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We present a new viable nonlinear chaotic paradigm. )is paradigm has four nonlinear terms. )e essential features of the new
paradigm have been investigated. Our new system is confirmed to have chaotic behaviors by calculating its Lyapunov exponents.
)e relations of the system states are displayed by a suggested new signal flow graph (SFG). )e proposed SFG is discussed via
some graph theory tools, and some of its hidden features are calculated. In addition, the system is realized via constructing its
electronic circuit which helps in the real applications. Also, a robust controller for the system is designed with the aid of a
genetic algorithm.

1. Introduction

)e first noteworthy autonomous chaotic paradigm was
proposed by Lorenz in 1963 to model the dynamics of the
atmospheric convection with three connected differential
equations [1]. Subsequent, Rossler constructed 3D chaotic
paradigm with single cross-product nonlinear term [2].
Another 3D chaotic paradigm called the Chen model was
constructed by Chen and Ueta in 1999, and they proved that
it is a dual and not equivalent to the Lorenz model [3]. After
that, in 2002, Lü, in [4], constructed an important chaotic
paradigm between Lorenz and Chen models, and then the
generalized Lorenz model [5] was constructed as a link of
Lorenz, Chen, and Lü paradigms. Few years ago, a novel 3D
chaotic paradigm with complicated chaotic behavior and
interesting features was constructed by Qi et al. in [6].
During the last ten years, constructing and studying new
chaotic paradigms have attracted many researchers in

various fields because the chaos phenomena have been
found in several modern applications such as communi-
cation algorithms, signal processing, nonlinear networks,
and chemical and biological structures. In addition, several
real applications come up to several new and interesting
research points as chaos control techniques [7, 8] and
synchronization of chaos systems [9, 10].

)e 2D autonomous systems cannot have chaos features
as demonstrated by Poincare–Bendixson theorem [11]. Also,
in [12], the authors have proved that 3D dissipative qua-
dratic models represented by ODEs, with total four terms at
the right-hand side, cannot have chaos features. After that, in
[13], Sprott suggested one quadratic nonlinear term chaotic
model in which the right-hand side contains only five terms.
From algebraic point of view, the system is considered the
simplest chaotic model. )e most interesting challenge is to
design a 3D autonomous quadratic chaotic paradigm having
complicated attractor entity. So, we hope to introduce a new
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chaotic nonlinear model with seven terms at the right-hand
side and four of them are nonlinear.

)e following conditions are satisfied by the chaotic
models [14, 15]: (i) very sensitive to starting conditions; (ii)
have a single positive Lyapunov exponent. Due to the high
capacity, high security, and high efficiency of dealing with
chaotic systems, it has widely potentially utilized in non-
linear circuits, secure communications, lasers, neural net-
works, biological systems, and so on; then, studying chaotic
nonlinear models is quite significant these days [16, 17].

Representing the complicated paradigms by their signal
flow graph is very helpful. It helps in understanding the
structure and the complexity of the paradigm using the tools of
the graph theory [18]. In directed graph theory, finding directed
cycles in the graph is known as a common source of complexity
[19]. )ose cycles are significant in the context of engineering
structures. Specially, they are significant providers of com-
plexity. For instance, cycles can produce positive feedback
loops [20], which drive the system to be unstable. Cycles in
engineering paradigms also increase the complexity of design
and analyse the context of simulation convergence [19]. )ere
are several studies in the literature on graph complexity criteria
[19]. Such criteria can either directly or indirectly be linked to
the values of eigenvalues of the studied graph matrices.

In real life and in process control, it is very important to
control systems in order to work in a desired stable steady
operating situation. All of the following are examples of the real
processes that need to operate in a predetermined states,
adjusting satellite orbits, controlling missile tracks in military
applications, in space applications, and in industry also where it
is important to control temperature, pressure, and other
process variables at specific operating values. Consequently,
track control methods of chaotic paradigms have taken a great
attention. In [21], Yang, Chen, and Yau proposed a track
controller for Lorenz structure. )eir reference values were
suggested to obey certain constraints which has restricted the
applicability of their controller. In [22], Gao developed a track
controller in such a way to avoid the constraints of the method
in [21]. In [23], a novel strategy for complete and phase robust
synchronizations of chaotic nonlinear systems based on single-
state feedback track synchronization control technique and
genetic algorithm was proposed. More studies on control of
nonlinear systems can be found in [24–28]. Different control
strategies can be found in [29–32].

)e contribution and addition to this paper is to present a
new chaotic nonlinear mathematical model. )is model has
applications in engineering and communications, and we will
prove this by making an electronic circuit for this model. Here,
we follow the same strategy to design a new track controller in
order to drive the proposed chaotic system to follow any
desired reference points. )is control technique is designed
using one state variable as a feedback variable which reduces
the needed sensors and make it easy to implement in real and
also minimize the cost.

)e remaining parts of our work are organized as
follows: the model description and its basic properties are
investigated in five sections in Section 2. )e proposed
SFG of the system and its discussion are studied in Section
3. Designing the electronic circuit that implements the

system is presented in Section 4. )e method of single-
state feedback control for the proposed system is pre-
sented in Section 5. )e robustness of the proposed
controller is studied and discussed in Section 6. )e
conclusion of our study is put at the end of the paper
before the list of cited references.

2. System Characterization and Its
Basic Features

At first, we suggest a novel three-dimensional autonomous
paradigm:

_x1(t) � a1 x2(t) − x1(t)( 􏼁 + x2(t)x3(t),

_x2(t) � a2x2(t) − a3x1(t)x3(t),

_x3(t) � a4x
2
1(t) − a5x3(t),

(1)

where (x1(t), x2(t), x3(t)) ∈ R3 and a1, a2, a3, a4, a5 are real
parameters.

System (1) has the following essential dynamical features.

2.1. System (1) Generalized Hamiltonian. Smooth nonlinear
system (1) is considered, given in the following formula:

_x � α(x)
zH
zx

+ σ(x)
zH
zx

, (2)

where x � [x1(t), x2(t), x3(t)]T, H(x) is smooth energy
function and universally positive definite, and (zH/zx) is a
column gradient vector of H(x).

By using energy function in quadratic formula, we have

H(x) �
1
2
xT

cx, (3)

where c signifies a constant diagonal matrix, which is
symmetric and positive definite, with respect to
(zH/zx) � cx, α(x) is antisymmetric matrix representing
the vector field of the workless part, and σ(x) is a symmetric
matrix, a negative definite, representing the working or
nonconservative part of the system:

α(x) � [− α(x)]
T
,

σ(x) � [σ(x)]
T
.

(4)

Define H(x) of the model in (1) as

H(x) �
1
2

x1(t)

− a3x3(t)x2(t)
􏼠 􏼡

2

+
x2(t)

− a3x3(t)
􏼠 􏼡

2

+ x3(t)( 􏼁
2⎡⎣ ⎤⎦,

_x1(t)

_x2(t)

_x3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� A

x1(t)

− a3x3(t)x2(t)

x2(t)

− a3x3

x3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ B

x1(t)

− a3x3(t)x2(t)

x2(t)

− a3x3

x3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)
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where

A �

0
1
2

− a3x3(t)( 􏼁 a1 + x3(t)( 􏼁 −
1
2
a4x1(t)x2(t) − a3x3(t)( 􏼁

−
1
2

− a3x3(t)( 􏼁 a1 + x3(t)( 􏼁 0 −
1
2
a3x1(t)

1
2
a4x1(t)x2(t) − a3x3(t)( 􏼁

1
2
a3x1(t) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

a1a3x3(t)x2(t)
1
2

− a3x3(t)( 􏼁 a1 + x3(t)( 􏼁
1
2
a4x1(t)x2(t) − a3x3(t)( 􏼁

1
2

− a3x3(t)( 􏼁 a1 + x3(t)( 􏼁 − a2a3x3(t) −
1
2
a3x1(t)

1
2
a4x1(t)x2(t) − a3x3(t)( 􏼁 −

1
2
a3x1(t) − a5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

)e existence of the Hamilton in model (1) implies its
ability to model natural phenomena.

2.2. Invariance and Symmetry of the Proposed Model. For
system (1), the transformation (x1(t), x2(t),

x3(t))⟶ (− x1(t), − x2(t), x3(t)) implies that the system is
invariant.

)en, if (x1(t), x2(t), x3(t)) is a solution of model (1),
then (− x1(t), − x2(t), x3(t)) is a solution of the same model
too.

2.3. Dissipation of Proposed Model (1). )e divergence of
proposed paradigm (1) is

∇ · V �
z _x1(t)

zx1(t)
+

z _x2(t)

zx2(t)
+

z _x3(t)

zx3(t)

� − a1 + a2 − a5.

(7)

)en, proposed chaotic paradigm (1) is dissipative such
that

− a1 + a2 − a5 < 0. (8)

2.4. Fixed Point and Its Stability of Proposed Model (1).
Solving the following system of equations leads to the
equilibria of system (1):

0 � a1 x2(t) − x1(t)( 􏼁 + x2(t)x3(t),

0 � a2x2(t) − a3x1(t)x3(t),

0 � a4x
2
1(t) − a5x3(t).

(9)

System (1) has a trivial fixed point E0 � (0, 0, 0).

In order to examine the stability of E0, the Jacobian
matrix of proposed model (1) at E0 is

JE0
�

− a1 a1 0

0 a2 0

0 0 − a5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (10)

the characteristic equation of JE0
is

λ + a1( 􏼁 λ2 + λ a5 − a2( 􏼁 − a2a5􏽨 􏽩 � 0, (11)

and as a result, the characteristic equation of JE0
has the

following three eigenvalues:

λ1 � − a1, λ
2

+ λ a5 − a2( 􏼁 − a2a5 � 0. (12)

By applying Routh–Hurwitz theorem, the trivial fixed
point is stable if and only if

a1 > 0, a5 − a2 > 0, and − a2a5 > 0. (13)

So, the constraints making the trivial fixed point stable
are

a1 > 0, a5 > a2, and a2a5 < 0, (14)

otherwise it is unstable.

2.5. Calculating Lyapunov Exponents for Proposed Model (1).
Proposed model (1) can be written in vector notation as

_X(t) � h(X(t); η). (15)

Such that X(t) � [x1(t), x2(t), x3(t)]T presents the
vector of state space, h � [h1, h2, h3]

T, η presents the pa-
rameters, and [. . .]T signifies matrix transpose operation.
)e deviations from the X(t) trajectory are given in the
following equation:

Complexity 3



δ _X(t) � Jij(X(t); η)δX, i, j � 1, 2, 3, (16)

where Ji,j � (zhi/zxj) is the Jacobian matrix and takes the
following form:

Ji,j �

− a1 a1 + x3(t) x2(t)

− a3x3(t) a2 − a3x3(t)

2a4x1(t) 0 − a5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (17)

)e Lyapunov exponents Li of the system are defined by

Li � lim
t⟶∞

1
t
log

δxi(t)
����

����

δxi(0)
����

����
. (18)

Numerically solve equations (14) and (15) simulta-
neously to find Li. Order 4 Runge–Kutta algorithm is utilized
to estimate Li.

)e system parameters are selected as follows: a1 � 10,
a2 � 5, a3 � 4, a4 � 2, and a5 � 3 where the initial values are
chosen as x1(0) � 1, x2(0) � 2, and x3(0) � 3. )e Lya-
punov exponents are estimated as follows: L1 � 1.01, L2 � 0,
and L3 � − 12.5.

)is implies that our proposed system (1) for this se-
lection of the parameters a1, a2, a3, a4, and a5 is a chaotic
paradigm because it has one positive Lyapunov exponent.

Figure 1 proves that our proposed model (1) is chaotic.
Solving system (1) numerically, for specific selections of the
parameter values, it is clear that it has chaotic behavior in
specific domains where initially nearby trajectories break
away exponentially with time. For example, Figure 1(a)
displays two such numerically evaluated solutions of (1),
where we give only the (t, x1(t)) plot. )e chaotic behavior
of those solutions is confirmed from the fact that the two
initially nearby orbits break away from each other expo-
nentially at about t � 15. As shown in Figure 1(b), model (1)
has a chaotic attractor. In Figure 1(b), we plot the motion in
the 3-dimensional space (x1(t), x2(t), x5(t)).

In Figure 2, we fix a2 � 5, a3 � 4, a4 � 2, and a5 � 3 and
vary a1 ∈ [1, 30]. From Figure 2, it is clear that system (1) has
periodic solution when a1 ∈ [1, 8.4]. )e chaotic attractors
appear when a1 ∈]8.4, 19.3]. If a1 ∈]19.3, 30], our system has
fixed point solutions. Figure 2 proves that our new system
contains chaotic solutions over a wide period a1 ∈]8.4, 19.3].
As we did with the a1 parameter, we did with the rest of the
parameters. And because we got almost the same results, we
will not display the results for the rest of the parameters.

In Figure 2, we find chaotic attractors, periodic attrac-
tors, and fixed point solutions of system (1). To check this,
we have solved numerically (16) (using, e.g., Mathematica 7
software) in several cases and excellent agreements are found
with the results of Figure 2. For example, choosing a2 � 5,
a3 � 4, a4 � 2, and a5 � 3, with the initial conditions t0 � 0,
x1(0) � 1, x2(0) � 2, and x3(0) � 3, and when a1 � 7, the
solution of system (1) has periodic solution trivial fixed point
(see Figure 3(a)), chaotic attractor when a1 � 10 as in
Figure 3(b). In Figure 3(c), a1 � 27, the solution is fixed
point.

3. System Signal Flow Graph

Representing the complex systems graphically is useful for
understanding the relationship between its components.
Our system components are its direct state variables x1, x2,
and x3 in addition to the combined three states x2

1, x1x3, and
x2x3.

Each state variable is represented by a vertex in the
digraph G of system (1). )e edge (u, v) ∈ G iff (zv/zu) ≠ 0.
)en, the adjacency matrix of G is an image of the rela-
tionships between the system state variables of system (1).
Figure 4 shows the proposed graph of the studied system.

)e following is the weighted adjacency matrix, A(G), of
the system’s proposed graph:

A(G) �

x1

x2

x3

x
2
1

x1x3

x2x3

− a1 0 0 1 1 0

a1 a2 0 0 0 1

0 0 − a5 0 1 1

0 0 a4 0 0 0

0 − a3 0 0 0 0

1 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

)e eigenvalues of the matrix in (9) can be used to
compute the energy of the digraphG (see [19]). To compute
the energy of the proposed graph, we follow the method
explained in [19] (page 6).

Firstly, formulate the adjacency matrix of the system
graph M where

Mij �
1, for any edge (u, v), u≠ v of the graph;

0, otherwise.
􏼨

(20)

)en,

M(G) �

x1

x2

x3

x
2
1

x1x3

x2x3

0 0 0 1 1 0

1 0 0 0 0 1

0 0 0 0 1 1

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

)e energy EG of the graph G is calculated via the
following formula [19]:

EG �
1

|E|
􏽘

|E|

k�1
wk

⎛⎝ ⎞⎠ 􏽘 SVD(M(G)), (22)

where |E| is the number of edges in G, w|E| is the edge
weights, and SVD(M(G)) is a vector of singular values of
matrix. For more details about graph energy, see [19].

Let λ1, λ2, . . . , λn are the eigenvalues of thematrixMTM,
with repetitions. Order these so that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,
assuming υi �

��
λi

􏽰
, then υ1 ≥ υ2 ≥ · · · ≥ υn ≥ 0, and they are

the components of the SVD. )en,

4 Complexity



SVD(M(G)) � [3.5321, 2.3473, 1.0, 1.0, 0, 12061]. (23)

)en, EG � 4.5, that can be used as measure of the
system complexity.

4. System Realization Using NI Multisim

In this section, we realize the studied system using NI
Multisim and its electronic circuit is designed as shown in
Figure 5. )e circuit consists of three integrators symbolized
as X1, X2, and X3 all of which are constructed using the 741
OP. AMP; three summers S1, S2, and A3 each of which has
three inputs and one output; two multipliers symbolized
with X1X3, X1X1, and X2X3 each of which has two inputs
and one output; three 1 micro Farad capacitors C1, C2, and
C3 where it is initially charged by 1, 2, and 3 volts, re-
spectively, to realize the initial conditions of the studied
system; and ten resistors R1, R2, . . ., R10, where R1, R3, R5,
R7, R8, R9, and R10 are equal 10 kohms and R2, R4, and R6
are equal 100 kohms. )e input and output gains of the
summers are designed as follows (Table 1) in order to realize

the studied system. Figure 6 shows the phase portrait of the
state variable x2 with respect to the state variable x1. Figure 7
shows the phase portrait of the state variable x3 with respect
to the state variable x1. Figure 8 shows the phase portrait of
the state variable x3 with respect to the state variable x2.

Table 2 shows the designed values of input/output gains
of the used multipliers.

5. Single-State Feedback Control for the
Proposed System

5.1. Controller Design. In this section, we designed a ref-
erence point-based single-state feedback controller. )e
suggested controller will drive the states of the proposed
chaotic model to follow the desired predetermined reference
values.)e proposed controller’s input consists of the output
and the states of the chaotic system. )e output of the
controller is used as an input of the controlled chaotic
system.

In [21], the proposed controller was depended on the
sliding-mode technique and the Lorenz system states were
derived to track the reference values but under some
constraints which limit its real applications. In [22], the
author proposed a track controller by which the Lorenz
system states were derived to follow any of their pre-
determined reference values. In this work, a reference
value single-state feedback controller is to be constructed
in such a way that the proposed chaotic model states will
be derived to track any desired reference values without
any constraints.

Here, it is proposed that the state x2 of the studied
system is the only state that can be easily measured. For
studied system (1), a novel reference point-based single-state
feedback controller is designed as follows:

C1 � − a1x2r + a1x1r − x2rx3r,

C2 � k x2 − x2r( 􏼁 − a2x2r + a3x1rx3r,

C3 � − a4x
2
1r + a5x3r,

(24)
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Figure 1: (a) Two numerically calculated solutions of (1) for a1 � 10, a2 � 5, a3 � 4, a4 � 2, and a5 � 3 with t0 � 0, x1(0) � 1, x2(0) � 2, and
x3(0) � 3 (solid curve) and x1(0) � 1.001, x2(0) � 2, and x3(0) � 3.001 (dotted curve). Note the exponential separation that becomes clear
at t � 15, clearing the chaotic manner of the system orbits. (b) 3-dimensional chaotic attractor in (x1(t), x2(t), x3(t)) space.
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Figure 2: L1, L2, and L3 versus a1, a1 ∈ [1, 30] and a2 � 5, a3 � 4,
a4 � 2, and a5 � 3 with the same initial conditions in Figure 1.
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where xir is the desired reference value of the system state xi

for all i ∈ 1, 2, 3{ } and k is the controller gain.
In (24), the closed-loop feedback is constructed only

using the second state variable x2. Hence, it is called single-
state feedback controller.

)e controlled system via the proposed controller
becomes

dx1

dt
􏼠 􏼡 � a1x2 − a1x1 + x2x3 + C1,

dx2

dt
􏼠 􏼡 � a2x2 − a3x1x3 + C2,

dx3

dt
􏼠 􏼡 � a4x

2
1 − a5x3 + C3.

(25)

Assume that xir denotes the desired reference value of
the state variable xi where i � 1, 2, 3. And let
Ei � xi − xir: i � 1, 2, 3􏼈 􏼉 is the errors set between the
system state variable and their references. )en, putting
x1 � E1 + x1r, x2 � E2 + x2r, and x3 � E3 + x3r in (25), the
control error dynamical system can be derived as follows:

dE1

dt
􏼠 􏼡 � a1E2 − a1E1 + E2E3 + x3rE2 + x2rE3,

dE2

dt
􏼠 􏼡 � a2 + k( 􏼁E2 − a3E1E3 − a3x3rE1 − a3x1rE3,

dE3

dt
􏼠 􏼡 � a4E

2
1 + 2a4x1rE1 − a5E3.

(26)

It is clear that the Eo � (0, 0, 0) is an equilibrium of
error dynamical system (26) and its Jacobian matrix can be
written as

J(E) �

− a1 a1 + E3 + x3r E2 + x2r

− a3E3 − a3x3r a2 + k( 􏼁 − a3E1 − a3x1r

2a4E1 + 2a4x1r 0 − a5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J E0( 􏼁 �

− a1 a1 + x3r x2r

− a3x3r a2 + k( 􏼁 − a3x1r

2a4x1r 0 − a5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(27)
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Figure 3: With the same initial conditions in Figure 1. (a) Periodic solution in (x1(t), x3(t)) plan, a1 � 7. (b) Chaotic solution in
(x1(t), x3(t)) plan, a1 � 10. (c) Fixed point solution in (x1(t), x3(t)) plan, a1 � 27.
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If the controller gain k can be calculated such that the
eigenvalues of the Jacobian matrix 16 are all stable, the
control errors E1, E2, and E3 will be stable asymptotically at

its equilibrium E0 � (0, 0, 0). )is imply that the system
states x1, x2, and x3 will follow their desired reference values
x1r, x2r, and x3r, respectively.
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Figure 4: Proposed signal flow graph of the proposed chaotic system.
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)en, our task is to calculate the suitable value of the gain
k. Our result is written in the following result.

Theorem 1. Let Ω � a3x
2
3r + a1a3x3r − a1a2 + a1a5 − a2a5

− 2a4x1rx2r, Φ � a3a5x
2
3r − a1a2a5 + 2a3a4x3rx

2
1r + a1a3a5

x3r + 2a1a3a4, a � (a1 + a5), b � (− Ω − a2
1 − a2

5 + a1a2−

a1a5 + a2a5 − 2a4x1rx2r), and c � (Ωa5 +Ωa1 − Φ − Ωa2).
@e states of studied system (1) can follow any desired pre-
determined values x1r, x2r, and x3r via the proposed controller
12, if the controller gain k is adjusted such that

k<min a1 − a2 + a5( 􏼁,
Φ

a1a5 − 2a4x2rx1r

,
− b −

�������
b
2

− 4ac
􏽰

2a

⎧⎨

⎩

⎫⎬

⎭.

(28)

Proof. Studied system (1) has the following characteristic
equation at its equilibrium point:

Δ(λ) �

λ + a1 − a1 − x3r − x2r

a3x3r λ − a2 + k( 􏼁 a3x1r

− 2a4x1r 0 λ + a5

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0,

Δ(λ) �

λ + a1 − a1 − x3r − x2r

a3x3r λ − a2 + k( 􏼁 a3x1r

− 2a4x1r 0 λ + a5

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0,

(29)

Let β2 � (a1 − k − a2 + a5), β1 � − (a1 + a5)k +Ω, where
Ω � a3x

2
3r + a1a3x3r − a1a2 + a1a5 − a2a5 − 2a4x1rx2r and

β0 � a3a5x
2
3r − ka1a5 − a1a2a5 + 2a3a4x3rx

2
1r + 2ka4x2rx1r + a1a3a5x3r + 2a1a3a4x

2
1r + 2a2a4x2rx1r

� k 2a4x2rx1r − a1a5( 􏼁 +Φ,
(30)

where Φ � a3a5x
2
3r − a1a2a5 + 2a3a4x3rx

2
1r + a1a3a5x3r

+2a1a3a4.
)en, Δ(λ) can be written as

λ3 + β2λ
2

+ β1λ + β0 � 0. (31)

Applying Routh–Hurwitz stability criterion, the eigen-
values of (31) have negative real parts if and only if β2 > 0,
β0 > 0, and β2β1 − β0 > 0.

From β2 > 0 and β0 > 0, it is clear that

k< a1 − a2 + a5( 􏼁, and

k<
Φ

a1a5 − 2a4x2rx1r

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

Note that

β2β1 − β0 � a1 − k − a2 + a5( 􏼁 − a1 + a5( 􏼁k +Ω( 􏼁 − k 2a4x2rx1r − a1a5( 􏼁 +Φ( 􏼁, (33)

� a1 − k − a2 + a5( 􏼁 − a1 + a5( 􏼁k +Ω( 􏼁 − k 2a4x2rx1r − a1a5( 􏼁 +Φ( 􏼁

� a1 + a5( 􏼁k
2

+ k − Ω − a
2
1 − a

2
5 + a1a2 − a1a5 + a2a5 − 2a4x1rx2r􏼐 􏼑

+ Ωa5 +Ωa1 − Φ − Ωa2( 􏼁

� ak
2

+ bk + c,

(34)

Table 1: )e input/output gains of the summers.

Input A gain Input B gain Input C gain Output gain
S1 − 10 1 10 1
S2 − 4 1 − 5 1
A3 2 0 3 1

8 Complexity



where a � (a1 + a5), b � (− Ω − a2
1 − a2

5 + a1a2 − a1a5
+a2a5 − 2a4x1rx2r), and c � (Ωa5 +Ωa1 − Φ − Ωa2).

From (33) and β2β1 − β0 > 0, we can derive that

k −
− b +

�������
b
2

− 4ac
􏽰

2a
⎛⎝ ⎞⎠ k −

− b −
�������
b
2

− 4ac
􏽰

2a
⎛⎝ ⎞⎠> 0, (35)

which implies that

k〈
− b −

�������
b
2

− 4ac
􏽰

2a
, or k>

− b +
�������
b
2

− 4ac
􏽰

2a
〉0. (36)

While concluding, to meet β2 > 0, β0 > 0, and
β2β1 − β0 > 0, the control gain can be selected as

k<min a1 − a2 + a5( 􏼁,
Φ

a1a5 − 2a4x2rx1r

,
− b −

�������
b
2

− 4ac
􏽰

2a

⎧⎨

⎩

⎫⎬

⎭,

(37)

which completes the proof. □

5.2. Case Studies of Reference Value-Based Control of the
Studied System

Case 1. x1r � x2r � x3r � 0
Applying)eorem 1, the controller gain can be calculated

and we can select it k � − 8. Proposed controller (24) is

Figure 6: Phase portrait of the state variable x2 versus the state variable x1.

Figure 7: Phase portrait of the state variable x3 with respect to the state variable x1.
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applied to studied system (1) at t � 30 secs. Figure 9 shows the
system states before and after applying control. It is obvious
that the proposed controller drives the state variables to follow
their reference values after applying it immediately.

Case 2. x1r � 10, x2r � − 10, x3r � 20
Applying)eorem 1, the controller gain can be calculated

and we can select it k � − 50. Proposed controller (24) is
applied to studied system (1) at t � 30 secs. Figure 10 shows
the system states before and after applying control. It is
obvious that the proposed controller drives the state variables
to follow their reference values after applying it immediately.

Case 3. x1r � − 6, x2r � 5, x3r � − 6
�
2

√

Applying)eorem 1, the controller gain can be calculated
and we can select it k � − 60. Proposed controller (24) is
applied to studied system (1) at t � 30 secs. Figure 11 shows
the system states before and after applying control. It is
obvious that the proposed controller drives the state variables
to follow their reference values after applying it immediately.

6. Robust Controller

In this section, a tracking robust controller is to be designed.
Since in practice, the uncertainties are unavoidable matter,
then it is important to design a robust single-state feedback
tracking controller for the studied system.

6.1. Robust Track Controller Algorithm Design. Suppose the
system parameters have some perturbations. )e fuzzy
studied system can be written in the following format:

dx1

dt
􏼠 􏼡 � a1 + Δa1( 􏼁x2 − a1 + Δa1( 􏼁x1 + x2x3 + C1,

dx2

dt
􏼠 􏼡 � a2 + Δa2( 􏼁x2 − a3 + Δa3( 􏼁x1x3 + C2,

dx3

dt
􏼠 􏼡 � a4 + Δa4( 􏼁x

2
1 − a5 + Δa5( 􏼁x3 + C3.

(38)

Simplifying (38), we get

dx1

dt
􏼠 􏼡 � a1x2 − a1x1 + x2x3 + Δa1 x2 − x1( 􏼁 + C1,

dx2

dt
􏼠 􏼡 � a2x2 − a3x1x3 + Δa2x2 − Δa3x1x3 + C2,

dx3

dt
􏼠 􏼡 � a4x

2
1 − a5x3 + Δa4x

2
1 − Δa5x3 + C3.

(39)

)e uncertainties are collected in a column vector u �

(u1, u2, u3)
T where u1 � Δa1(x2 − x1), u2 � Δa2x2

− Δa3x1x3, and u3 � Δa4x
2
1 − Δa5x3. Applying designed

controller (24) upon system (39), the new dynamics of the
tracking error will be as

dE1

dt
􏼠 􏼡 � a1E2 − a1E1 + E2E3 + x3rE2 + x2rE3 + u1,

dE2

dt
􏼠 􏼡 � a2 + k( 􏼁E2 − a3E1E3 − a3x3rE1 − a3x1rE3 + u2,

dE3

dt
􏼠 􏼡 � a4E

2
1 + 2a4x1rE1 − a5E3 + u3.

(40)

Figure 8: Phase portrait of the state variable x3 with respect to the state variable x2.

Table 2: )e input/output gains of the multipliers.

Output gain X gain Y gain
S1 1 1 1
S2 1 1 1
A3 1 1 1
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)at can be written as

dE1

dt
􏼠 􏼡

dE2

dt
􏼠 􏼡

dE3

dt
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− a1 a1 + x3r( 􏼁 x2r

− a3x3r a2 + k( 􏼁 − a3x1r

2a4x1r 0 − a5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

E2

E3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

E2E3 + u1

− a3E1E3 + u2

a4E
2
1 + u3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (41)

Let

E �

E1

E2

E3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A �

− a1 a1 + x3r( 􏼁 x2r

− a3x3r a2 + k( 􏼁 − a3x1r

2a4x1r 0 − a5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

U �

U1

U2

U3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

E2E3 + u1

− a3E1E3 + u2

a4E
2
1 + u3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(42)

)en, the Laplace transformation of the track control
error system _E � AE + U is given as follows:
E(s) � (sI − A)− 1U(s).

Since the controller gain has no effect upon the uncertain
terms U1 and U3, an improvement to the single-state
feedback controller is designed as follows:

C1 � k1 x2 − x2r( 􏼁 − a1x2r + a1x1r − x2rx3r,

C2 � k2 x2 − x2r( 􏼁 − a2x2r + a3x1rx3r,

C3 � k3 x2 − x2r( 􏼁 − a4x
2
1r + a5x3r.

(43)

Utilizing proposed robust controller (43) with disturbed
system (39), the closed-loop track control error dynamics are
given as
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Figure 11: State dynamics under the track control method with reference (10, − 10, 20) and the controller gain k � − 50, where the
controller is applied after 30 secs. (a) )e state variable x1; (b) the state variable x2; (c) the state variable x3; (d) track control errors E1, E2,
and E3.
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dE1

dt
􏼠 􏼡 � k1E2 + a1E2 − a1E1 + E2E3 + x3rE2 + x2rE3 + u1,

dE2

dt
􏼠 􏼡 � k2 + a2( 􏼁E2 − a3E1E3 − a3x3rE1 − a3x1rE3 + u2,

dE3

dt
􏼠 􏼡 � k3E2 + a4E

2
1 + 2a4x1rE1 − a5E3 + u3.

(44)

)at can be rewritten in a compact format as _E � BE + U

which equal the system

dE1

dt
􏼠 􏼡

dE2

dt
􏼠 􏼡

dE3

dt
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− a1 k1 + a1 + x3r( 􏼁 x2r

− a3x3r a2 + k2( 􏼁 − a3x1r

2a4x1r k3 − a5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

E2

E3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

E2E3 + u1

− a3E1E3 + u2

a4E
2
1 + u3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (45)

)en, the Laplace transform of (45) is got by
E(s) � (sI − B)− 1U(s).

Consequently, our aim now is to find the values of the
gains k1, k2, k3 in order to reduce the disturbances effects. To
accomplish this task, the following fitness function is to be
minimized:

f � 􏽘
i

siI − B( 􏼁
− 1

�����

�����si�jωdi

, (46)

where ωdi � 2πfi (i � 1, 2, . . . , ) are the dominant fre-
quencies related to the disturbances. We can calculate the
dominant frequencies using the known fast Fourier trans-
form (FFT) method [33].

Genetic algorithm [34] will be used here to minimize the
fitness function (46).

)e following is the process of finding the robust con-
troller gains k1, k2, and k3.

Algorithm of seeking the robust controller gains k1, k2,
and k3 is as follows:

(1) Determine the dominant frequencies for the feed-
back state variable x2

(2) Construct fitness function (46)
(3) )e nonlinear constraint is set as Re(λr) + θ≤ 0,

where for r � 1, 2, 3, λr are the eigenvalues of the
matrix and θ is to be set as a positive real value

(4) Utilize the GA toolbox in Matlab to choose the
optimal robust controller gains k1, k2, and k3

6.2. Numerical Simulation for the Robust Track Controller.
In the following simulations, the disturbances are taken
as

u1 � sin(2πt) x2 − x1( 􏼁 + noise;

u2 � sin(4πt)x1 + noise;

u3 � sin(6πt)x3;

(47)

where noise � n∗ (random number), n � s/(10(snr/20)), snr
is the signal to noise ratio that set as snr � 20 log(s/n) � 100,
and s is the standard deviation of x2.

For illustration, the references are selected to be
x1r � − 20, x2r � 40, and x3r � − 60. Using FFT, the dominant
frequencies of x2 are selected as f1 � 0.206653HZ;
f2 � 0.319979HZ; f3 � 0.333311HZ; f4 � 0.786614HZ;
f5 � 0.293313779HZ; f6 � 0.213319112HZ; f7 �

0.166655556 ; f8 � 0.193320445; and f9 � 0.219985334.
Figure 12 displays the spectrum of x2 using the FFTmethod.
)e selected dominant frequencies are used to construct fitness
function (46). θ is set to equal 3. Figure 13 shows the opti-
mization process via GA. )e selected gains are
k1 � − 116.67; k2 � − 332; k3 � − 68. Figure 14 shows the
system response before and after control with the corre-
sponding track errors. )e controller drives the states to follow
the reference values: x1r � x2r � x3r � 0. Figure 15 shows the
system response before and after control with the corre-
sponding track errors. )e controller drives the states to follow
the reference values: x1r � − 5; x2r � 5; x3r � − 6.
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7. Conclusion

In this work, the dynamics of a new proposed chaotic model
have been studied. )e new proposed model chaotic be-
haviors have been proved by calculating its Lyapunov ex-
ponents. )e proposed model has been studied via
discussing its symmetry and invariance, dissipativity, and

the stability of its fixed point plus its Lyapunov exponents.
)e proposed model has been confirmed to be chaotic. )e
proposed chaotic model complexity has been measured
using its SFG. )e proposed chaotic model has been con-
firmed to be realizable via constructing areal electronic
circuit that simulate its behavior. In addition, a new single-
state feedback controller has been designed in order to
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Figure 15: )e system response before and after control with x1r � − 5; x2r � 5; x3r � − 6: (a) the state variable x1 before and after control;
(b) the state variable x2 before and after control; (c) the state variable x3 before and after control; (d) track errors before and after control.
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Figure 14: )e system response before and after control with x1r � x2r � x3r � 0: (a) the state variable x1 before and after control; (b) state
variable x2 before and after control; (c) the state variable x3 before and after control; (d) the track errors before and after control.
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operate the system such that its states can follow a pre-
determined reference value. )e robustness of the proposed
controller has been discussed. )e proposed robust con-
troller has been constructed with the aid of the genetic al-
gorithm. For future work, we suggest utilizing the proposed
model in real applications such as secure communication
applications.
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