(x, y) + 0.587∗Green(x, y)

+ 0.114∗Blue(x, y),

(4)

where Red(x, y) is represented as pixels in the red channel.
Green(x, y) is represented as pixels in the green channel.
Blue(x, y) is represented as pixels in the blue channel.

In the second step, histogram equalization is performed
on the gray image [38]. *e contrast and detail of the image
are improved.

px(i) � p(x � i) �
ni

n
, (0≤ i≤L − 1), (5)

where n is represented as the number of pixels in the image,
ni is represented as the number of pixels in each gray level of
the original image, L is represented as the number of gray
levels of the original image, and px(i) is the probability of
occurrence of a pixel of gray i in the image. Equation (6) is
cumulative normalization.

cdfx(i) � 
i

j�0
px(j), (0≤ i≤ L − 1), (6)

g(i) � round 255 × cdfx(i)( , (0≤ i≤L − 1), (7)

where cdfx(i) is represented as the cumulative distribution
probability, round indicates that the number is rounded, L is
represented as the number of gray levels of the original
image, 255 represents the maximum gray level after histo-
gram equalization, and g(i) represents the pixel value of the
pixel histogram whose gray level is i in the original image
after equalization.

In the third step, the gray image is denoised by Gaussian
filtering [39]. Image noise can be removed by Gaussian filter.
Gaussian filter denoising can keep the edge of the image well,
and more of the overall gray distribution characteristics of
the image can be preserved.

In the fourth step, a sample image is made for the
subimage of track fastener clip. *ereafter, grayscale,
grayscale histogram equalization, and Gaussian filtering are
performed on the sample picture.

In the fifth step, find the location of the track fastener clip
subimage in the track fastener image. *e most similar place
with the track fastener clip subgraph sample is the target
area. *e normalized correlation coefficient [40] is used to
locate the best similar region, and the subimage of track
fastener clip is segmented.

3.2. Track Fastener Defect Detection Based on LDFFN.
Firstly, AE and RBM are used to extract the image features of
the training set of track fastener clip subgraph. *en the AE

Original
input Encoder Compressed

representation Decoder Reconstructed
output

Figure 1: AE structure diagram.
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Figure 2: RBM structure diagram.
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extracted features and RBM extracted features are combined
in series, and MD is used to detect the track fastener defects.

MD is used to measure the distance between a sample
point X and a set of data distribution D. X is represented as a
sample point. D is represented as the set of data. u is rep-
resented as the mean value of D. v is represented as the
covariance of D. *en the MD between the sample and the
set is

DM(X, u) �

����������������

(X − u)
T
v

−1
(X − u)



. (8)

*e covariance matrix, inverse matrix, and mean vector
of training set are calculated, and then MD is calculated. *e
maximum value of the training set MD is selected as the
detection threshold, and the image to be tested is processed
in the same way to calculate the MD. If MD is less than or
equal to the threshold value, the test image is judged as
normal fastener, and if MD is greater than the threshold
value, the test image is judged as abnormal fastener.

Flow chart of detection of defects in Pandrol track
fasteners based on LDFFN is shown in Figure 3.*e first part
is to import the training set of track fastener image. Firstly,
the track fastener image is segmented by the automatic
segmentation algorithm of track fastener image to obtain the
track fastener clip subgraph. Secondly, AE and RBM are
used to extract the subimage features of track fastener clip,
and then the extracted subimage features of track fastener
clip are fused. Finally, MD of fusion features is calculated,
MD of training set is selected as threshold of detection
image, and feature fusion network model is saved after
training. *e second part is the test part. Firstly, the test
image of track fastener image is imported. Secondly, the
training set image is segmented by the automatic segmen-
tation algorithm of track fastener image, and the training set
image of track fastener clip subimage is obtained. Finally,
through the trained feature fusion network model, the MD
of each image to be tested is calculated to determine the
status of track fastener image. If the calculated MD is less
than or equal to the threshold value, the tested track fastener
image is judged as normal track fastener image. If the cal-
culated MD is greater than the threshold value, the tested
track fastener image is judged as abnormal track fastener
image.

4. Experiments and Applications

4.1. Data Set. *e picture of track fasteners in this article
comes from the Shijiazhuang-Taiyuan high-speed rail line,
called Pandrol fasteners. *e state of common Pandrol track
fasteners is shown in Figure 4, where (a) is the image of
normal track fasteners; (b) is the image of broken track
fastener; (c) is the image of loose track fastener.

A total of 1064 pictures and 84 pictures of normal and
abnormal track fasteners, respectively, on Pandrol are
presented. Among them, there are 542 left fasteners for the
normal track, 42 left fasteners for the abnormal track, 522
right fasteners for the normal track, and 42 right fasteners
for the abnormal track. In this paper, the detection indexes
in reference are cited for comparison of detection efficiency.

(1) Segmentation rate (SR): NO is represented as the
number of original images, and NS is represented as
the number of pictures successfully segmented [41].

SR �
N

S

N
O

× 100%. (9)

(2) False alarm rate (FAR), missed alarm rate (MAR),
and error rate (ER): DA

A indicates that the abnormal
track fastener detection result is abnormal; DN

A in-
dicates that the abnormal track fastener test result is
normal; DN

N indicates that the normal track fastener
test result is normal; DA

N indicates that the normal
track fastener test result is abnormal [41].

FAR �
D

A
N

D
N
N + D

A
N

× 100%,

MAR �
D

N
A

D
A
A + D

N
A

× 100%,

ER �
D

A
N + D

N
A

D
N
N + D

A
N + D

A
A + D

N
A

× 100%.

(10)

4.2. Experimental Process and Results

4.2.1. Reconstruction of Picture Features of Track Fasteners.
Feature reconstruction images of track fastener are shown in
Figure 5. (a) is the reconstruction image of track fastener
image extracted by AE, and (b) is the image feature re-
construction map of track fastener extracted by RBM. *e
edge feature of track fastener contour can be better extracted
by AE, and the internal texture feature of track fastener can
be better extracted by RBM. *erefore, the image extracted
by AE and RBM is fused in this paper. Edge features and
texture features are included in the fusion features. *e
fusion features can fully express the information in the
image, and track fastener defects are more conducive to be
detected.

4.2.2. Defect Detection Results of Pandrol Track Fasteners
Based on Deep Feature Fusion Network (DFFN). Based on
the DFFN-based Pandrol track fastener defect detection
method, the image features of the track fastener are extracted
through AE and RBM, the extracted full-image features are
feature-fused, and then the state of the track fastener is
detected by MD.

*ere are 542 normal left track fasteners and 42 ab-
normal left track fasteners. Among them, 300 normal left
track fastener pictures are randomly selected to train the
network, and the remaining left track fastener pictures are
used for detection.*ere are 522 normal right track fasteners
and 42 abnormal right track fasteners. Among them, 300
normal right track fastener pictures are randomly selected to
train the network, and the remaining right track fastener
pictures are used for detection.

4 Complexity



(a) (b) (c)

Figure 4: Common track fastener status. (a) *e image of normal track fasteners. (b) *e image of broken track fastener. (c) *e image of
loose track fastener.
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Figure 3: Flow chart of detection of defects in Pandrol track fasteners based on LDFFN.
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For AE extraction of track fastener image features, two
coding layers and two decoding layers are designed in AE
network.When encoding, the image dimension is reduced to
256 dimensions. *rough the first coding layer, the ReLU
activation function is used to output 128 dimensions;
through the second coding layer, the ReLU activation
function is used to output 64 dimensions; and then the
output of the second encoding is used as the input of
decoding.*e 256-dimensional image features are output by
two decoding layers. Training AE model, set the training
cycle to 100 and the bit size to 100 and save the model. When
RBM is used to extract the image features of track fastener,
RBM is called directly, and the training period is set to 100
and the bit size is 100.*en, the track fastener image features
extracted by AE and the track fastener image features
extracted by RBM are fused in serial, and the covariance
matrix, inverse matrix of covariance matrix, and mean
vector of training set are calculated, and then MD is
calculated.

*e defects detection results of Pandrol track fasteners
based on DFFN are shown in Table 1. For Pandrol track
fastener, the track fastener defect detection method based on
AE or RBM extraction track fastener image features has high
error rate and missing alarm rate. *e false alarm rate and
error rate of track fastener defect detection are effectively
reduced by DFFN that combines AE and RBM. It shows that
the image features of track fasteners extracted by AE and
RBM are merged, and the image edge features and texture
features are used at the same time, which is more conducive
to the detection of track fastener defects.*e performance of
track fastener defect detection has been improved.

4.2.3. Verification of Feature Interference of Bolt Subgraph of
Pandrol Track Fastener. *e abnormal pictures detected in
DFFN test pictures are displayed, and some pictures are
normal. DFFN detects normal pictures as abnormal pictures.
In order to find out the reason, the automatic segmentation
algorithm of track fastener image is used to segment the

image, and only the track fastener clip subimage is used for
detection. *e result shows that the same picture of track
fasteners is an abnormal picture when the full picture is used
for detection. *e test result is a normal picture when only
the track fasteners clip subimage is used for testing. In fact,
the detected picture is a normal track fastener image. *e
results show that the defect detection of track fasteners is
interfered by the features of the bolt subgraphs of track
fasteners. *e characteristic interference verification dia-
gram of the bolt subgraph of the Pandrol track fastener is
shown in Figure 6.

4.2.4. Experimental Results of Automatic Segmentation of
Pandrol Track Fastener Pictures. *e input image of track
fastener is processed by gray processing, gray histogram
equalization, and Gaussian filtering, and the normalized
correlation coefficient is used to locate the clip area of the
track fastener and segment it.

*e segmentation results of the Pandrol track fastener
pictures are shown in Table 2.*e experiment was compared
and analyzed. Experiments show that it is better to segment
the picture after grayscale, histogram equalization, and
Gaussian filtering. Pictures that are unsuccessfully seg-
mented are defined as false alarm image in track fastener
detection and counted in the detection false alarm rate.

4.2.5. Defect Detection Results of Pandrol Track Fasteners
Based on LDFFN. For the left and right fasteners, 300
normal track fastener clip subimages were used for training,
and the remaining clip subimages were used for detection.
*e data set is the same as DFFN.

*e defect detection results of Pandrol track fasteners
based on LDFFN are shown in Table 3. For the track fastener
of Pandrol, the false alarm rate and error rate of track
fastener defect detection method based on LDFFN are ef-
fectively reduced compared with the track fastener defect
detection method based on DFFN. It is proved that the
defect detection of track fasteners is interfered by the

(a) (b)

Figure 5: Image feature reconstruction of track fasteners. (a) Image feature reconstruction extracted by AE. (b) Image feature recon-
struction extracted by RBM.
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features of the bolt subimages of track fasteners. *e track
fastener clip subimage obtained by the automatic segmen-
tation algorithm of track fastener images is used for track
fastener defect detection, which can effectively reduce the
false alarm rate and error rate of detection.*e performance
of track fastener defect detection has been improved. *e
validity of Pandrol track fastener defects based on LDFFN is
verified by experiments.

5. Conclusion

In this paper, a defect detection method for track fastener
of Pandrol based on LDFFN is proposed. Firstly, the clip
subgraph of track fasteners is obtained through the au-
tomatic segmentation algorithm of track fastener images.
Secondly, through AE and RBM, the edge feature and

texture feature of the track fastener clip subimage are
extracted, respectively, and the extracted track fastener clip
subimage features are fused. Finally, the similarity mea-
surement method MD is used to detect the status of track
fasteners. *e problem that the feature of track fastener
bolt subimage interferes with the detection of track fas-
tener defects and the problem of the sparse number of
abnormal image samples of track fasteners are solved by
the Pandrol track fastener defect detection method based
on LDFFN. Moreover, the deep fusion features include
both the edge feature and texture feature of the image. *e
full expression of the image feature makes the track fas-
tener defect more conducive to be detected. *e experi-
mental results verify the effectiveness of the proposed
LDFFN-based method for detecting defects in Pandrol
track fasteners.

The test result is ‘Normal’

Bolts are interference features

A ‘Normal’ state track fastener picture

The test result is ‘Abnormal’

Figure 6: *e characteristic interference verification diagram of the bolt subgraph of the Pandrol track fastener.

Table 2: Track fastener pictures automatic segmentation results.

Image processing method NO (piece) NS (piece) SR (%)
Original 1064 1012 95.11
Grayscale 1064 1037 97.46
Grayscale + histogram equalization 1064 1052 98.87
Grayscale + histogram equalization +Gaussian filtering 1064 1062 99.81

Table 3: Defect detection results of Pandrol track fasteners based on LDFFN.

Track fastener Detection method DN
N (piece) DA

N (piece) DA
A (piece) DN

A (piece) FAR (%) MAR (%) ER (%)

Left track fastener DFFN 212 30 42 0 12.40 0 10.56
LDFFN 231 11 42 0 4.55 0 3.87

Right track fastener DFFN 193 29 42 0 13.06 0 10.98
LDFFN 213 9 42 0 4.05 0 3.41

Table 1: Defects detection results of Pandrol track fasteners based on DFFN.

Track fastener Detection method DN
N (piece) DA

N (piece) DA
A (piece) DN

A (piece) FAR (%) MAR (%) ER (%)

Left track fastener
AE 214 28 38 3 11.57 7.14 10.92
RBM 212 30 37 5 12.40 11.90 12.32
DFFN 212 30 42 0 12.40 0 10.56

Right track fastener
AE 197 26 39 4 11.26 9.52 11.36
RBM 194 28 37 5 12.61 11.90 12.50
DFFN 193 29 42 0 13.06 0 10.98
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When the defect detection of track fastener is carried out
through the track fastener picture, the information of the
bolt subpicture of track fastener is not effectively used, and
whether the bolt is loose cannot be detected. In the future,
the research will attempt to detect the track fastener bolts by
other detection methods, so that the information of the track
fastener bolts can be effectively used.
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