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With the popularity of location-based social networks, location prediction has become an important task and has gained
significant attention in recent years. However, how to use massive trajectory data and spatial-temporal context information
effectively to mine the user’s mobility pattern and predict the users’ next location is still unresolved. In this paper, we propose a
novel network named STSAN (spatial-temporal self-attention network), which can integrate spatial-temporal information with
the self-attention for location prediction. In STSAN, we design a trajectory attention module to learn users’ dynamic trajectory
representation, which includes three modules: location attention, which captures the location sequential transitions with self-
attention; spatial attention, which captures user’s preference for geographic location; and temporal attention, which captures the
user temporal activity preference. Finally, extensive experiments on four real-world check-ins datasets are designed to verify the
effectiveness of our proposed method. Experimental results show that spatial-temporal information can effectively improve the
performance of the model. Our method STSAN gains about 39.8% Acc@1 and 4.4% APR improvements against the strongest
baseline on New York City dataset.

1. Introduction

Location-based social networks (LBSNs), such as Foursquare
and Gowalla, become increasingly popular, and user-gener-
ated digital footprints bring an unprecedented opportunity
for exploration of the human mobility patterns. Human
mobility and mobility patterns have a high degree of freedom
and diversity, so capturing human mobility patterns is a
challenging task in LBSN applications, such as personalized
recommendation and preference-based route planning.

(e traditional methods for location prediction leverage
Markov chains (MCs) to capture the transition regularities
of human movements [1, 2]. However, the transition
probability of the model is predefined, and only the impact
of the last check-in activity can be considered. Since deep
learning technology has a strong ability of representation

learning, recently some location prediction work [3] uses
embedding methods and recurrent neural networks (RNNs)
to learn location embedding and user representation, re-
spectively. Although the performance has been improved, it
cannot solve the problem of gradient vanishing in the
training process. To solve this problem, scholars have done a
lot of research, using the RNN variants (LSTM [4] and GRU
[5]) in the encoder-decoder framework. However, for the
sequences over 50 in length, LSTM’s perception of further
check-in activities is weak, and long-term dependence is still
difficult to capture [6]. More recently, the attention
mechanism is introduced to dynamically adjust the weight of
important records, and it partially resolves the problem that
LSTM cannot learn long-distance dependency. However, the
one-dimensional attention may neutralize the relationship
between vectors, which makes it difficult to discard the
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uncorrelated parts in the weighted average vector in order to
only remain the highly semantically related content [7].

On the contrary, data records have rich contextual infor-
mation but are sparse. Spatial and temporal contexts are two
key factors [3, 8], which can be effectively used to alleviate the
data sparsity. Some studies [6, 9] divide time into 48 hours and
encode it into a time feature vector but ignore the influence of
spatial context. Kong and Wu [8] encode the time and geo-
graphic distance interval as vectors and integrate them into the
LSTM module as a time gate and geographic gate to jointly
consider the spatial-temporal information. However, this
method can only consider the information between adjacent
trajectory points in the trajectory sequence, and it cannot tackle
the spatial-temporal information between any trajectory points
globally and ignores the user’s geographical location preference.

To overcome the problemsmentioned above, we propose
a novel network named STSAN (spatial-temporal self-at-
tention network), which can integrate spatial-temporal in-
formation with the self-attention [10] mechanism for
location prediction. We design a trajectory attention net-
work to learn users’ dynamic trajectory representation,
which includes three modules: location attention, spatial
attention, and temporal attention. Our model can capture
the complicated transitions and the user’s preference for
geographic location and temporal activity. Finally, different
from the previous methods of learning user representation,
we represent user trajectory by trajectory points, which are
represented in the location embedding space. Ourmodel can
avoid compressing user trajectory into a vector, reducing the
loss of trajectory information.

(e major contributions of this paper can be summa-
rized as follows:

(i) We propose a novel network, STSAN, to capture
complex sequential transition regularities and in-
tegrate spatial-temporal information for location
prediction. Our model can capture the time interval
information between any two points in the trajec-
tory and can also sense the user’s geographical
preference.

(ii) We propose that the trajectory is represented in
location latent vector space by the trajectory points
instead of the user representation, which avoids the
compression and loss of the trajectory information.

(iii) We experimentally evaluate our model using four
datasets collected from Foursquare and Gowalla.
(e experiment results show the superiority of our
approach over various baseline approaches, and it is
more prominent in sparse datasets. Our model
achieves 39.8% Acc@1 and 4.4% APR over VANext
[11], which performs the second best on New York
City dataset.

2. Related Work

2.1. Location Prediction. Extensive studies have been ded-
icated to model human mobility via large-scale trajectory
data recorded by GPS, cellular towers, and location-based
service. (e traditional methods are based on the Markov

chains (MCs) model which represents the individual’s
movement behavior as a Markov model. (e MCs calculate
a state (location) transition matrix and predict the next
location based on the previously visited location [2, 10].
Although time-series information is considered, only a
short-range time-series relationship is modeled, which
limits its prediction ability. With the widespread devel-
opment of deep learning research, many neural network
models are used to discover the user’s mobility patterns.
(e PRME [12] algorithm embedded users and locations
into the hidden space to explore a similar relationship, but
it can only model the short-range relationship of the se-
quence. Recently, recurrent neural networks and their
variants have been widely used to capture long-term se-
quence effects. (e STRNN [3] used the RNN model
combined with temporal and spatial contextual informa-
tion to predict the next location. (e recurrent neural
network model based on spatial-temporal features [13] can
automatically extract the internal representation of spatial
and temporal features and combine RNN structure for
modeling people’s movement behavior. It is very difficult to
deal with long sequence data in the RNNmodel, so recently
RNN variants (LSTM and GRU) have been proposed to
avoid the gradient disappearance of conventional RNN.
(e HST-LSTM model [8] embedded time and space
vectors into LSTM in the framework of encoder and de-
coder to predict the next location of users. With the further
development of deep learning technology, an attention
mechanism has been proposed to enhance the learning of
RNN and CNN structures on the long-term dependence of
longer sequences. (e DeepMove [6] used the attention
mechanism to enhance RNN to capture the user’s mobility
and location preference. (e VANext [11] used CNN and
attention to learn the periodical patterns of historical
trajectory to make the next location prediction. (e AMF
[14] combined a personalized federated learning model
with an attention network for location prediction.

2.2. Attention. (e attention mechanism is widely used in
classify images [15], machine translation [16], and various
NLP tasks [17–19]. In 2017, the Google teams propose a self-
attention model [10] to learn text representation, and self-
attention outperforms RNN model with an attention
mechanism in sequence to sequence task. Since then, self-
attention has been widely used in the recommendation
system. In 2017, ATRank [7] used self-attention to capture
the impact of users’ different behaviors, model user be-
haviors, and apply it to downstream recommendation tasks.
In 2018, Zhang et al. [20] used self-attention to learn the
relationship between items and items in user history in-
teraction and made the next item recommendation. In 2018,
self-attention is used as a sequence recommendation model,
and self-attention is used to capture long-term semantic
sequences and attention makes its predictions based on
relatively few actions [21]. Xia et al. [22, 23] applied attention
in satellite image segmentation to extract useful information
and ignore useless information. A global attention module
was used to weight low-level features in water segmentation
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task. MFANet [24] used a multilevel feature attention
module to provide information for the low-level features by
using high-level features to generate new features in the
segmentation of remote sensing images.

(e standard self-attention can only deal with some
simple sequence data, such as sentence sequence or
timeseries, but it cannot deal with more complex trajectory
data for the location prediction problem because trajectory
contains timestamps, geographical location coordinate, and
other heterogeneous contexts. We propose a trajectory at-
tention mechanism, which integrates geographic and tem-
poral features based on standard self-attention to learn user
trajectory representation. Trajectory attention includes three
modules: location attention, which learns the relevance
between the location vectors in the trajectory; spatial at-
tention, which uses spatial features to learn the user’s
preference for spatial location; and temporal attention,
which captures different time preferences among users.

3. Preliminaries

In this section, we first introduce some concepts that are
necessary for subsequent discussion and then give an
overview of the issues discussed in this paper. Finally, a brief
introduction of our model framework is given.

3.1. Problem Formulation. Let U and V denote the sets of
users and POIs and |U| and |V| represent the number of
users and POIs, respectively.

Definition 1 (POI). Point of interest (POI) is a location
in a coordinate system, which contains location
identification v and the geographical position infor-
mation (latitude and longitude coordinates).
Definition 2 (trajectory point). A check-in record
contains the user identification u, POI v, and check-in
timestamp t. (e user u visited POI v at t is defined as a
tuple ptu � 〈v, t〉, which is also called a user’s trajectory
point.
Definition 3 (trajectory). Given all trajectory points of
the user u, the trajectory is a sequence
traju � pt1, . . . , ptLu , where Lu is the length of the user’s
trajectory sequence and pti is the i-th trajectory point of
the user u.
Location prediction problem. Given the set U of users
and the set V of POIs and the current trajectory se-
quence traju for a user u ∈ U, the problem is to predict
the location vLu+1 ∈ V in the (Lu + 1)-th timestamp of
user u.

3.2. Basic Framework. Figure 1 shows the architecture of
STSAN, which consists of three major components: (1)
trajectory feature processing, (2) trajectory attention mod-
ule, and (3) prediction.

(i) Trajectory feature processing: we first embed each
POI into a low-dimensional vector representation
using an embedding method. To build a spatial-

temporal user trajectory prediction model, the
timestamp and the POI’s coordinates are taken as
the numerical characteristics of the model.

(ii) Trajectory attention module: we use trajectory at-
tention for learning trajectory representation.
Specifically, the location attention calculates the
relevance between the location vectors in the tra-
jectory, to capture user’s mobility patterns; then, the
temporal attention uses the time feature to calculate
the time correlation between the trajectory points
and to capture the user’s mobility patterns. (e
spatial attention uses spatial features to learn the
spatial relationship between POIs and capture the
geographic preference of users for POIs. We use the
linear function to integrate three output matrices of
attention module. Finally, the output of this module
is trajectory representation.

(iii) Prediction: the trajectory representation is repre-
sented by trajectory points, which are represented in
the location embedding space. (e inner product is
used to calculate the correlation between the tra-
jectory and the location and then infer the user’s
next visit POI.

4. Methodology

4.1. Trajectory Feature Processing. To build a spatial-tem-
poral user preference model, we would like to encode the
trajectory according to the spatial and temporal character-
istics of the user’s activities. Word2vec [25] is an effective
and scalable method to learn embedding representations by
modeling words’ contextual correlations in word sentences.
We encode each location identification into a low-dimen-
sional vector. For each location, the embedding method
outputs the embedded feature vector pi. (e formula rep-
resentation is as follows:

pi � aiWp, (1)

where ai is the one-hot representation of the i-th candidate
location and Wp ∈ R|V|×dp is the location embedding matrix,
which is trained and learned by the whole network, where
|V| is the number of candidate sites and dp is the dimension
of the embedding feature vector.

Previous work [8] has shown that temporal and spatial
features help capture user check-in activities. We extract the
timestamp t and latitude and longitude of the place where
the user visits and use the location embedding vector as the
input of the model. For a user trajectory
traju � point1, point2, . . . , pointL, we set Lu � L, and the
input of the model is

X
u

� x1, x2, . . . , xL, (2)

where xi � pi, (latitude, longitude)i, ti􏼈 􏼉 contains three
parts: pi is the embedding vector of the i-th location in the
trajectory, (latitude, longitude)i is the latitude and longitude
for this location, and ti is the timestamp of the visited
location.
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4.2. Trajectory Attention Module. Figure 2 shows the ar-
chitecture of trajectory attention module, which consists of
three major components: (1) location attention, (2) temporal
attention, and (3) spatial attention.

4.2.1. Location Attention. (e self-attention is a special case
of attention function that can be described as mapping a
query and a set of key-value pairs to an output, where the
query, keys, values, and output are all vectors. Based on the
RNN sequence model, it is not easy to control the long-
distance hidden state. (e attention mechanism allocates
weight to the hidden state and gives more weight to the more
important state as much as possible. However, it is still
limited by RNN recursive structure and cannot process
longer sequences. (e self-attention can capture the rela-
tionship between arbitrary elements by using sequence in-
formation regardless of the position in the sequence. (e
self-attention can process longer sequences, so we use self-
attention to capture the relationship between location em-
bedding vectors.

Suppose the length of the user’s trajectory is L. (e input
of location attention is a matrix in shape of L by dp:

P
u

� p1,p2, . . . , pL􏼂 􏼃
T
. (3)

Note that the trajectory length is different for different users,
and the model can accept trajectory sequence input of
different lengths.

To get query, key, and value for user u, we project Pu to
three spaces through nonlinear transformation, as shown in
the following formulas:

Query � ReLU P
u
W

Q
􏼐 􏼑, (4)

Key � ReLU P
u
W

K
􏼐 􏼑, (5)

Value � ReLU P
u
W

V
􏼐 􏼑, (6)

where WQ ∈ Rd×dQ , WK ∈ Rd×dK , and WV ∈ Rd×dV are
weight matrices for Query, Key, and Value, respectively.
ReLU is a nonlinear activation function, which makes the
neural network have enough capacities to capture complex
patterns. Note that Query, Key, and Value are projected into
the same space; hence, dQ � dK � dV and d � dp can be
known by the combination of matrix multiplication in
mathematics.

(en, we can calculate the location’s attention score
using the following formula:

S
u
p � softmax

Query · KeyT

���
dK

􏽰􏼠 􏼡. (7)

(eoutput is the location’s attentionmatrix in shape of L

by L. We compute the dot products of the Query and Key,
which aims to calculate the similarity or correlation between
elements and then divide by

���
dK

􏽰
to prevent correlation

from being weakened by softmax functions and apply
softmax function to get normalized attention weights.

For this module, given a user’s check-in location se-
quence embedding representation Pu, the module output is a
weight matrix Su

p of the similarity or correlation of each
element. By learning the sequence of check-in locations of all
users, the module captures the common mobile pattern
among users and the unique interest preferences of different
users. (is process is learned by training and adjusting the
parameters of the model.

4.2.2. Spatial Attention. We use spatial features of locations
to enhance learning about user mobility patterns and user
geographic preferences. Specifically, to reduce the repetition
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module. (en, we apply trajectory model to obtain user trajectory representation. At the end of the sequence, the hidden state of trajectory
attention is passed through a softmax layer for next location prediction.
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of calculation, we calculate the geographic distance between
all POIs in advance and store it in matrix D and get it by
index when using. Given the longitude and latitude of any
two POIs of vi and vj, the spatial distance between the two
POIs d(vi, vj) is calculated by using the following formula:

Ψ
d vi, vj􏼐 􏼑

R
⎛⎝ ⎞⎠ � Ψ φ2 − φ1( 􏼁 + cos φ1( 􏼁cos φ2( 􏼁Ψ(Δλ),

(8)

where Ψ(θ) � (1 − cos(θ))/2; R is the radius of the Earth,
averaging 6371 km; φ1 and φ2 represent the latitude of the
two locations; and Δλ is the longitude difference between the
two locations. We set an index operation D[·] that selects the
corresponding values of D to form an L by L matrix:

D
u

� D X
u

􏼂 􏼃. (9)

Note that the value Du
ij in row i and column j of output

Du represents the actual distance between vi and vj.
Previous studies [26] have shown that the user’s check-in

behavior has cluster properties in space. Rather than visiting
the places far away, users are more likely to visit the sur-
rounding places that they have gone to, which is congenial
with reason and common sense—in our daily life, everyone
has their scope of activities, rarely exceeded. To capture this
pattern in space, we design spatial attention. To reduce the
complexity of the model and facilitate the adjustment of
parameters, we manually process the geographical features
instead of embedding them into vectors. We set the spatial
attention matrix Su

g in shape of L by L as follows:

S
u
g(i, j) �

1, i≠ j, D
u
ij < ε,

0, otherwise.
􏼨 (10)

(e purpose of our work is to increase the spatial relevance
of locations among users’ access areas and indirectly reduce
the spatial relevance of locations far away from user

preference areas. Note that the distance from a place to itself
is zero, so we treat its spatial relevance as a special value of 0.
If the value ofDu

ij is less than the threshold value ε, the spatial
correlation is 1; in other cases, the value is set to 0, and the
value on the diagonal is also 0.

4.2.3. Temporal Attention. Different user’s check-in be-
havior has its characteristics in time, such as the time in-
terval. (erefore, we take the two check-in time intervals in
the user trajectory as features to capture the time preferences
between different users. Similar to spatial attention, we take
the time interval between the trajectory points as the feature
to calculate the attention in time. (e temporal attention
input is Tu, that is, a time sequence as follows:

T
u

� t1, t2, . . . , tL􏼂 􏼃
T
. (11)

We set the temporal attention matrix Su
t in shape of L by

L as shown in the following formulas:

S
u
t � MinMaxNorm M

u
t( 􏼁, (12)

M
u
t � ΦT T

u
( 􏼁, (13)

M
u
t (i, j) � ti − tj, (14)

where Mu
t is a matrix in shape of L by L and Mu

t (i, j) is the
time interval between the check-in of user u at location vi

and location vj. MinMaxNorm(·) is min-max normalization
function that maps the value of the feature to the interval
[0, 1].ΦT(·) is that we define an operation to map Tu to Mu

t .
We use the parameters β and c to connect location

attention matrix and spatial matrix and temporal matrix
linearly and get the total attention matrix formulate as

S
u

� S
u
p + βS

u
g + cS

u
t . (15)
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Figure 2: (e overall architecture of trajectory attention module.
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(e output Su is a matrix in shape of L by L, representing
the location vector relevance affected by time and space
features. Hyperparameters β and c are the time and space
influencing factors, indicating the influencing degree of the
two factors.

Next, the softmax function is introduced to convert the
score Su of total attention, which is the weight coefficient
corresponding to the value, and then the weighted sum is
performed:

A
u

� softmax S
u

( 􏼁 · Value. (16)

(e output Au is a matrix in shape of L by dV. On the one
hand, the softmax function can be normalized to sort the
original calculated score into a probability distribution with
the sum of all element weights of 1; on the other hand, it can
also highlight the weight of important elements through the
internal mechanism of softmax.

We design h-times attention in different h-spaces, which
is similar to the convolution kernel of the convolutional
neural network. (is allows the model to learn relevant
information in different representation subspaces. (e re-
sults we obtained are as follows:

A
u
K1

, A
u
K2

, . . . , A
u
Kh

. (17)

Finally, we concatenate the h-order attention results and
use the value obtained by linear transformation as the result
of multiple attentions:

Traju � concat A
u
K1

, A
u
K2

, . . . , A
u
Kh

􏼐 􏼑W
A

, (18)

where WA ∈ RhdV×d is the projection parameter matrix, the
concat(·) connection function concatenates the last di-
mension of tensors, and the output Traju is a matrix in shape
of L by d, representing the embedded trajectory for user u.
Note that h is the number of parallel attention layers and
dV � d/h.

4.3. Prediction. Given the user ui trajectory sequence traju,
we use the trajectory attention model to model the em-
bedding vector of trajectory at a higher level to obtain Trajui .
Specifically, we first map the one-hot vector of locations to
the vector space of location through the embedding matrix
Wp. In the process of trajectory coding, the trajectory vector
is mapped to locations vector space in time order, and then,
the closest location to the projection vector is found in the
location vector space as the prediction result. We formulate
it as

p v
ui

Lu+1|Traj
ui( 􏼁 � softmax Trajui W

T
p + b􏼐 􏼑. (19)

Here, the output p(v
ui

Lu+1|Traj
ui ) is a probability distri-

bution, which represents the probability distribution of the
next position under the condition of known Trajui and b is
the bias parameter of the current layer network.

Different from the previous work, we not only realize the
weight sharing of Wp but also use trajectory points to dy-
namically represent user trajectory. (is method not only
reduces the risk of overfitting but also avoids compressing

the trajectory to be represented as a vector and keeps more
trajectory information.

4.4. Training Algorithm. In order to model user spatial ac-
tivity preference in a continuous manner, we propose tra-
jectory attention model by considering the spatial and
temporal features. In this paper, we consider the next lo-
cation prediction problem as a multiclassification problem,
so we use cross-entropy loss function combining regulari-
zation term as the objective function of model training. (e
objective function of the proposed model is shown as

L � − 􏽘
ui∈U

􏽘

Lui −1

m�1
p

ui

m+1log p v
ui

m+1|Traj
ui

m( 􏼁( 􏼁 + λ1‖Θ‖1 + λ2‖Θ‖2,

(20)

where Trajui
m is trajectory representation at the m-th mo-

ment; λ1, λ2 are the parameters of L1 regularization and L2
regularization, respectively; andΘ represents the parameters
to be regularized in the model. (e gradient descent and
backpropagation algorithms are used to modify the network
connection parameters, and then, the objective function is
minimized. (e source code of our model is available online
(https://github.com/li-neu/SASAN).

5. Experiments

5.1. Dataset. We evaluate the proposed model with state-of-
the-art methods on four check-ins datasets from the fol-
lowing two publicly available datasets:

(i) Foursquare dataset [27].(is dataset contains check-
ins in NYC and Tokyo collected for about 10 months
(from 12 April 2012 to 16 February 2013). It contains
227,428 check-ins in New York City and 573,703
check-ins in Tokyo. Each check-in is associated with
its timestamp and its GPS coordinates.

(ii) Gowalla dataset [28]. (is dataset is collected for
about 18 months (from 1 February 2009 to 31 Oc-
tober 2010). It contains 6,442,890 check-ins with its
timestamp and its GPS coordinates. We select the
check-ins in Los Angeles and Houston as experiment
dataset.

For each city dataset, we remove users with less than 10
check-in records. (e user trajectory is divided into several
subtrajectories according to the interval between two ad-
jacent records, and the interval is set to 72 hours, as it was
done in previous related works [6]. (en, we remove sub-
trajectories whose length is less than 2 and remove users
whose number of subtrajectories is less than 5. Table 1 shows
the basic information of data preprocessing. We calculated
the average number of records per user per day on each
dataset as the sparsity of the dataset, as shown in Table 1.(e
size of the time dimension of a single input sample is 5.17,
4.76, 23.33, and 18.94 days, respectively. (e maximum
length of the model input is set to 50 on all the four datasets.
(e actual input is not fixed and is determined by the length
of the input trajectory.

6 Complexity
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To show the check-in situation of users in the dataset
more intuitively, we draw the cumulative distribution of the
check-in quantity over four datasets, which is shown in
Figure 3. We can see that the cumulative distribution of the
check-in frequency of four datasets is similar to power-law
distribution [26, 29]. It can also be seen that the distribution
of two cities collected on the same platform is closer, for
example, New York and Tokyo collected from Foursquare
and Los Angeles and Boston collected from Gowalla. (e
New York and Tokyo datasets from Foursquare and the Los
Angeles and Houston datasets from Gowalla have more
users with less than 100 check-ins. About 90% of users in
four city datasets have less than 600 check-ins frequency.

5.2. Baselines. To demonstrate the effectiveness of our
model, we compare to the following location prediction
methods:

(i) STRNN [3]. It is an extended RNNmethod that can
model local temporal and spatial contexts.

(ii) DeepMove [6]. It is a recent location prediction
method to learn user periodical patterns with at-
tention mechanism and the recurrent neural
networks.

(iii) VANext [11]. It is a location prediction method for
variational attention mechanism and leverage CNN
to learn historical mobility RNN to learn recent
check-in preference.

(iv) Flashback [30]. It is a general RNN architecture
design for modeling sparse user mobility traces by
doing flashbacks on hidden states in RNNs.

(v) STSAN is a model we proposed, which can integrate
spatial-temporal information with the self-attention
for location prediction.

5.3. Evaluation Metric. Given the trajectory of the user
before the current time, location prediction aims at pre-
dicting the next location of a user. Intuitively, a good model
is to be able to restore the actual ground records more
realistically. Hence, we use the prediction accuracy [6, 31] to
measure the performance.

Formally, given the user set U and the candidate loca-
tions set C, for each user, and given the initial location v1, we
predicted the next continuous Lu − 1 locations. (e pre-
diction accuracy is calculated as follows:

Acc@k �
1

|U|
􏽘

ui∈U

1
L

ui − 1
􏽘

Lui

t�2
vt ∈ S

ui

t (k)( 􏼁, (21)

where S
ui

t (k) is a set of top-k locations for user ui in time step
t, vt is real visited location for user ui in time step t, and Lui is
the history trajectory length for user ui. When vt in the set
S

ui

t (k), the expression value is 1; otherwise, it is 0.
Moreover, similar to the previous work, we apply av-

erage percentage rank (APR) [27, 32] as another metric to
measure the overall ranking performance of the model. (e
average percentage rank (APR) is calculated as follows:

APR �
1

|U|
􏽘

ui∈U

1
L

ui − 1
􏽘

Lui

t�2

|V| − rankui vt( 􏼁 + 1
|V|

, (22)

where rankui (vt) denotes the rank of candidate location vt

for user ui in timestamp t after sorting |V| locations in
decreasing order.

5.4. ImplementationDetails. We partition each dataset into a
training set and a test set. For each user, we use the first 80%
subtrajectory as the training data and the remaining 20% as
the test data. We implement our model with PyTorch. All
experiments are conducted on an NVIDIA Tesla P4 GPU
and a 64G CPU on the Ubuntu system. We use RMSProp
adaptive learning rate optimization algorithm [33] and the
Reduce LROnPlateau learning rate adaptation method. We
clip the L2 norm of vector composed of several parameters of
gradient to alleviate the problem of gradient explosion. To
prevent overfitting, we use L1 regularization, weight decay,
and dropout [34] to improve the performance of the neural
network by preventing the interaction of feature detectors.
For the objective function, we set the weighting factors
λ1 � 1e− 4, λ2 � 1e− 5, dropout rate 0.5, the initial learning
rate to 2e− 5, the embedding dimension of location dp � 512,
the hidden size d � 512, distance threshold ε� 20, spatial
factor β� 1.0, temporal factor c � 1.0, the decay of learning
rate 0.1, gradient clip 1.0, and the max epoch 50.

Table 1: Statistics of datasets.

Foursquare Gowalla
City New York Tokyo Los Angeles Houston
Users 1,082 2,293 1,057 821
Locations 34,440 56,106 10,657 10,282
Records 184,509 449,640 46,397 45,553
Loc./user 32 24 10 12
Sparsity 0.5684 0.6536 0.0813 0.1027
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Figure 3: Cumulative distribution function of check-in number.
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5.5. Performance Comparison. We evaluate our model with
the baseline methods on four city check-ins datasets to
present the performance of our model. Different parameter
settings do have an impact on the final performance of the
model. Table 2 shows the basic parameter settings of the
STSAN model on four datasets when compared with the
baselines, and the performance comparison is shown in
Figure 4.

Our proposed model STSAN achieves the best perfor-
mance on four datasets with all evaluation metrics, which
illustrates the superiority of our model. Take the New York
City dataset; for example, STSAN achieves 39.8% on Acc@1,
51.6% on Acc@5, 53.3% on Acc@10, and 4.4% on APR over
VANext [11], which performs the second best. STRNN is an
RNN model which incorporates spatial-temporal context.
However, these methods do not explicitly model user’s
historical visit patterns. STRNN has employed recurrent
networks to capture long-term POI dependency, and it
cannot deal with very long history trajectories well because
of the inherent gradient disappearance problem of recurrent
networks. (erefore, the main advantage of DeepMove is
that it leverages attention network on historical trajectories.
Previous techniques try to improve RNNs by considering
spatial-temporal context. (e context-parameterized tran-
sition matrices or gates are used to fuse the spatial-temporal
context to simplify the temporal periodicity and spatial law.
Flashback [30] is to model the sparse user movement tra-
jectory by flashbacking the hidden state in RNN. VANext
not only effectively captures short-term human mobility
patterns but also leverages variable attention and CNN
networks to generate better historical trajectory represen-
tation. It significantly outperforms these previous methods.
(erefore, it achieves the best performance than all previous
methods. From the results, the performance of the two more
sparse datasets (Los Angeles and Houston) is significantly
worse.(e reason is the model may not be able to get enough
data to train, which leads to overfitting problem. For our
model STSAN, the performance on sparse datasets has
achieved better results on Acc@1. From the latter analysis,
we know that the spatial attentionmodule of the model plays
a great role.

5.6. Impacts of Spatial and Temporal Attention. To study the
influence of temporal and spatial characteristics on the
framework, we split the model into three variants: (1) spatial
self-attention network (SSAN), which is the network
structure without considering the temporal attention
module; (2) temporal self-attention network (TSAN), which
is the network structure without considering the spatial
attention module; (3) self-attention network (SAN), which is
the network structure without considering the spatial at-
tention and temporal attention module.

Both Tokyo and New York from foursquare perform
similarly, and Houston and Los Angeles from Gowalla
perform similarly. (erefore, limited to the length of the
article, the article only gives two cities as representatives.
Figure 5 shows the performance of STSAN and three var-
iants on the New York and Los Angeles datasets. For the

New York dataset, we can see that, with the increase in the
epoch, the performance of the four models keeps improving,
and after about 10 epochs, they tend to be stable. (e
performance of TSAN leads SSAN and SAN, so it can be seen
that time information is more important than space in-
formation on the New York dataset. What is more, we are
surprised that STSAN and SSAN both add spatial attention
based on the original model, but STSAN brings more
performance improvement. When time information and
space information are added to the model at the same time,
the result of one plus one is greater than two. Finally, we can
get the exact conclusion that the performance is
STSAN>TSAN> SSAN> SAN on the New York dataset.
For the Los Angeles dataset, SSAN leads TSAN and SAN in
performance, but TSAN converges faster. Finally, the per-
formance is STSAN> SSAN>TSAN> SAN on the Los
Angeles dataset. For different city datasets, spatial and
temporal information is not the same for the performance of
the model. (e reason may be that the spatial information is
too complex and not captured well for the New York dataset
with more candidate locations.

(e STSAN has achieved the best performance on all
datasets, which proves the importance of using spatial-
temporal information modeling. On the one hand, in sparse
datasets, spatial factors are more important for model
performance improvement. On the other hand, the time
factor can help the model converge quickly.

5.7. 8e Effect of Hyperparameter Settings

5.7.1. Effect of ε and β. (e distance threshold ε controls the
influence of geographic distance on our model. In general,
Figure 6(a) shows that the performance of the model on the
four datasets has improved with the increase in distance and
the performance improvement on sparse datasets (Los
Angeles and Houston) is more significant. We can see that
users in different cities have different preferences for dis-
tance. Under the default parameter settings, it is more
suitable to set ε to 30 and 60 on Los Angeles and Houston
datasets, respectively. (e spatial factor β controls the in-
fluence degree of geographic information on our model. We
can see that the accuracy increases in different degrees with
the growth of β in the four datasets. (e spatial geographic
location information is very helpful to improve the accuracy
of the model. We also successfully capture it with spatial
attention.

5.7.2. Effect of c. Figure 6(b) shows the APR and Acc@10 for
various c that control the influence of degree of temporal
information while keeping other optimal hyperparameters

Table 2: Parameters setting on four datasets.

c β ε H d
New York 1.0 1.0 40 8 512
Tokyo 1.0 1.0 20 32 768
Los Angeles 0.8 0.8 50 2 704
Houston 0.8 0.9 60 1 640
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unchanged. As the factor c grows, our model performance
grows on the Foursquare datasets. However, it can be seen
that, in the Gowalla datasets, the upper limit of model
performance appears with the increase in factor c, and when

c takes 1.0 in the Houston dataset, there is a significant
decline, which shows that c has an optimal value 0.9. (e
reason for this phenomenon may be that the Gowalla
datasets are more sparse and the time span is larger than that
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of Foursquare, which makes the mining of time information
more difficult.

5.7.3. Effect of h and d. Figure 6(c) shows the APR per-
formance on four datasets when we vary parameters h and d,
respectively. (e projection of multiple subspaces can im-
prove the performance, but not obvious, and the optimal h is
different in different datasets. On the Foursquare dataset,
with the increase in the hidden layer dimension, the ac-
curacy of the model shows an upward trend. However, on
the Gowalla dataset, the larger dimension of the model does
not bring better accuracy. We analyze that the reason for this
may be that more parameters are added to the dimension,
which makes the model appear as overfitting problem earlier
on the more sparse datasets.

6. Conclusions

In this paper, we proposed a novel network named STSAN
(spatial-temporal self-attention network), which can inte-
grate spatial and temporal information with the self-at-
tention for location prediction. Our model can learn the
dynamic representation of the user’s trajectory by capturing
the sequential transitions pattern of the user’s trajectory and
integrating the user’s geographical preference and time
correlation. It makes better use of spatial and temporal
information to mine the user’s trajectory, which is helpful to
improve the accuracy of location prediction on sparse data
and alleviates the problem of data sparsity. We experi-
mentally evaluate our STSAN model using four datasets
collected from Foursquare and Gowalla. (e experiment
results show the superiority of our approach over various
baseline approaches, and it is more prominent in sparse
datasets. In addition, we verified the influence of various

parameters in STSAN on experimental performance
through a large number of experimental results. STSAN
introduces the self-attention mechanism and integrates
spatiotemporal information, but it introduces a lot of rel-
evant parameters to increase the difficulty in parameter
adjustment. In the future, we plan to explore the application
of federated machine learning on location prediction and
extend our STSAN model to a privacy-aware version. In
addition, more contextual information such as knowledge
graph is also worth being incorporated into our model in
order to enhance the interpretability of the model.

Data Availability

Foursquare dataset contains check-ins in NYC and Tokyo
collected for about 10 months (from 12 April 2012 to 16
February 2013). It contains 227,428 check-ins in New York
City and 573,703 check-ins in Tokyo. Each check-in is
associated with its timestamp, its GPS coordinates, and
(https://www.kaggle.com/chetanism/foursquare-nyc-and-
tokyo-checkin-dataset) Gowalla dataset. (is dataset is
collected for about 18 months (from 1 February 2009 to 31
October 2010). It contains 6,442,890 check-ins with its
timestamp and its GPS coordinates. We select the check-
ins in Los Angeles and Houston as experiment dataset
(http://snap.stanford.edu/data/loc-gowalla.html).
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