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In this paper, we study the radial neural network algorithm for low-carbon circular economy in forest area, design a coupled
development evaluation model, study its algorithmic ideas operation mode and the update formula obtained by standard al-
gorithm, and finally optimize the RBF neural network by particle swarm algorithm. After an in-depth analysis of the particle
swarm algorithm, an improved particle swarm algorithm is proposed to improve the search accuracy and capability of the
algorithm by nonlinearly adjusting the inertia weights and introducing the average extreme value factor, in response to the
problems of premature convergence and poor search capability that appear in the particle swarm algorithm.'rough the analysis
and evaluation of the interaction between industrial ecosystem and carbon emission, the main influencing factors of carbon
emission are identified, and the size andmagnitude of the influence of economic growth, industrial structure, energy intensity, and
energy structure on carbon emission are determined; the current situation of the industrial ecological structure is evaluated, and
the direction of optimization and adjustment of industrial economic structure, energy structure, and ecological structure is
clarified. We construct a multidimensional multiconstraint multimodel industrial ecological structure optimization prediction
model, set the development scenarios of economy and society, and optimize the prediction of low-carbon industrial ecological
structure in forest areas; based on the simulation analysis of the prediction results, we propose the direction of industrial ecological
structure adjustment and the path of industrial ecological system construction.

1. Introduction

'e massive emission of greenhouse gases, mainly carbon
dioxide, is the main culprit of global warming [1]. 'e in-
ternational community is actively exploring a sustainable
development path to effectively control carbon dioxide
emissions (referred to as carbon emissions, hereafter the
same) under the framework of the United Nations
Framework Convention on Climate Change [2]. CO2 is the
main factor causing global warming, and vegetation absorbs
CO2 and produces oxygen to exchange carbon with the
atmosphere to balance the CO2 in the atmosphere, but the
emergence of the industrial revolution has driven the change
of land use pattern, and deforestation has weakened the
carbon exchange function of vegetation [3]. At the same
time, the extensive use of fossil fuels for economic devel-
opment has led to a decrease in carbon uptake on the one
hand and an increase in carbon emissions on the other, thus

triggering global warming [4]. Industrialization is acceler-
ating and the population is growing, bringing about massive
exploitation and consumption of natural resources. 'ere is
a rapid increase of global wealth built on the premise of
massive consumption of global resources [5]. According to
statistics, three major energy sources, coal, oil, and natural
gas, account for more than 80% of the energy consumed
worldwide. 'e spread of the low-carbon concept has
opened new horizons for solving global warming and energy
problems. In the context of global climate change and energy
shortage, the UK was the first to propose the concept of a
“low-carbon economy” [6]. At the Copenhagen Summit,
leaders from more than 190 countries attended the meeting
and actively negotiated on the issue of carbon reduction [7].
Countries are actively taking measures to strengthen co-
operation, establish energy saving and emission reduction
targets, and vigorously develop clean energy sources such as
tidal energy instead of fossil energy. 'ere are many kinds of
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algorithms in use for radial-based neural networks, and, in
general, each has its advantages and disadvantages, and
researchers are struggling to find better algorithms [8]. After
studying various algorithms, it is found that the algorithms
almost all revolve around function network centre selection,
basis function width, and weight adjustment to perform
optimization. In the face of increasingly complex applica-
tions, classical algorithms have been difficult to meet the
daily needs, resulting in many evolutionary algorithms,
which belong to a bionic search algorithm with strong ro-
bustness, able to adapt to different problems and environ-
ments and to search for relatively efficient optimal solutions
[9]. Based on different biological principles, evolutionary
algorithms mainly include ant colony algorithms, particle
swarm algorithms, and genetic algorithms. Combining
evolutionary algorithms with neural networks is a relatively
hot and current topic in artificial intelligence [10].

Tikhamarine et al. used urban planning in Malaysia as an
example, and they found that a compact urban layout is
beneficial to the reduction of energy consumption and
carbon emissions [11]. 'e British scholar Lissak explored
how to achieve low-carbon economic development goals
from the perspective of spatial structure and argued that, in
the construction of low-carbon cities, it is important to focus
on the adaptation of urban development goals to low-carbon
technologies [12]. Tamoffo constructed a VAR model to
investigate the impact of GDP and energy consumption on
carbon emissions [13]. 'e results showed that energy
consumption is the main influencing factor and proposed to
develop and utilize new energy sources such as wind energy
and reduce the use of fossil energy to promote the devel-
opment of a low-carbon economy [14]. Salam used the Lotka
Volterra model and the PETmodel, respectively, and found
that there is a positive correlation between population
growth and the simultaneous increase in carbon emissions
[15]. Yousefpoor analysed carbon emissions from a per
capita perspective based on the fixed-effects model and
concluded that industries such as energy and chemical in-
dustries have the highest correlation coefficients with per
capita emissions and are the most important influencing
factors of per capita emissions [16]. Regarding the coun-
termeasures of carbon emission reduction, foreign scholars
mainly focus on the macroeconomic policy of carbon
emission reduction, carbon emission trading mechanism,
the low-carbon legal system, and low-carbon financial
policy. For example, there are three main types of macro-
economic research models on the intrinsic influence
mechanism of carbon emissions on economic growth: op-
timal growth model, comprehensive evaluation model, and
general equilibrium model [17]. 'e previous studies have
provided rich experiences and results for later generations,
which play a good reference role, especially on the mea-
surement methods of carbon emissions, and the Intergov-
ernmental Panel on Climate Change (IPCC) compiled the
greenhouse gas. 'e IPCC Greenhouse Gas Inventory
Guidelines have become a universal and common standard.
Scholars at home and abroad have enriched the connotation
and extension of low-carbon cities from different aspects
[18]. In the research of low-carbon city development based

on carbon emissions, most scholars have made an empirical
analysis of carbon emissions from the end energy con-
sumption, which provides the development direction of low-
carbon cities to the latter. It has become a social consensus
that the necessary path for the development of low-carbon
cities is to develop low-carbon industries.

'is paper establishes the theoretical framework and
methodological system for the research on the construction
of an industrial ecological system in low-carbon forest areas.
From the perspective of the composite ecosystem in forest
areas, this paper systematically analyses the carbon cycle
process in forest areas by applying the theory of industrial
ecology, puts forward the idea that industrial system and
ecosystem are isomorphic to solve the carbon emission in
forest areas, and establishes the methods and paths for the
construction of the industrial ecological system in low-
carbon forest areas, which provides a theoretical and
methodological basis for the research on the construction of
the industrial ecological system in low-carbon forest areas. It
provides a theoretical and methodological basis for the study
of industrial ecosystem construction in low-carbon forest
areas. An industrial ecology analysis method for carbon
emissions from forest complex ecosystems was established.
In the framework of forest complex ecosystem, the carbon
flow of industrial ecosystem and its interaction with carbon
emission are quantitatively analysed, which provides a new
way of thinking and analysis method to control carbon
emission systematically from the root. 'ere are two main
ways to combine neural network and evolutionary algo-
rithm, the first one is that the two algorithms are carried out
collaboratively, and the evolutionary algorithm is used to
select the topology and parameters of a neural network to
solve the problem together; the other one is that evolu-
tionary algorithm is used to preprocess the data first, and
neural network is used to solve the problem at last. For the
research of this topic, many scholars have proposed im-
proved models, and they are widely used in various fields of
society. How to choose a better way of combining algorithms
to improve the accuracy and efficiency of the algorithm,
which can greatly promote the use of artificial intelligence, is
the background and significance of the research in this
paper.

2. Radial-Based Neural Networks for Low-
Carbon Circular Economy Coupled
Development Evaluation Model Design in
Forest Area

2.1. Improved Radial Basis Neural Network Design. RBF
neural networks have good approximation performance for
nonlinear networks and are gradually being widely used in
different fields and industries. Biologists have found that
neurons in the human brain produce local responses based
on stimuli, and RBF neural networks were proposed on this
basis [19]. RBF is a novel and effective neural network;
scholars have invested a lot of research efforts to promote the
development of this field. Like BP neural network, RBF
neural network is a feed-forward neural network, which
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consists of 3 layers, including input layer, implicit layer, and
output layer, among which the implicit layer is the key layer
that learns and trains the data by using a radial basis function
as the kernel function. In this way, the original linearly
inseparable problemmade linearly separable so that it can be
solved by a linear system of equations, which largely speeds
up the learning efficiency and avoids local minima in the
process. 'e basic neurons and neural network structure of
the radial basis neural network are first given below, as
shown in Figure 1.

'e radial basis function of the middle layer of the RBF
network is consistent with the Cover theorem, in that the
data from the low-dimensional space is transferred to the
high-dimensional space. 'e core of the mapping rela-
tionship in RBF is the kernel function, and the corre-
sponding mapping relationship will be determined once
the kernel function is determined. Also, the mapping from
the middle implicit layer to the final output layer of the
network structure is linear. 'us, the nonlinear mapping
from the initial input to the output is transformed into the
final linear network output. A linear system of equations
can directly solve the weights of each intermediate layer,
thus reducing the training time of the RBF network and
avoiding the problem of local minima. 'e generalization
ability of RBF is better than BP network in many aspects,
but when solving problems with the same accuracy re-
quirements, the structure of BP network is simpler than
RBF network. 'e approximation accuracy of the RBF
network is significantly higher than that of the BP net-
work. It can almost achieve complete approximation, and
it is extremely convenient to design. 'e network can
automatically increase neurons until the accuracy re-
quirements are met. However, when the number of
training samples increases, the number of hidden layer
neurons of the RBF network is much higher than the
former, which greatly increases the complexity of the RBF
network, the structure is too large, and the amount of
calculations also increases.

'e design of RBF neural networks consists of two main
aspects. One is the design of the network structure, that is,
the problem of including several nodes between the input
and output layers [20]. 'e second is the selection of a
suitable method to solve the network parameters, which are
mainly three: the centre of the radial basis function (gen-
erally Gaussian function), the sample variance, and the
weight coefficients of the intermediate layers. When the
centre of the radial basis function is selected, the common
method is the self-organizing selection method, which
consists of two parts: firstly, the centre and variance of the
radial basis function are derived, and, secondly, the weight
coefficients of the intermediate layer to the output layer are
derived.

A Gaussian function is a commonly used radial basis
function in RBF neural networks, and its activation function
can be expressed as

R xp − ci  � exp −
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'e output of the radial basis neural network is
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'e air quality standard levels are selected according to
the specific air quality of the evaluated area, and the data
between the levels are built as the input matrix X to be
involved in the training, and the pollutant concentration
data corresponding to each standard level is built as the
output matrix Y. All the sample data are normalized. When
the number of evaluated areas and pollutant indicators are p
and q, respectively, the corresponding input and output
matrices are shown in the following equation:

X � X1, X2, . . . , Xh , Y � [1, 2, 3, . . . , h],

Xi � b1, b2, . . . , bh 
T
, h � [1, 2, 3, . . . , h],

aij � a1, a2, . . . , aij 
T
, ij � [1, 2, 3, . . . , h].

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

'e simulation function is used for air environment
quality evaluation in the following format:

T � sin(net, H),

B � sin(net, X).
(4)

'e combination of models is an attempt to combine
different individual models, the main purpose of which is to
gather the advantages of every single model and obtain a
combined model by using the information provided by
various single models in the form of an appropriate weighted
average [21]. 'e most important step after the model
combination is to solve the weight coefficients of every single
model, and after the weight coefficients of every single model
are obtained, the single model is evaluated separately, and
the weighted sum of the single evaluation results is obtained
by using the obtained weight coefficients to obtain the
evaluation results of the final combined model. 'is makes
the combined model more effective than the single model in
terms of accuracy and reliability and thus makes the final
evaluation research work more convincing and valuable.'e
combination of combination models to single models can be
classified from different perspectives according to the
characteristics of different models, and the optimal com-
bination prediction method is used in this paper to carry out
the combination of methods. 'e basic idea is to construct
the objective function according to the selected criteria and
add a penalty to the equation; that is, the weight coefficient of
every single model is solved under the constraints, and the
optimal combination prediction model can be expressed as
follows:

max J � J w1, w2, . . . , wn( 

s.t. 

n

i,j�1
w

j

i � 1, w
j

i ≥ 0.

⎧⎪⎪⎪⎨
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(5)

In this paper, the principle of least-sum-of-squares error
is chosen, where wi is the weight of various single models. In
practice, negative weights have not been agreed upon in
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academia, so a nonnegative constraint is added to the model.
'e above equation is written in the matrix form as follows:

max J1 � W
T
EW,

RW
T

� 1,

W≥ 0.

⎧⎪⎪⎪⎨
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(6)

'e nonlinear planning problem of minimizing the
objective function is transformed into a linear planning
problem by mathematical planning theory and the K-T
condition, and the transformed model is shown in the
following:

max J � v,

EW − (α + β)W
T

− P � 0,

RW
T

+ v � 1,

W≥ 0, P≥ 0,

α, β≥ 0.
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

'ird, the selected single model should apply to the
application conditions required by the combined model. If
the correlation between the selected single models is large,
the solution of the respective model weights will encounter
obstacles after the combination of the models, so the ad-
vantages and disadvantages of the single models should be
considered comprehensively [22]. Otherwise, when the
combined is the shortcomings of every single model selected,
it cannot represent the problem characteristics well and will
not reflect its superiority, which will also be contrary to our
initial idea. Finally, the complexity of a single model and the
difficulty of collecting sample data should be considered. In

general, the more complex a single model is, the more
relevant factors the model considers, the more sample in-
formation it contains, and the higher the accuracy of the
corresponding combined model will be in the end. However,
the more complex the model is, the better it will be, and the
more complex the model is, the higher the workload will be.
For cost consideration, sometimes a single model with
moderate complexity and easy-to-collect sample data is
selected for combination, not that the accuracy of the model
will be improved after the combination compared with the
single model. 'erefore, the selection of a single model is the
key to construct a combined model:

Hi(x) � φ
X − C

j

i

�����

�����

βi

⎛⎝ ⎞⎠. (8)

In the whole RBF neural network model, the biggest
difference between it and other feedforward neural networks
is the implicit layer, because its implicit layer uses radial
basis function as the basis function; then from this certain, it
increases the diversity of the neural network, because this
diversity is reflected not only in the structure of the neural
network, but also in the selection of basis function, which
increases the wide range of RBF neural network and
applicability:

F xi(  � di − 
h
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wi∗j exp −
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2

⎛⎜⎝ ⎞⎟⎠. (9)

When building a portfolio model, the selection of in-
dividual models considers their applicability. 'ree aspects
should be considered: first, every single model selected can
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Figure 1: RBF neural network structure.
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be applied individually, that is, evaluated in a domain, and
the model is the one we consider only if its theory fits the
problem under study. Second, the data or assumptions
between every single model need to be approximately the
same or similar. For example, if the output of one model
results in continuous values while the output of another
model is discrete, then the combination of the results from
these two single models will lose most of the information,
which will greatly affect the final results and thus reduce the
performance of the combined model. If only a single model
is combined without considering the compatibility between
models, the resulting combined model is meaningless, and
then the evaluation results based on the model have no
reference value, and the overall evaluation model is divided
into two parts, the training phase and the inference phase.
'e training phase can also be referred to as the learning
phase, where the RBF neural network is first trained based
on the processed historical data so that the undetermined
parameters can be determined through the training of the
computer program. Once the model parameters are deter-
mined, this model can be used to make predictive inferences
on new incoming data and provide decision support for
managers, as shown in Figure 2.

'e particle swarm algorithm simulates the birds in a
flock of birds by designing a massless particle. 'e particle
has only two attributes: speed and position. Speed repre-
sents the speed of movement, and position represents the
direction of movement. Each particle searches for the
optimal solution individually in the search space and
records it as the current individual extreme value and
shares the individual extreme value with other particles in
the entire particle swarm and finds the optimal individual
extreme value as the entire particle. All particles in the
particle swarm adjust their speed and position according to
the current individual extreme value they find and the
current global optimal solution shared by the entire particle
swarm. 'e selection of individual models for combination
should be considered for individual model selection. In
general, the overall modelling effort and cost is propor-
tional to the number of individual models, and the per-
formance of the combined model can be improved with the
increase of the number. 'e fewer the number of models,
the lower the prediction cost of individual models and the
lower the value of integrating information from existing
models, which affects the accuracy of the results of the
combined model.

2.2. Evaluation Model Analysis of Low-Carbon Economy
CoupledDevelopment in Forest Areas. 'e process of carbon
flow in a forest complex ecosystem is the process of de-
composition, transformation, and transfer of carbon-con-
taining substances. 'e input energy, food, and raw
materials are mainly hydrocarbons (carbon chain organic
substances), which are transformed into carbon-containing
inorganic substances (e.g., carbon dioxide) or short carbon
chain organic substances (e.g., methane) after the anthro-
pogenic processes such as combustion process, industrial
production process and residents living in the forest

complex ecosystem [23]. 'erefore, the carbon flow process
is a carbon chain conversion process; the forest area is a
forest area built on a carbon chain, which links the three
subsystems of economic, social, and natural in the forest
complex ecosystem, forming a carbon cycle system within
the forest area, as shown in Figure 3.

Among them, the first subsystem is the natural sub-
system, consisting of water, air, soil, biology, and mineral
resources, whose function is to provide the ecological en-
vironment and natural resources necessary for human
survival and production life and at the same time to consume
the waste discharged from the economic and social sub-
systems; the second subsystem is the economic subsystem,
consisting of the production system, circulation system,
consumption system, reduction system, and regulation
system. 'e third subsystem is the social subsystem, which
consists of politics, institutions, science and technology, and
culture. 'e core of this subsystem is human, and the main
function of this subsystem is human spiritual, cultural, and
orderly social activities.

According to the above analysis of the function and
carbon emission activities of forest complex ecosystem, the
carbon emission activities categorized and reorganized into
subsystems of forest complex ecosystem according to the
carbon flow route of carbon emission generation and
consumption. For example, the carbon sink part shared by
the natural environment system and built environment
system of forest area is composed of the ecological support
system of forest area; the burning of energy is grouped into
different activity categories; then the forest area operation
guarantee system can be divided into energy production and
supply system and waste treatment system; private cars and
public transportation, logistics, and transportation are all
transportation activities grouped into service system; pro-
duction system refers to industrial production system alone.

Each type of activity is classified as industrial activity,
and each carbon emission industrial activity is placed in the
forest complex ecosystem, which constitutes the industrial
system of carbon emission in the forest area. According to
the above reclassification of forest complex ecosystem
functions, forest complex ecosystem functions can be di-
vided into 6 subsystems corresponding to forest industrial
carbon emission activities: forest energy production system,
industrial production system, forest living system, forest
service system, forest waste treatment system, and forest
ecological support system. We use 80% of the data as the
training dataset and 20% of the data as the test dataset, where
the data is randomly allocated. 'en, the coupling rela-
tionship between the forest complex ecosystem and forest
industrial carbon emission activities is shown in Table 1.

According to ecological principles, ecosystems are
composed of producers, consumers, and decomposers.
Natural ecosystem plants are producers, animals are con-
sumers, and microorganisms are decomposers. 'is struc-
ture of the natural ecosystem ensures the balance and
stability of the natural ecosystem. 'is structure of the
natural ecosystem ensures the balance and stability of the
natural ecosystem [24]. 'e ecosystem of the carbon
emission industry also has the characteristics of such an
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ecological structure. 'e extraction, processing, and supply
of fossil energy, raw materials, and food are the producers;
the use and utilization of fossil energy, raw materials, and
food are the consumers; the waste treatment system and

ecological support system are the decomposers. However,
the carbon emission industrial ecosystem is not a natural
ecosystem, but an artificial ecosystem is dominated by
human activities. 'is artificial ecosystem is in a state of
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Table 1: Analysis of the coupling relationship between the forest complex ecosystem and forest industry carbon emission activities.

Content M Meaning
Result set header 25.4 Returns the number of data columns
Field 33.5 Return data column information (multiple)
EOF 125.47 End of column
Row data 21.47 Row data (multiple)
EOF 18.65 End of data
END 20.25 Data
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ecological imbalance due to the increasing intensity of
human activities, which is manifested by the fact that the
natural ecological support system is insufficient to absorb or
offset the increasing carbon emissions from the production
and consumption systems, thus causing climate warming.
'e carbon emission industrial ecosystem consists of six
subsystems, the functions of which coupled with the
functions of forest areas. Among the 6 subsystems of the
industrial ecosystem, energy production system, industrial
production system, living system, service system, and
comprehensive waste treatment system are the decompo-
sition of the functions of the economic subsystem and social
subsystem in the composite ecosystem of forest area;
therefore, the carbon emission industrial system is also a
subsystem of the social-economic-natural composite eco-
system, which reflects the carbon emission status of the
composite ecosystem of forest area. 'erefore, to analyse the
carbon emission status of carbon emission industrial eco-
system, it is necessary to analyse the carbon emission status
of carbon emission industrial ecosystem in the context of
carbon emission industrial ecosystem consists of 6 subsys-
tems, the functions of which are coupled with the functions
of forest area. Among the 6 subsystems of the industrial
ecosystem, energy production system, industrial production
system, living system, service system, and comprehensive
waste treatment system are the decomposition of the
functions of the economic subsystem and social subsystem
in the composite ecosystem of forest area; therefore, carbon
emission industrial system is also the subsystem of the
social-economic-natural composite ecosystem, which re-
flects the carbon emission status of the composite ecosystem
of forest area. 'erefore, the analysis of the carbon emission
status of the carbon emission industry ecosystem should be
analysed under the general framework of the social-eco-
nomic-natural composite ecosystem in the forest area. 'e
analysis under the general framework of the social-eco-
nomic-natural composite ecosystem of forest area is shown
in Figure 4.

'e carbon source of the forest complex ecosystem is
mainly the input of fossil energy, the economic and social
subsystems consume fossil energy to produce carbon
emissions, and the natural subsystem absorbs carbon di-
oxide; the increase of carbon emissions is the result of the
large consumption of fossil energy and thus breaking the
carbon balance of the economic-social-natural complex
ecosystem; the industrial system is the source of carbon
emissions. 'e carbon emission of the industrial system
relates to the function of the forest complex ecosystem by
carbon chain, which constitutes an industrial ecosystem.'e
goal of low-carbon forest area construction is to control
carbon emissions, and the construction of an industrial
ecosystem is the fundamental way to achieve the goal of low-
carbon forest area construction. 'e components of the
industrial ecological system in low-carbon forest area in-
clude industrial ecological spatial pattern, industrial eco-
logical structure, and industrial decolonization and
ecological industrialization; the methods of construction
mainly include the analysis of carbon emission of the
composite ecosystem in forest area, the analysis of the

interaction between industrial ecosystem and carbon
emission, and the prediction of industrial ecological struc-
ture optimization and other main research steps.

Since the carbon emission industrial ecosystem is an
artificial ecosystem dominated by human activities, it has
dynamic characteristics; that is, its ecosystem equilibrium
state will change with the development of the economy and
society. At present, it is due to the continuous increase in the
intensity of human activities, especially in China, the fossil
energy-based energy structure, and the rough and unrea-
sonable industrial structure, coupled with the serious de-
struction of the natural ecological environment, thus causing
a serious imbalance of the carbon emission industrial eco-
system in forest areas. 'erefore, considering the dynamic
characteristics of the carbon emission industrial ecosystem,
how to ensure economic growth while effectively controlling
carbon emission is a topic that must be solved in front of us.

3. Analysis of Results

3.1. Network Node Number Determination and Result
Analysis. In this paper, the improved PSO-RBF algorithm is
applied to the water quality evaluation of Laban Lake in Santa
County, and the test data are obtained from the local water
quality monitoring station, and the monitored data are used as
the test samples.'e RBF neural network was set up as 3 layers,
and the 6 input nodes of the input layer consisted of 6 eval-
uation parameters of water quality including (dissolved oxy-
gen, permanganate index, total phosphorus, total nitrogen,
chemical oxygen demand, and ammonia nitrogen). In RBF
neural networks, the number of nodes in the hidden layer has
been a difficult problem in the study of this network. At
present, the determination of the number of nodes of the
hidden layer is mainly based on experimental methods and
practical experience, which essentially determines the number
of nodes of the hidden layer by experience and then adjusts the
nodes of the hidden layer by simulation experiments and fi-
nally selects the optimal number of nodes, and the performance
of the neural network reflected by different hidden layer nodes
is different, and this chapter also uses practical experience and
experimental methods to determine the number of nodes of
the hidden layer, and Figure 5 gives the mean square error
corresponding to different hidden layer nodes.
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To ensure the best performance of the algorithm, max is
set to 0.95, min is set to 0.4, the maximum number of it-
erations T is set to 200, the acceleration factor is set to 2, the
position and velocity range is set to [− 1, 1], the number of
dimensions is set to 40, and the control parameter of (3) is
set to 8 according to the results of Shi’s study. 'e RBF
neural network structure is selected as 6 input nodes, 10
hidden layer nodes, and one output layer, and the training
termination criterion is defined as the sum of squared errors,
and the training is terminated when it is 0.001. 'e pa-
rameters obtained from the optimization of the PSO algo-
rithm were used as parameters of the RBF neural network to
model the water quality prediction and thus evaluate the
water quality. 'e usefulness of the improved PSO-RBF
neural network for water quality evaluation was demon-
strated by 20 test samples. 'e simulation by MATLAB,
software version MATLAB-2014b, was obtained as shown in
Figure 6.

Considering the influence of past data on the predicted
data, according to the characteristics of the exponential
smoothing prediction model, the first 380 consecutive water
quality samples were selected to calculate the smoothing
value and smoothing coefficient to predict 20 test samples by
MATLAB2014b simulation. Figure 7 gives the fit curve and
relative error curve of the exponential smoothing water
quality evaluation model and the actual measured value. 'e
data of the whole process of a comprehensive evaluation of
project benefits is composed of two parts, one is the scoring
data of experts according to the basic indicators of this
project; the other is the theoretical data generated randomly
by using a computer according to the basic idea of hier-
archical analysis method and using comprehensive evalu-
ation method. Since the expert scoring data used in the
calculation of this paper does not require quantitative
processing, but attention should be paid to whether the size
of the numerical interval is appropriate; otherwise, the in-
terval is too large to seriously affect the learning process of

the neural network, and the interval value is too small to
reflect the role of the size of the feature values. In the expert
scoring stage, the scoring range is set within [0, 1], which
eliminates the step of normalizing the data, and the range of
ownership values of the network model is not too large,
which reduces the difficulty of network training and im-
proves the accuracy of network model training.

'e number of input units is 9, the number of output
units is 1, the training error is set to 0.0001, and the
maximum number of neurons is set to 1000. 'e MATLAB
program is used for training, and the network model with 24
neurons is finally obtained. 'e training results of RBF
neural network for financial efficiency evaluation of refining
projects are compared by the improved PSO-RBF neural
network model with the experimental results of other
evaluation models for water quality, and the performance
curve and prediction results can be intuitively found that the
former is significantly better than the latter. 'is can be
obtained, the improved model is suitable for water quality
analysis research, and there are great advantages. 'rough
simulation and analysis comparison, the effectiveness of this
evaluation method is verified, and it provides an effective
analysis method for water quality analysis.

'e evaluation accuracy of this neural network model is
over 95%. 'e use of the RBF neural network can make a
quick evaluation of the investment benefits, especially in the
operation phase of the project, which can give investors an
overall grasp of the overall operation of the project. It
provides a more convenient and reliable analysis and
evaluation method for decision-makers. Considering the
actual situation of the project, the project data we have
collected may not be perfect, and the analysis only for these
rough data may be somewhat biased in the expert scoring
results. Since the input sample data play a rather important
role in the model prediction accuracy, therefore, to obtain
more accurate evaluation results more accurate raw data
should be collected as the basis, and then the sample data are
deeply standardized in two aspects.

3.2. Analysis of Economic Coupling EvaluationModel Results.
In the industrial ecosystem of carbon emissions, the urban
ecological support system includes forests, offshore waters,
farmlands, river wetlands, and urban gardens, whose im-
portant ecological function is to absorb carbon dioxide; the
other five subsystems all emit carbon dioxide, among which
the energy industry subsystem is mainly the production and
supply of electricity and heat. 'e industrial industry sub-
system refers to the mining and manufacturing industries in
the secondary industry.

'e industrial subsystem refers to the main service in-
dustries such as transportation, construction, wholesale and
retail, accommodation and catering, tourism, and so on,
while other service industries belonging to the tertiary sector
are classified as residential life; the urban waste treatment
subsystem here mainly refers to the carbon dioxide gener-
ated by the waste resource treatment industry and the in-
cineration of municipal domestic waste. According to the
calculation method of total carbon emission, the CO2
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Figure 5: Network characteristics corresponding to the number of
implied nodes.
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emission activities in Qinhuangdao City are divided into
four parts, energy activities, industrial production process,
land-use change and forestry, and waste treatment, while the
agricultural and livestock production process is calculated in
the Guide as the amount of CH4, which is no longer used as
the calculation content here. According to the calculation
method in the Guide, the total carbon emissions from energy
activities are measured as the total carbon emissions from
the combustion process of all kinds of fossil fuels used in all
production and living activities; the total carbon emissions
from industrial production processes are measured as the
carbon generated from the use of carbon-containing raw
materials in the production process, excluding the com-
bustion process of fuels, mainly from the iron and steel
industry and the building materials industry; the total

carbon emissions from waste treatment are measured. 'e
total carbon emission measurement of waste treatment is
mainly the carbon dioxide produced by waste incineration,
and the total carbon emission measurement of land-use
change and forestry mainly calculates the amount of carbon
absorbed by forest and land change formation. 'e carbon
emissions in 2020–2025 are shown in Figure 8.

When the concentration values of both PM2.5 and O3
are low, they correspond to the light blue as well as yellow
areas, whose air quality levels are below the level 3 standard
and belong to the acceptable range; when the concentration
values of both PM2.5 and O3 are large or the concentration
values of one pollutant are large, they correspond to the
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purple and dark blue parts, whose air quality levels are above
the level 4 standard and belong to moderate or severe
pollution. 'erefore, Figure 9 can well portray the influence
of the concentration values of each variable on the final air
quality, which is also consistent with the nature shown by the
positive and negative of the parameters finally fitted by the
model.

'e 100 datasets were divided into the training set,
validation set, and test set in proportion 75%, 15%, and 15%,
respectively. As shown by the training error in Figure 6 and
the fitting effect in Figure 7, after 28 stops of training, the test
set R-value is 0.98, which is very satisfactory. 'e results of
the evaluation of the sample environmental quality index
values using two single models are shown in Figure 10.
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'e improved PSO-RBF neural network is used in the
evaluation to establish the prediction model, and the eval-
uation results are compared with other evaluation models,
and the simulation results show that the improved algorithm
is better than the ordinary algorithm in terms of prediction
accuracy, and it has good effect for such nonlinear problems
as water quality evaluation, and the use value is high. 'is
paper makes good use of the advantages of the particle
swarm algorithm in finding the best, combined with a radial
basis neural network to solve complex nonlinear problems,
as shown in Figure 11.

For each particle, we compare its fitness with the fitness
of its best position. If it is better, we update it to the best. 'e
theory is used in water quality evaluation, and good results
are obtained. However, with continuous research work,
further research work is also inevitable.

4. Conclusion

For the prediction object associated with many influencing
factors, strong policy constraints, and dynamic change
characteristics, a multidimensional multiconstraint multi-
model fusion model is constructed to predict the state of
industrial ecological structure through the situation setting,
and the path of industrial ecological structure optimization
is obtained through simulation analysis. 'e prediction
model of multidimensional multiconstraint multimodel
fusion for industrial ecological structure optimization is
constructed, and the simulation analysis of the prediction
results shows that the development state of 8.4% economic
growth rate, 69.7% cumulative decrease in carbon emission
intensity, and 73.0% cumulative decrease in energy intensity
by 2030 requires industrial ecological structure adjustment,
in which the ratio of primary, secondary, and tertiary in-
dustries is adjusted to 6.5 :15.5 : 78.0, developing low-carbon
industries mainly in tourism, with the output value of
tourism reaching 51.0%, and limiting the development of
high-carbon industries such as building materials, iron and
steel, and petrochemicals; vigorously promoting clean

energy, reducing the use of coal, with the proportion of
nonfossil energy reaching 22.6% and the proportion of coal
use falling to 53.9%; and increasing ecological environ-
mental protection, with the forest coverage rate reaching
over 65%. Also, we will build a clean, low-carbon, and ef-
ficient energy system, a green, low-carbon, and recycling
industrial system, a green service industry system, a green
consumption system, a waste resource treatment system,
and an ecological support system in six aspects of the in-
dustrial ecological spatial pattern. Low-carbon economy is
an economic model based on low energy consumption, low
pollution, and low emissions. It is another major ad-
vancement of human society after agricultural civilization
and industrial civilization. It is a new energy concept pro-
posed by the international community to respond to the
catastrophic changes in the global climate caused by the
massive consumption of chemical energy and the massive
emission of carbon dioxide (CO2) and sulphur dioxide
(SO2). 'e essence is to solve the problem of improving
energy efficiency and clean energy structure. 'e core is
energy technology innovation and a fundamental change in
the concept of human survival and development.'e path of
industrial ecology includes the construction of low-carbon
recycling industrial parks and the low-carbon transforma-
tion of high-carbon industries, and the focus of eco-in-
dustrialization is on ecological construction and ecological
protection at the same time.
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