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Slagging-off (i.e., slag removal) is an important preprocessing operation of steel-making to improve the purity of iron. Current
manual-operated slag removal schemes are inefficient and labor-intensive. Automatic slagging-off is desirable but challenging as
the reliable recognition of iron and slag is difficult. (is work focuses on realizing an efficient and accurate recognition algorithm
of iron and slag, which is conducive to realize automatic slagging-off operation. Motivated by the recent success of deep learning
techniques in smart manufacturing, we introduce deep learningmethods to this field for the first time.(emonotonous gray value
of industry images, poor image quality, and nonrigid feature of iron and slag challenge the existing fully convolutional networks
(FCNs). To this end, we propose a novel spatial and feature graph convolutional network (SFGCN) module. SFGCN module can
be easily inserted in FCNs to improve the reasoning ability of global contextual information, which is helpful to enhance the
segmentation accuracy of small objects and isolated areas. To verify the validity of the SFGCN module, we create an industrial
dataset and conduct extensive experiments. Finally, the results show that our SFGCN module brings a consistent performance
boost for a wide range of FCNs. Moreover, by adopting a lightweight network as backbone, our method achieves real-time iron
and slag segmentation. In the future work, we will dedicate our efforts to the weakly supervised learning for quick annotation of
big data stream to improve the generalization ability of current models.

1. Introduction

Slagging-off is an essential operation in steel-making. It is
used to remove high sulfur slag frommolten iron to improve
the purity of iron. (e process of slagging-off is shown in
Figure 1(a) and the actual image obtained by video capture is
shown in Figure 1(b). In this process, molten iron is in-
evitably brought out, and the loss of molten iron is directly
proportional to the clean rate of slagging-off. Meanwhile,
slagging-off operation will be accompanied by the decrease
of molten iron temperature. (erefore, accuracy and effi-
ciency are two key factors of slagging-off operation, which
are directly related to production energy consumption. At

present, manual operation of machinery for slag removal is a
commonly employed scheme in industrial applications.
However, affected by the long-term strong light and dense
smoke condition, it can easily lead to misidentification and
misoperation. Besides, manual operation is inefficient. With
the introduction of Industry 4.0 paradigm, the trend is
moving towards to intelligent production line, where au-
tomatic slagging-off will benefit the modern smart
manufacturing greatly.

Recognition of iron and slag is the premise of automatic
slagging-off operation. We formulate this problem as a
semantic segmentation task, which is a fundamental
problem of computer vision and aims to assign categories for
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each pixel in an image. Many classical machine vision
methods have been proposed for image segmentation.
However, themonotonous gray value of industry images and
poor image quality caused by strong light and dense smoke
condition challenge the performance of traditional com-
puter vision algorithms. As far as the task of iron and slag
segmentation is concerned, results of some traditional al-
gorithms including K-means, Markov random field, and
mean shift are shown in Figure 2, which are obviously
cannot meet the requirement of industrial application.
Currently, the state-of-the-art methods for segmentation
mainly based on fully convolutional networks (FCNs) are
used [1]. However, only modeling local correlation with
convolutional operations, FCNs are not effective to reason
relation between distant regions with arbitrary shape
without stacking multiple convolution layers. To tackle this
problem, many algorithms have been proposed to expand
the receptive field of FCNs to capture long-range contextual
information in the scene. Dilated convolution has been
implemented to capture large objects, thus introducing
another problem that small objects may be ignored. Another
research direction is fusing multiscale features [2], which is
inefficient. Recently, self-attention mechanism-based
methods [3] make use of affinity matrix to model the relation
between each spatial position and its neighborhoods.
However, the memory and computational requirements of
large affinitymatrix prevent the application of these methods
for high-resolution image segmentation application, such as
the iron and slag segmentation with a resolution of
1920 × 1080.

(e monotonous gray value of industry images, poor
image quality, and irregular and scattered shape of slag also
challenge the existing FCNs. Graph convolution is an effi-
cient and effective operation to model global contextual
information over regions in a single layer, which has been
widely employed in recent scene understanding works [4, 5].

Motivated by these works, we propose an effective and ef-
ficient spatial and feature graph convolutional network
(SFGCN) module based on graph convolution. Different
from previous works, our SFGCN module makes use of
latent interaction space to efficiently perform global rea-
soning function. Our SFGCNmodule consists of two parallel
branches to project feature maps to latent spatial space and
feature space, respectively. (en, graph convolutions are
employed to perform relation reasoning. After graph rea-
soning, the updated information is reprojected back into the
original coordinate space for further information extraction.
Extensive experiments prove that our SFGCN module can
consistently improve the performance of current main-
stream convolutional neural network backbones for iron and
slag segmentation.

Our contributions can be summarized as follows:

(1) We formulate the slagging-off problem as an image-
based semantic segmentation task and explore deep
learning methods to tackle the automatic iron and
slag recognition task for the first time.

(2) Considering the limitation of convolution operations
for modeling local correlation, we propose a SFGCN
module to effectively reason global information in-
teraction via weighted spatial graph convolution and
feature graph convolution branches. (e proposed
network is termed as SFGCNet.

(3) We establish an industrial slagging-off dataset and
conduct extensive experiments, and the results show
that our SFGCN module brings consistent perfor-
mance improvement for a wide range of network
backbones for iron and slag segmentation. More-
over, taking a lightweight network as backbone, our
method is able to achieve real-time segmentation of
iron and slag.
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Figure 1: (a)(e process of slagging-off.(e operator obtains real-time images of the iron ladle through the video camera and operates the
slag skimmer to move the slag to the slag container. When the slag is less or dispersed, the blowing equipment will blow nitrogen to
polymerize the slag. During this process, it is necessary to avoid the collision between the blowing equipment, the inner wall of the iron ladle,
and the robotic arm. (b) (e image of actual slagging-off operation working condition from video capture.
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2. Related Work

Fully convolutional networks (FCNs) have made great
progress in semantic segmentation [1,6]. (ere are many
variants to improve the performance of segmentation; we
briefly review several main research directions in scene
understanding domain, including network architecture
implementation, global context reasoning, and graph-based
reasoning.

2.1. Network Architecture Implementation. Atrous Spatial
Pyramid Pooling (ASPP) has been proposed and employed
in Deeplabv2, v3 [7] to integrate multiscale contextual in-
formation, which contains multiple parallel dilated convo-
lutions with different dilated rates. A variety of encoder-
decoder structures have been implemented to obtain ef-
fective usage of midlevel and high-level extracted features
[8, 9]. PSPNet [2] builds a novel pyramid pooling module to
get multiscale contextual prior knowledge. DenseASPP [10]
embeds multiscale features to expand the receptive field of
convolution layers for segmentation task. All these methods
effectively stack multiple convolution layers to collect
multiscale information.

2.2. Global Context Reasoning. Many methods have been
proposed to overcome the limitation that convolution layers
are difficult to capture global context, such as self-attention
mechanism and nonlocal networks. Self-attention mecha-
nism is firstly proposed in [11] to model long-range de-
pendencies for machine translation task and has been widely
applied in many tasks in recent years [12]. PSANet [13]
captures pixel-wise relation by applying attention module in
spatial dimension. EncNet [14] and DFN [15] apply atten-
tion module along the channel dimension of the feature map
to account for global context. DANet [16] uses attention
module in both spatial and channel dimensions. Nonlocal
networks [3, 17] aim to deliver long-range information from
one position to another.

2.3. Graph-Based Reasoning. Graph-based reasoning pro-
vides an efficient idea of global context reasoning. Random
walk and conditional random field (CRF) networks have
been proposed based on graph for efficient image seg-
mentation and classification. Recently, graph convolutional

networks (GCNs) have been proposed for semisupervised
image classification. Wang et al. [18] apply GCN to capture
global contextual relation in video recognition task. Chen
et al. [4] explore GCN to reason global relation in semantic
segmentation task. Yan et al. introduce GCN to describe
skeleton connections for action recognition [19, 20]. Fol-
lowing these methods, we propose a novel dual GCNmodule
consists of spatial graph convolution and feature graph
convolution to model global contextual information for iron
slag segmentation. Our SFGCN module makes use of latent
spatial and feature spaces to efficiently realize global relation
reasoning, which alleviates the memory and computation
burden of global context reasoning while improving the
performance of segmentation.

3. Methods

In this section, we first review the graph convolution and
then introduce the implementation of our SFGCN module.
Finally, we detail the network architecture for slag
segmentation.

3.1. Graph Convolution. Graph convolution is an efficient
operation to reason global context information, which
overcomes the limitation that convolution operation can
only model local context information. Graph convolution
defined in graph G with nodes N and edges E can effectively
achieve global information interaction in a single operation.
(e specific operation can be defined as follows:

O � σ(AXW). (1)

(e specific implementation steps are shown as the
following pseudocode, including (1) project the feature map
from coordinate space to graph space, we employ the
conventional convolution operations to project the feature
map to graph space after the feature extraction operation,
and the process is shown in Figure 3; (2) build adjacency
matrix to describe intrabody connections of nodes within
the graph; (3) update the weight matrix; and (4) reproject the
graph to coordinate space. (e feature map extracted by
backbone networks contains spatial and channel dimen-
sions. Assuming that spatial dimension abstracts the objects
in the scene and channel dimension encapsulates the de-
tailed object features, that means the graph established in
spatial space is able to describe the relevance between objects

Input K-means Mean shi�Markov random field Expected result

Figure 2: (e segmentation results of traditional methods including K-means, Markov random field, and mean shift. (e last column is the
segmentation we expect. In the expected result, white, green, blue, and pink represent background, robotic arm, iron, and slag, respectively.
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in the scene and the graph established in feature space is able
to express the relevance between object parts. (erefore, we
conducted graph convolution on spatial graph and feature
graph, respectively. (e spatial branch is used to grasp
thecinternal integrity of objects and the relationship
between objects. (e feature branch is used to characterize
the details of objects and the relationship between features
(Algorithm 1) [21].

3.2. Graph Convolution in Spatial Space

3.2.1. Spatial Space Projection. As shown in Figure 4, before
conducting graph convolution operation, we first project the
input feature map to latent spatial space to get the graph. In
practice, spatial downsampling operation Ts is employed to
transform the input feature X ∈ RaH×W×C to graph
Gs ∈ R(H×W/d2)×C in the latent spatial space Ss, where d

represents the downsampling rate. We achieve Ts based on
stacked depth-wise convolution operations in each layer
with a stride of 2 and kernel size of 3 × 3. (en, Gs is ob-
tained via

Gs � Ts(X). (2)

3.2.2. Spatial Graph Convolution. After projecting the input
feature X to graph Gs, the graph consists of (H/d) × (W/d)

nodes. Each node of the graph integrates the information of
a cluster of pixels in the feature map. To measure the
correlation between nodes, we form an adjacency matrix
As ∈ R(HW/d2)×(HW/d2). (e spatial graph convolution is
implemented according to the following formulation to
achieve global relation reasoning:

Os � f δs Gs(  · ψs Gs( 
T

  · GsWs, (3)

where f(δs(Gs) · ψs(Gs)
T) gives the adjacency matrix As

and f(·) represents the softmax activation function, in
which · is the dot-production operation. Ws is the weight
matrix for updating information.

3.2.3. Reprojection. After relational reasoning, we reproject
Os back to the original coordinate space (RH×W×C) for
compatibility with later operations. Different from the
downsampling operation Ts in graph projection, we directly

employ nearest neighbour interpolation to upsample Os to
the original input size. Finally, the output feature map of
spatial graph convolution branch is obtained according to
Os � ξs(interp (Os)).

3.3. Graph Convolution in Feature Space. Spatial graph
convolution models the spatial correlation of pixel clusters
in a scene, which enables the network to make correlation
prediction based on all objects in the whole scene. Next, we
consider projecting input feature map to feature space and
reasoning correlation along the channel dimension. As-
suming that the latter layers of the FCN are responsive to the
object parts and high-level semantic features, conducting
GCN in feature space can model the correlation of abstract
features such as object parts. We first adopt a channel
downsampling operation θ(·) to reduce the channels of
input feature from X ∈ RH×W×C to Hf ∈ RH×W×C1 and
employ a linear combination function φ(·) to aggregate
information along the channel dimension. Finally, we obtain
the formulation of input feature X ∈ RH×W×C to feature
space graph Gf ∈ RC1×C2 :

Gf � θ(X)
T

· φ(X) � H
T
f · φ(X), (4)

where C1 represents nodes and C2 denotes the states of each
node. After feature space projection, the feature graph
convolution and reprojection are conducted according to
the following equations:

Of � I + Af GfWf,

Of � ξf Hf · Of .
(5)

Considering the low dimension of feature graph, we
employ two 1D convolution layers as adjacent matrix Af and
trainable edge weights Wf. To alleviate the optimization
difficulty, the adjacent matrix Af is updated with a residual
structure and reconstructed as (I + Af). Both Af and Wf

are randomly initialized and optimized with gradient de-
scent during the training process.

3.4. SFGCNet. Finally, the output of SFGCN is computed as
X � ωX + ωs

Os + ωf
Of, where “+” denotes point-wise

summation andω is the learnable weight coefficient. Nowwe
can easily embed our SFGCN module into the existing
network backbone (e.g., FCN and ResNet).

Feature
extraction

(a) (b) (c) (d)

Projection
Reverse

projection

Figure 3: (e illustration of graph convolution operation. (a) (e input image. (b) (e feature map obtained by backbones. (c) Projecting
the feature map to graph space and reasoning the relation between all nodes. (d) Reprojecting the learned interaction to feature map for
performance improvement. Here, we use nodes with different colors to represent different object regions.
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3.4.1. Implementation of SFGCNet. As shown in Figure 5, we
embed SFGCN module in the last stage of fully convolu-
tional networks (FCNs) to achieve the segmentation of iron
and slag. In order to verify the effectiveness of SFGCN
module, we construct SFGCNet by adopting FCN [1],
BiSeNet [22], ICNet [23], and ResNet-50 [24] as the network
backbones, respectively. BiSeNet and ICNet are two light-
weight networks to achieve real-time semantic
segmentation.

4. Experiments

4.1. Dataset and Evaluation Metrics. As there has no public
slagging-off dataset, we collect 7 videos from different in-
dustrial cameras. Due to the time-consuming and laborious
segmentation labeling, we only select 24 clips from all 7
videos randomly. Each of the clips contains 64 frames. All of
these clips are segmented with Photoshop software manu-
ally, by three raters, following the same annotation protocol,
and their annotations are approved by experienced workers,
and then, we split these images into training set and test set
with a ratio of 3: 1. (e annotation sample is presented in

Figure 6.(e training set is used to train models, and the test
set is used to validate the performance of trained models.

(e efficiency and accuracy of the model are mainly
considered in industrial applications. (e efficiency of the
model can be evaluated by inference time, model parameters
amount, and the total number of floating-point operations
per second (FLOPs). To evaluate the accuracy of the model,
we adopt the commonly used metrics in the segmentation
task, including Mean Intersection over Union (MIoU) and
pixel accuracy (PA). (e two metrics are defined as follows:

MIoU �
1

K + 1


K

i�0

Pii


K
j�0 Pij + 

K
j�0 Pji − Pii

,

PA � 
K

i�0


K

j�0

Pii

Pij

,

(6)

where Pii represents the pixel predicted correctly (i.e., the
true category of the pixel is class i, and the prediction is class
i too). Pij, Pji mean the pixel prediction is wrong (i.e., the
true category of the pixel is class (i/j), and the prediction is
class (j/i).

Input: Tensor extracted by convolutional network
Output: Tensor after graph convolution operation
1: function SFGCN(Tensor)
2: Project coordinate input to graph space X←Projecting(Tensor)
3: δ←Conv(X)

4: ϕ←Conv(X)

5: Build adjacency matrix A← Softmax(δT ∗ϕ)

6: Update weight matrix AXW←Conv(A, X)

7: O←Activation(AXW)

8: Reproject graph O to coordinate space result←Reprojecting(O)

9: return result
10: end function

ALGORITHM 1: GCN 1: realization of graph convolution.

X

Ts Gs
Reshape

1 × 1 conv

1 × 1 conv

× As ×
So�max

1 × 1 conv Ts
R

Tf
R

1 × 1 conv
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IGf

+ 1D conv 1 × 1 conv×

+
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Ws ξs

Wf
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ω
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~

~
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~

X

X: H × W × C

Gs: HW/d2 × C

As: HW/d2 × HW/d2

Os: H × W × C~
Gf: C1 × C2

Hf: H × W × C1

Of: H × W × C~

Matrix dimension

1D conv
(I + Af)Gf

Hf
T

X: H × W × C~

Figure 4: (e design details of the SFGCN module. Our method contains two branches of graph convolution operation to model global
contextual information along spatial and channel dimensions of feature map X.
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4.2.Preprocessing. (e annotation of semantic segmentation
is time-consuming and labor-intensive. Also, it is difficult to
obtain a large number of labeled data in industrial appli-
cations. (us, data augmentation is an effective method to
expand the dataset, which is helpful for alleviating the
overfitting problem and enhancing the robustness of the
network. Considering that images acquired by the video
camera contain a large number of background areas, which
cannot benefit the accuracy, we firstly crop the raw image

from 1920 × 1080 to 1024 × 1024 to reduce the proportion of
background area. After that, we randomly apply the data
augmentation methods with 50% probability, including the
following:

(1) Random horizontal and vertical flips

(2) Random scaling between [0.5, 2]

(3) Random intensity shift between [−0.1, 0.1]

Backbone

Prediction Groundtruth

Loss
Conv + upsampling…

…

X

…

…

×

×

+ω
ωs

ωf

Spatial GCN

Feature GCN

Figure 5: (e architecture of the proposed network, i.e., SFGCNet. SFGCN module is inserted in the last stage of fully convolutional
networks. (e weights of SFGCNet are optimized by gradient descent algorithm and the cross entropy loss between prediction and
groundtruth.

Image

Background

Slag

Blow rod

Hot metal

Robotic arm

Annotation

Figure 6: Image annotation for semantic segmentation.(ere are 5 categories in annotations, including white for background, pink for slag,
yellow for blowing equipment, blue for iron, and green for robotic arm.
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4.3. Experiments and Results

4.3.1. Experiment Setup. We implement our method with
PyTorch. Cosine annealing learning rate policy is used with
30 warming-up epochs. (e initial learning rate lr0 is set to
0.001 and adjusted based on the following formulation:

lr �

lr0 ∗ 1 − cos
π
2
∗

e

w
  , e≤w,

lr0 ∗
cos π∗(e − w)/t(  + 1)

2
w< e< t.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

Specifically, e represents the current training epoch, t is
the total number of training epochs, and w denotes the
warming-up epochs. We train our model with Adam op-
timizer and synchronized BN on four parallel Nvidia 2080Ti
GPUs for 300 epochs. (e batch size is set to 8 to guarantee
the performance of batch normalization.

4.3.2. Experiment Results. We apply our SFGCN module to
the last stage of typical backbones such as FCN, ResNet-50,
BiSeNet, and ICNet to reason long-distance dependencies.
Considering the distribution difference between industrial
dataset and natural scene dataset, we train all the above
backbones from scratch. As shown in Table 1, our SFGCN
module widely improves the performance of different
backbones. In terms of MIoU, SFGCNmodule brings 5.63%,
0.83%, 3.49%, and 3.87% improvements on BiSeNet, ICNet,
FCN, and ResNet-50, respectively. Benefited from the global
reasoning function of graph convolution, SFGCN module
makes the isolated slag andmolten iron regionmore easily to
be identified. As shown in Figure 7, while the dispersed areas
of slag and iron are easy to be segmented incorrectly, SFGCN
alleviates the influence of neighbor regions on the classifi-
cation of these regions. On the other hand, the introduction
of SFGCN module only results in 2.81ms, 1.17ms, 0.79ms,
and 0.55ms more inference time for BiSeNet, ICNet, FCN,
and ResNet-50, respectively, as well as slight parameters and
FLOPs increase, which demonstrates that our SFGCN
module is efficient. Especially, taking lightweight BiSeNet as
the backbone, our SFGCNet achieves real-time segmenta-
tion of iron and slag.

4.3.3. Ablation Studies and Discussion. Embedded location
of SFGCN module: our SFGCN module can be flexibly
embedded in any stage of the network backbone, and it is

worth exploring where the embedding can achieve better
results. Moreover, the embedding location will affect the
accuracy and efficiency of the network at the same time. (e
feature map of shallow layers has high resolution, which
directly increases the parameters and FLOPs of the SFGCN
module. From the perspective of feature extraction, shallow
layers cannot capture abundant semantic information due to
the lacking of enough receptive fields, which will also limit
the performance of SFGCN module. Experiments show that
the SFGCN module achieves higher efficiency when it is
embedded in the last stage of various backbones.

(e effectiveness of each branch: to verify the effec-
tiveness of SGCN branch and FGCN branch, we conduct
experiments on BiSeNet and FCN with different settings in
Table 2.

As shown in Table 2, both SGCN and FGCN boost the
performance of BiSeNet and FCN. (e introduction of
SGCN and FGCN, respectively, yields 3.82% and 4.46%
improvement in MIoU for baseline of BiSeNet. Meanwhile,
SGCN and FGCN outperform the FCN baseline by 2.15%
and 2.81%. After integrating SGCN and FGCN branches, our
method achieves 5.63% and 3.49% performance boost for
BiSeNet and FCN. Results show that SFGCN module brings
benefits for the segmentation of iron and slag.

(e effects of SGCN and FGCN branches are visualized
in Figure 8. As shown in the third column, SGCN aggregates
information of pixel cluster and delivers messages between
nodes, thus guaranteeing the integrity of objects. However,
spatial branch loses details of each node while aggregating
node information. (e FGCN branch focuses more on
reasoning the details of objects to make up for the deficiency
of the SGCN branch which focuses more on connection
between objects. (e refinement of segmentation is signif-
icantly improved as shown in the fourth column.

We compute the coefficients of SGCN and FGCN
branches to objectively evaluate the contribution of these two
branches.(e shortcut connection weight ω is set to 1. ωs and
ωf are initialized as 1 and learnable. (e final coefficients of
each branch of the SFGCNmodule in different backbones are
shown in Table 3, and the results show that SGCN and FGCN
branches do provide extra information for the segmentation.
Moreover, the coefficients vary for different network back-
bones. (erefore, the learnable coefficients provide the flex-
ibility of adjusting the contribution of each branch based on
the information learned by the base network.

Effect of projection: as described in Section 3, we ag-
gregate information along spatial and channel dimensions to

Table 1: (e results of deep learning-based methods on the test set. (e size of the input image is 1024 × 1024.

Models Iron Slag Robotic arm Blow pole MIoU (%) PA (%) Inference time (ms) Parameters (M) FLOPs (G)
BiSeNet [22] 67.49 82.91 82.25 55.77 72.11 97.04 15.47 12.42 48.77
BiSeNet + SFGCN 64.55 82.98 80.66 71.16 77.74 97.26 18.28 13.4 60.35
ICNet [23] 60.74 69.54 67.17 72.92 67.59 94.61 44.62 28.29 147.68
ICNet + SFGCN 61.47 73.54 68.63 70.05 68.42 95.45 45.79 28.79 153.0
FCN [1] 68.22 83.08 83.62 64.63 74.89 97.15 66.67 18.64 321.78
FCN+ SFGCN 68.24 83.76 84.92 71.23 78.38 97.31 67.46 21.86 324.52
ResNet-50 [24] 55.06 78.97 79.15 71.32 71.13 96.38 30.18 28.51 98.18
ResNet-50 + SFGCN 66.29 73.04 76.92 72.49 75.00 96.62 30.73 28.75 98.57
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project the input feature map to the graph space. (e
downsampling ratio of SGCN branch directly determines
the degree of spatial information aggregation. Large ratio
loses details while small ratio retains useless information.
(e number of nodes in the FGCN branch also affects the

relation reasoning between the features of objects. Appro-
priate number of nodes is important for recovering the
details of each object. After conducting extensive experi-
ments on our dataset, we observe that SFGCN module
brings more performance improvement when the size of Gs

With SFGCNWithout SFGCN GroundtruthInput

Figure 7: (e visualization results of SFGCNet with different backbones. (e results of FCN, BiSeNet, ICNet, and ResNet-50 are shown
from the first row to the last row. More visual results are available at https://github.com/ustbzjf1/SFGCNet-for-hot-metal-slag-
segmentation.

Table 2: (e ablation study based on the network backbone of BiSeNet and FCN on the test set.

Backbone SGCN FGCN MIoU
BiSeNet 72.11
BiSeNet √ 75.93
BiSeNet √ 76.57
BiSeNet √ √ 77.74
FCN 74.89
FCN √ 77.04
FCN √ 77.70
FCN √ √ 78.38
SGCN and FGCN represent spatial GCN and feature GCN, respectively.
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is (1/64) of the input image size and the number of nodes for
Gf is 32. We speculate that 64× downsampling to aggregate
information is more suitable for the scale of objects and 32
nodes can better express the details of objects in the slagging-
off scene.

5. Conclusion

In this work, we explore deep learning methods for iron and
slag recognition. We formulate this problem as a semantic
segmentation task and propose a SFGCN module to reason
global contextual information according to the characteristic
of the slagging-off task. Extensive experiments have verified
that our method not only triumphs over traditional seg-
mentation methods but also widely improves the perfor-
mance of current mainstream deep learning models in the
slagging-off task. Taking lightweight network as backbone,
our SFGCNet can realize real-time and accurate recognition
of iron and slag, which provides a significant reference for
downstream automatic slagging-off operation.

Although our algorithm has achieved satisfactory results
in view of accuracy and efficiency, we need to expand the
dataset to improve the performance of the model in more
scenarios. It is difficult to label industrial big data manually,
in the future work, we will dedicate our efforts to the weakly
supervised learning for quick annotation of big data stream
to improve the generalization ability of current models.
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