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*is paper investigates the leaderless and leader-follower time-varying formation design and analysis problems for a group of
networked agents subject to discontinuous communications. Firstly, a leaderless time-varying formation control protocol is
proposed via the intermittent control strategy, where the control input of each agent is constructed by the distributed local state
information and formation instructions in the communication time unit, but it is zero in the noncommunication time unit. *en,
an explicit formulation of the formation center function is determined to describe the formationmovement trajectory of the whole
networked agents. Leaderless time-varying formation design and analysis with discontinuous communications are given in the
form of linear matrix inequalities. Moreover, the main results of the leaderless cases are extended to the leader-follower cases.
Finally, two numerical examples are provided to illustrate the theoretical results of leaderless and leader-follower
cases, respectively.

1. Introduction

Distributed cooperative control has received more attention
from scholars in the last two decades, which can be applied
in many circumstances, including flocking [1], consensus
[2–6], formation control [7–10], distributed computation
[11–13], and multisource data analysis [14, 15]. Distributed
formation control indicates that a group of networked in-
telligent agents form the desired geometrical shape via the
distributed control protocol, which is constructed by the
local information among neighboring agents. It was shown
in [16] that the consensus-based formation control is dis-
tributed and can be achieved by utilizing the consensus
algorithms and tools. Recently, the consensus theory de-
veloped fast, and many interesting research results emerged,
as shown in [17–22]. As a result, the distributed formation
control has aroused many researches, which can be divided
into time-invariant formation and time-varying formation
according to the time-dependent characteristics of the
formation shape.

For the time-invariant formation, the relative position
among agents remains unchanged after forming the

formation structure, whichmeans that the geometrical shape
of the whole networked agents is time-invariant. From the
graph theory perspective, the time-invariant formation
control conditions were derived in the form of the Nyquist
criterion in [23]. Jafarian et al. [24] investigated the time-
invariant formation keeping problems for nonholonomic
wheeled robots, where the disturbance rejection is achieved.
Finite-time time-invariant formation control was achieved
in [25], where a class of nonlinear control protocol was
utilized. For the time-varying formation, the formation
shape can be time-varying, as shown in [26, 27], which is
more flexible than the time-invariant formation, and can be
utilized in many practical applications. Dong et al. [28]
provided a time-varying formation tracking scheme for
second-order networked agents and applied it to the for-
mation flying of a team of quadrotors. Wang et al. [29]
proposed a robust time-varying formation control protocol
with a distributed extend state observer, which can com-
pensate the external disturbances actively. For a group of
agents with multiple leaders, a leader-follower time-varying
formation control method was shown in [30], where nec-
essary and sufficient conditions with the formation tracking
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feasibility conditions were given. Generally speaking, the
time derivative of the time-varying formation is not zero and
cannot be ignored in formation design and analysis, so the
time-varying cases are more challenging than the time-in-
variant ones.

Due to the temporary interrupt of communication links,
the sensing device failures, and the silent period of com-
munications, the networked agents may suffer discontinu-
ous communications. On the one hand, the communication
topologies may be switched since the links of the network are
changed. Some interesting works regarding switching to-
pologies can be found in [31, 32], where it was shown that
the communication topologies switch at some moments by
the switching signal. On the other hand, the discontinuous
communications are intermittent in the sequence of the time
units; that is, the communication time units and the non-
communication time units appear alternately. Wang et al.
[33] investigated the limited-budget consensus problems
with intermittent interactions, where the consensus protocol
was codesigned by the limited budget and the performance
index and can guarantee the weighting optimization be-
tween the consensus performance and the energy con-
sumption. Sun and Wang [34] proposed a new
sampling-based time unit method to solve the consensus
problems for nonlinear networked agents with intermittent
interactions. *e time-invariant formation control with
intermittent interactions was studied in [35]. However, to
the best of our knowledge, the time-varying formation
control problems for networked agents with discontinuous
communication in terms of both the switching topologies
and intermittent interactions are still open.

In this paper, we investigate the leaderless and leader-
follower time-varying formation design and analysis for
high-order networked homogeneous agents with discon-
tinuous communications caused by switching topologies
and intermittent interactions. Firstly, a new time-varying
formation control protocol is proposed via the intermittent
control strategy, which only adopts the local intermittent
information and formation instructions among neighboring
agent. Secondly, by the nonsingular transformation and the
orthonormal transformation, the closed-loop dynamics of
the whole network for both leaderless cases and leader-
follower cases are decomposed into two subdynamics,
which, respectively, describe the formation movement tra-
jectory of the networked agents as a whole and the relative
movement among agents. *irdly, leaderless and leader-
follower time-varying formation design and analysis criteria
are derived under the condition of discontinuous com-
munications, where the convergency of the Lyapunov
function is analyzed in the communication time units and
noncommunication time units, and it can be guaranteed by
satisfying the formation feasibility condition, the discon-
tinuous communication condition, and the linear matrix
inequality condition, simultaneously.

Compared with the related work regarding the time-
varying formation control, the contribution of this paper is
twofold. Firstly, different from the works in [26–30], this
paper considers the discontinuous communications of both
switching topologies and intermittent communications. In

this case, the right-hand side of the closed-loop system is
piecewise continuous. To solve this problem, a new inter-
mittent time-varying formation control method is proposed.
However, the analysis and design method in [26–30] cannot
be adopted in this paper. Secondly, this paper determines the
formation movement trajectory of the networked agents for
both leaderless and leader-follower cases. For the leaderless
case, the formation movement trajectory is determined by
the formation center function, and it is determined by the
zero-input response of the leader in the leader-follower case.
Besides, it is shown that the intermittent communication
and the switching topology do not affect the formation
movement trajectory. In contrast, the authors in [26–30] did
not determine the formation movement trajectory in the
situation of the discontinuous communications.

*e main body of this paper is arranged as follows. *e
model of discontinuous communications and the dynamics
of the agents are established in Section 2. Leaderless time-
varying formation design and analysis criteria with dis-
continuous communications are given in Section 3, where
the explicit formulation of the formation center function is
also determined. Section 4 extends the main results of the
leaderless time-varying formation design and analysis to the
leader-follower cases. Two numerical simulation examples
are provided in Section 5, and Section 6 concludes the whole
paper.

*roughout this paper, Rn×d stands for the n × d-di-
mensional real matrix space.ℵ is the set of natural numbers.
N is utilized to denote the number of the agents, and 1N

represents the N-dimensional column vector with all
components 1. *e number, vector, and matrix of zero value
are collectively called as 0. QT � Q> 0means that matrix Q is
symmetric and positive definite.

2. Problem Formulation and Preliminaries

2.1. Communication Constraint Modeling. In this paper, we
consider the discontinuous communication among agents.
On the one hand, the agent cannot communicate with each
other in some noncommunication time units. On the other
hand, the communication topologies of the networks are
switched in some communication time units. To show the
abovementioned discontinuous communication type from
the time-domain perspective, it is supposed for ∀s ∈ ℵ that
there exists a nonoverlapping time unit sequence
[Ts, Ts+1) � [Ts,

􏽥Ts)∪ [􏽥Ts, Ts+1), where Ts � T1
s <T2

s < · · · <
T

rs
s � 􏽥Ts < 􏽥Ts + εs � Ts+1 with rs and εs being positive inte-

gers. Notice that [Ts,
􏽥Ts) and [􏽥Ts, Ts+1) represent the

communication time unit and the noncommunication time
unit, respectively. T1

s , T2
s , . . . , T

rs
s . . . denotes the switching

time over which the communication topologies are
switched. Without loss of generality, the initial time is as-
sumed to be T0 � 0. *e length of time unit [Ts, Ts+1)

satisfies that 0<T∗min ≤T∗s � Ts+1 − Ts ≤T∗max. It should be
noted that 0<Tdwell ≤T

rs
s − T

rs− 1
s ≤Tdwell, where Tdwell is the

minimum dwell time. *e noncommunication rate is de-
fined as σs � (Ts+1 − 􏽥Ts)/(Ts+1 − Ts), where 0< σs ≤ σmax < 1
and σmax is called the maximum noncommunication rate.
Note that the discontinuous communication is aperiodic
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since the length of each time unit [Ts,
􏽥Ts) (s ∈ ℵ) can be

unequal.
*e switching topologies are modeled as

G � G1, G2, . . . , Gk􏼈 􏼉 with the switching signal
ϖ(t): [0, +∞)⟶ 1, 2, . . . , k{ }, where G is the digraph. For
each digraph G, the vertex set is denoted by
V � v1, v2, . . . , vH􏼈 􏼉, and the edge set is represented by E �

(vl, vm): vl, vm ∈ V􏼈 􏼉 with the edge weight b
ϖ(t)
lm . Note that if

there exists an edge (vl, vm), vl, vm ∈ V, from the vertex vm

to vl, then the edge weight b
ϖ(t)
lm > 0. Otherwise, b

ϖ(t)
lm � 0.*e

neighboring set of the vertex vl is defined as
N
ϖ(t)
l � vm ∈ V: (vm, vl) ∈ E􏼈 􏼉, and Lϖ(t) � [l

ϖ(t)
lm ]H×H

stands for the Laplacian matrix of the topologies with l
ϖ(t)
ll �

􏽐
m∈Nϖ(t)

l

b
ϖ(t)
lm and l

ϖ(t)
lm � − b

ϖ(t)
lm (l≠m). More details about

the graph theory can be found in [36]. It should be pointed
out that the switching topology does not affect the re-
quirement of the noncommunication rate. In this paper,
both leaderless and leader-follower communication topol-
ogies are considered, which satisfy the following assumption.

Assumption 1. It is assumed that the leaderless communi-
cation topology is represented by connected undirected
graph, and the leader-follower communication topology is

denoted by digraph containing a spanning tree with the
leader locating at the root of the spanning tree.

Lemma 1. For the connected undirected graph, the Laplacian
matrix L is symmetric and positive semidefinite, and zero is
the simple eigenvalue of L.

2.2. Network Dynamics Modeling. *e dynamics of the
networked agents with leaderless structures are described as
follows:

_xl(t) � Axl(t) + Bul(t), (1)

where l � 1, 2, . . . , N, A ∈ Rn×n, B ∈ Rn×d, xl(t) are the
states of agent l, and ul(t) is the control protocol.

Definition 1. *e expected formation shape of the network
is described by a vector-valued function z(t) � [zT

1 (t),

zT
2 (t), . . . , zT

N(t)]T, where zl(t) (l � 1, 2, . . . , N) is the
piecewise continuous differentiable and is called the for-
mation instruction.

According to the formation instruction, we propose a
time-varying formation control protocol via the intermittent
control strategy as follows:

ul(t) �

K 􏽘

m∈Nϖ(t)

l

b
ϖ(t)
lm xm(t) − zm(t) − xl(t) + zl(t)( 􏼁, t ∈ Ts,

􏽥Ts􏽨 􏼑,

0, t ∈ 􏽥Ts, Ts+1􏽨 􏼑,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where l � 1, 2, . . . , N, K ∈ Rd×n is the gain matrix. *en, the
definitions of the leaderless time-varying formation design
and analysis are given as follows.

Definition 2. (leaderless time-varying formation analysis).
For any given gain matrix K ∈ Rd×n and bounded initial
states xl(0) − zl(0), l � 1, 2, . . . , N, if there exists a function
h(t) ∈ Rn such that limt⟶+∞(xl(t) − zl(t) − h(t)) � 0,
l � 1, 2, . . . , N, then it is said that network (1) with protocol
(2) reaches leaderless time-varying formation, where h(t) is
said to be the formation center function.

Definition 3. (leaderless time-varying formation design). If
there exists a gain matrix K such that network (1) with
protocol (2) reaches leaderless time-varying formation,
then it is said to be leaderless time-varying formation
reachable.

In this paper, we mainly focus on designing the gain
matrix K such that network (1) subject to discontinuous
communications reaches leaderless time-varying formation
with protocol (2). *en, the main results on the leaderless
time-varying formation are extended to the leader-follower
cases.

Remark 1. It should be noticed that protocol (2) is con-
structed via the intermittent control strategy; that is, the
control input is intermittent over the nonoverlapping
time unit sequence [Ts, Ts+1), ∀s ∈ ℵ. In the communi-
cation time unit, the control input is established according
to the local state information among neighboring agents
and the formation instructions. However, in the non-
communication time unit, the control input is set to be
zero since it is missing. *is kind of intermittent control
strategy will lead to the piecewise continuous right-hand
side of the closed-loop networks, which is challenging to
be dealt with in the stability analysis of the networked
agents.

Remark 2. Note that, for the consensus, it requires that all
the agents reach an agreement of states, where the formation
structure is not needed. For the time-invariant formation,
the formation instruction is invariable, whose time derivate
is zero; i.e., _zl ≡ 0 (l � 1, 2, . . . , N). Compared with the
consensus and the time-invariant formation, the main dif-
ficulty in designing the time-varying formation protocol is
that the time derivate of the formation instruction zl(t) (l �

1, 2, . . . , N) affects the analysis of the convergency of the
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formation. In this case, the formation feasibility condition is
introduced to overcome the challenging problems in de-
signing the gain matrix of the time-varying formation
protocol.

3. Leaderless Time-Varying Formation Design
and Analysis

In this section, we give leaderless time-varying formation
design and analysis criteria under the condition of

discontinuous communications, and then, we determine an
explicit formulation of the formation center function.

For l � 1, 2, . . . , N, let φl(t) � xl(t) − zl(t), substituting
(2) into (1) gives that

_φl(t) �

A φl(t) + zl(t)( 􏼁 + BK 􏽘

m∈Nϖ(t)

l

b
ϖ(t)
lm φm(t) − φl(t)( 􏼁 − _zi(t), t ∈ Ts,

􏽥Ts􏽨 􏼑,

A φl(t) + zl(t)( 􏼁 − _zi(t), t ∈ 􏽥Ts, Ts+1􏽨 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Denote φ(t) � [φT
1 (t), φT

2 (t), . . . ,φT
N(t)]T, then we can

rewrite equation (3) as

_φ(t) �
IN ⊗A( 􏼁(φ(t) + z(t)) − L

ϖ(t) ⊗BK􏼐 􏼑φ(t) − IN ⊗ In( 􏼁 _z(t), t ∈ Ts,
􏽥Ts􏽨 􏼑,

IN ⊗A( 􏼁(φ(t) + z(t)) − IN ⊗ In( 􏼁 _z(t), t ∈ 􏽥Ts, Ts+1􏽨 􏼑.

⎧⎪⎨

⎪⎩
(4)

Since Assumption 1 holds, we can find from Lemma 1
that there exists an orthonormal matrix
Wϖ(t) � [1N/

��
N

√
, 􏽥W
ϖ(t)

] such that

W
ϖ(t)

􏼐 􏼑
T
L
ϖ(t)

W
ϖ(t)

� diag λϖ(t)
1 , λϖ(t)

2 , . . . , λϖ(t)
N􏽮 􏽯, (5)

where 0 � λϖ(t)
1 < λ ≤ λ

ϖ(t)
2 ≤ λ

ϖ(t)
3 ≤ · · · ≤ λϖ(t)

N ≤ λ are the
eigenvalues of the Laplacian matrix. Denote
Ωϖ(t) � diag λϖ(t)

2 , λϖ(t)
3 , . . . , λϖ(t)

N􏽮 􏽯 and υ(t) � ((Wϖ(t))T

⊗ In)x(t) � [υT
1 (t), κT(t)]T, where κT(t) � [υT

2 (t), υT
3 (t),

. . . , υT
N(t)]T, and then, we can transform network (4) into

the following form:

_υ1(t) � Aυ1(t) +
1T

H��
H

√ ⊗A􏼠 􏼡z(t) −
1T

H��
H

√ ⊗ In􏼠 􏼡 _z(t), t ∈ Ts, Ts+1􏼂 􏼁, (6)

_κ(t) �

IH− 1 ⊗A − Ωϖ(t) ⊗BK􏼐 􏼑κ(t) + 􏽥W
ϖ(t)

􏼒 􏼓
T

⊗A􏼠 􏼡z(t) − 􏽥W
ϖ(t)

􏼒 􏼓
T

⊗ In􏼠 􏼡 _z(t), t ∈ Ts,
􏽥Ts􏽨 􏼑,

IH− 1 ⊗A( 􏼁κ(t) + 􏽥W
ϖ(t)

􏼒 􏼓
T

⊗A􏼠 􏼡z(t) − 􏽥W
ϖ(t)

􏼒 􏼓
T

⊗ In􏼠 􏼡 _z(t), t ∈ 􏽥Ts, Ts+1􏽨 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

From the above orthonormal transformation, network
(4) is decomposed into two subnetworks; i.e., subnetworks
(6) and (7). In the following, we will provide a theorem to
describe the explicit formulation of the formation center
function according to the dynamics of subnetwork (6).

Theorem 1. If network (1) with protocol (2) reaches the time-
varying formation z(t), then the formation center function
satisfies that

lim
t⟶+∞

h(t) − hc(t) + hz(t)( 􏼁 � 0, (8)

where

hc(t) � e
At 1T

N

N
⊗ In􏼠 􏼡x(0),

hz(t) �
1T

N

N
⊗ In􏼠 􏼡z(t).

(9)
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Proof. Define the following functions:

Γc(t)≜W
ϖ(t)

e1 ⊗ υ1(t) �
1
��
H

√ 1H ⊗ υ1(t), (10)

Γz(t)≜ 􏽘
H

l�2
W
ϖ(t)

el ⊗ υl(t), (11)

where el (l ∈ 1, 2, . . . , N{ }) is a N-dimensional unit column
vector, whose l th element is 1. According to equation (10),
we have

Γc(t) � W
ϖ(t) ⊗ In􏼐 􏼑 υT

1 (t), 0􏽨 􏽩
T
. (12)

Since

􏽘

N

l�2
W
ϖ(t)

el ⊗ υl(t) � 0, κT
(t)􏽨 􏽩

T
, (13)

we can derive that

Γz(t) � W
ϖ(t) ⊗ In􏼐 􏼑 0, κT

(t)􏽨 􏽩
T
. (14)

Because Wϖ(t) ⊗ In is a nonsingular matrix, we can see
from the above analysis that Γc(t) and Γz(t) are linearly
independent. Hence, we can use υ1(t)/

��
N

√
to determine the

explicit formulation of the formation center function.
According to Definition 2 and equation (12), we have

lim
t⟶+∞

xl(t) − zl(t) −
1
��
N

√ υ1(t)􏼠 􏼡 � 0. (15)

From equation (16), we have

υ1(0) �
1
��
N

√ 1T
N􏼠 􏼡⊗ In􏼠 􏼡φ(0). (16)

*en, we can derive that

􏽚
t

0
e

A(t− τ) 1
��
N

√ 1T
N􏼠 􏼡⊗ In􏼠 􏼡 _z(τ)dτ

�
1
��
N

√ 1T
N􏼠 􏼡⊗ In􏼠 􏼡z(t) − e

At 1
��
N

√ 1T
N􏼠 􏼡⊗ In􏼠 􏼡z(0)

+ 􏽚
t

0
e

A(t− τ) 1
��
N

√ 1T
N􏼠 􏼡⊗A􏼠 􏼡z(τ)dτ.

(17)

From equations (6), (16), and (17), we can obtain the
conclusion of *eorem 1. □

Remark 3. *e explicit formulation of the formation
center function in *eorem 1 describes the formation
movement trajectory of the networked agents as a whole.
Note that when the time-varying formation is reached, all
the networked agents will keep a formation shape and
move along with the trajectory determined by the for-
mation center function, which contains two parts. *e
first part hc(t) is associated with the dynamics and the
initial states of each agent, which describe the influence

mechanism of the consensus states on the formation
movement. *e second part hz(t) is related to the time-
varying formation instruction. From the formulation of
h(t), we can find that the discontinuous communication
does not impact the formation movement trajectory of the
whole networked agents.

According to the analysis from (10) to (14), we can
conclude that network (1) reaches time-varying formation if
and only if limt⟶+∞κ(t) � 0. Based on this fact, we give the
time-varying formation design criterion in the following
theorem.

Theorem 2. Network (1) is leaderless time-varying formation
reachable by protocol (2) with K � 0.5λ− 1ϑBT 􏽥Q

− 1 if the
following conditions hold simultaneously:

(i) <e formation feasibility condition _zl(t) � Azl(t)

(l � 1, 2, . . . , N) holds.
(ii) <e discontinuous communication condition α(1 −

σmax)> μσmax is satisfied, where α and μ are positive
constants given previously.

(iii) <ere exist ϑ> 0 and 􏽥Q � 􏽥Q
T > 0 such that

A 􏽥Q + 􏽥QA
T

− μ􏽥Q< 0,

A 􏽥Q + 􏽥QA
T

+ α􏽥Q − ϑBB
T < 0.

(18)

Proof. Construct the Lyapunov function as follows:

V(t) � κT
(t) IN− 1 ⊗ 􏽥Q

− 1
􏼒 􏼓κ(t). (19)

For t ∈ [Ts,
􏽥Ts) with ∀s ∈ ℵ, we can obtain the time

derivative of V(t) according to the dynamics of subnetwork
(7) that

_V(t) � κT
(t) IN− 1 ⊗ 􏽥Q

− 1
A + A

T 􏽥Q
− 1

􏼒 􏼓􏼒

− Ωϖ(t) ⊗ 􏽥Q
− 1

BK + K
T
B

T 􏽥Q
− 1

􏼒 􏼓􏼓κ(t)

+ 2κT
(t) 􏽥W

ϖ(t)
􏼒 􏼓

T

⊗ 􏽥Q
− 1

A􏼠 􏼡z(t)

− 2κT
(t) 􏽥W

ϖ(t)
􏼒 􏼓

T

⊗ 􏽥Q
− 1

􏼠 􏼡 _z(t).

(20)

Since the formation feasibility condition _zl(t) � Azl(t)

(l � 1, 2, . . . , N) holds, we can deduce that
(( 􏽥W
ϖ(t)

)T ⊗ 􏽥Q
− 1

) _z(t) � (( 􏽥W
ϖ(t)

)T ⊗ 􏽥Q
− 1

A)z(t). *en, we
can see from (20) that

_V(t) � κT
(t) IN− 1 ⊗ 􏽥Q

− 1
A + A

T 􏽥Q
− 1

􏼒 􏼓􏼒

− Ωϖ(t) ⊗ 􏽥Q
− 1

BK + K
T
B

T 􏽥Q
− 1

􏼒 􏼓􏼓κ(t).

(21)

Substituting K � 0.5 λ ϑBT 􏽥Q
− 1 into equation (21) yields

Complexity 5



_V(t) + αV(t) � 􏽘
N

l�2
κT

l (t) 􏽥Q
− 1

A + A
T 􏽥Q

− 1
+ α􏽥Q

− 1
􏼒

− λϖ(t)
l λ− 1ϑ􏽥Q

− 1
BB

T 􏽥Q
− 1

􏼓κl(t).

(22)

By pre- and postmultiplying A􏽥Q + 􏽥QAT + α􏽥Q− ϑBBT < 0
with 􏽥Q

− 1 and − λϖ(t)
l λ− 1 ≤ 1 (l � 2, 3, . . . , N), we can obtain

from (22) that

_V(t)< − αV(t). (23)

For t ∈ [􏽥Ts, Ts+1) with ∀s ∈ ℵ, we can obtain the time
derivative of V(t) along the dynamics of subnetwork (7) that

_V(t) � κT
(t) IN− 1 ⊗ 􏽥Q

− 1
A + A

T 􏽥Q
− 1

􏼒 􏼓􏼒 􏼓κ(t). (24)

*en, it follows that

_V(t) − μV(t) � 􏽘
N

l�2
κT

l (t) 􏽥Q
− 1

A + A
T 􏽥Q

− 1
− μ􏽥Q

− 1
􏼒 􏼓κl(t).

(25)

According to A 􏽥Q + 􏽥QAT − μ􏽥Q< 0, we have

_V(t)< μV(t). (26)

In the sequel, we discuss the convergency of V(t) along
the time unit sequence [Ts, Ts+1), ∀s ∈ ℵ. Firstly, for
t ∈ [T0, T1), we can show that

V T1( 􏼁< e
μ T1− 􏽥T0( 􏼁

V 􏽥T0􏼐 􏼑< e
μ T1− 􏽥T0( 􏼁

e
− α 􏽥T0− T0( 􏼁

V T0( 􏼁

� e
− β0V(0),

(27)

where β0 � (α − (α + μ)σ0)T∗0 . By the discontinuous com-
munication condition α(1 − σmax)> μσmax, we can see that
β0 > 0. *en, we have for any positive integer s that

V Ts+1( 􏼁<V(0)e
− 􏽐

s

q�0βq , (28)

where βq � (α − (α + μ)σq)T∗q , q � 1, 2, . . . , s. For any t> 0,
we can see that an integer i≥ 1 exists such that Ti < t≤Ti+1.
Hence, we have

V(t)≤ e
μT∗maxV Ti( 􏼁≤ e

μT∗maxV(0)e
− 􏽐

i− 1
j�0βj ≤ e

μT∗max

· V(0)e
− i α− (α+μ)σmax( )T∗min

≤ e
μT∗maxV(0)e

− α− (α+μ)σmax( )T∗min( )/T∗max( )t
.

(29)

According to equation (29), we can conclude that
limt⟶+∞κ(t) � 0, which means that network (1) reaches
time-varying formation exponentially. *e proof of *eo-
rem 2 is finished.

*e time-varying formation design criterion in*eorem
2 provides an approach to design the gain matrix of protocol
(2). However, if the gain matrix is given previously, then it is
interesting to check that the given gain matrix is feasible or

not. Let Q � 􏽥Q
− 1, then the following corollary gives the

time-varying formation analysis criterion. □

Corollary 1. For any given gain matrix K, network (1) with
protocol (2) reaches leaderless time-varying formation if the
following conditions hold simultaneously:

(i) <e formation feasibility condition _zl(t) � Azl(t)

(l � 1, 2, . . . , N) holds.
(ii) <e discontinuous communication condition α(1 −

σmax)> μσmax is satisfied, where α> 0 and μ> 0.
(iii) <ere exist Q � QT > 0 such that

QA + A
T
Q − μQ< 0,

QA + A
T
Q + αQ − λ QBK + K

T
B

T
Q􏼐 􏼑< 0,

QA + A
T
Q + αQ − λ QBK + K

T
B

T
Q􏼐 􏼑< 0.

(30)

Remark 4. *e formation feasibility condition in*eorem 2
and Corollary 1 indicates that not all the desired formation
instructions can be reached by the networked agents.We can
find intuitively that the formation structure to be formed is
restrained by the dynamics of each agent. For example, due
to the constraint of the maneuvering characteristics, a team
of unmanned aerial vehicles cannot perform some specific
actions and thus cannot form the corresponding formation
shape. For the time-varying formation, some formation
feasibility conditions similar to the condition _zl(t) � Azl(t)

(l � 1, 2, . . . , N) can be found in [28–30]. Note that if the
derivative of the time-varying formation instruction is zero;
i.e., _zl(t) ≡ 0, (l � 1, 2, . . . , N), then the formation feasibility
condition becomes Azl(t) � 0. In this case, the formation
instruction is time-invariant.

Remark 5. Since the intermittent control strategy leads to
the piecewise continuous right-hand side of the closed-loop
systems, the stability property of the closed-loop systems
should be analyzed in the communication time units and the
noncommunication time units. It should be pointed out that
the states of the closed-loop systems may be divergent in the
noncommunication time units. To ensure the whole con-
vergency of the Lyapunov function, the discontinuous
communication condition α(1 − σmax)> μσmax is provided,
which can establish the relationship between the conver-
gency factor α and the divergent factor μ via the maximum
noncommunication rate σmax. As the result, the Lyapunov
function V(t) can be convergent with the rate faster than
(α − (α + μ)σmax)T

∗
min/T∗max in virtue of inequality (29).

4. Extensions to Leader-Follower Cases

*is section extends the main results of the leaderless time-
varying formation design and analysis with discontinuous
communications to the leader-follower cases.

*e dynamics of networked agents with leader-follower
structures are modeled as
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_xN(t) � AxN(t),

_xl(t) � Axl(t) + Bul(t),
􏼨 (31)

where l � 1, 2, . . . , N − 1 are the labels of N − 1 followers,
and the leader is labeled by the subscript N.

Assumption 2. It is assumed that the communication to-
pology among followers is represented by the connected
undirected graph.

For leader-follower structures, we propose the following
time-varying formation control protocol:

ul(t) �

Klf 􏽘

m∈Nϖ(t)

l

b
ϖ(t)
lm xm(t) − zm(t) − xl(t) + zl(t)( 􏼁,

+Klfb
ϖ(t)
lN xN(t) − xl(t) + zl(t)( 􏼁,

t ∈ Ts,
􏽥Ts􏽨 􏼑,

0, t ∈ 􏽥Ts, Ts+1􏽨 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

where l � 1, 2, . . . , N − 1, Klf ∈ R
d×n is the gain matrix.

*en, the definitions of the leader-follower time-varying
formation design and analysis are given as follows.

Definition 4. (leader-follower time-varying formation anal-
ysis). For any given gain matrix Klf ∈ Rd×n and bounded
initial states xl(0) − zl(0), l � 1, 2, . . . , N − 1, if
limt⟶+∞(xl(t) − zl(t) − xN(t)) � 0, l � 1, 2, . . . , N − 1,

then it is said that network (1) with protocol (2) reaches
leader-follower time-varying formation.

Definition 5. (leader-follower time-varying formation de-
sign). If there exists a gain matrix Klf such that network (1)
with protocol (2) reaches leader-follower time-varying
formation, then it is said to be leader-follower time-varying
formation reachable.

Form (31) and (32), we can obtain that

_φ(t) �
IN ⊗A( 􏼁(φ(t) + z(t)) − L

ϖ(t)
lf ⊗BKlf􏼐 􏼑φ(t) − IN ⊗ In( 􏼁 _z(t), t ∈ Ts,

􏽥Ts􏽨 􏼑,

IN ⊗A( 􏼁(φ(t) + z(t)) − IN ⊗ In( 􏼁 _z(t), t ∈ 􏽥Ts, Ts+1􏽨 􏼑,

⎧⎪⎨

⎪⎩
(33)

where L
ϖ(t)
lf satisfies that

L
ϖ(t)
lf �

L
ϖ(t)
f + Δϖ(t)

l − l
ϖ(t)
l

0 0
⎡⎣ ⎤⎦,

Δϖ(t)
l � diag b

ϖ(t)
1N , b
ϖ(t)
2N , . . . , b

ϖ(t)
(N− 1)N􏽮 􏽯,

l
ϖ(t)
l � b

ϖ(t)
1N , b
ϖ(t)
2N , . . . , b

ϖ(t)
(N− 1)N􏽨 􏽩

T
.

(34)

L
ϖ(t)
f is the Laplacian matrix of the topology among

followers.
Construct the following nonsingular matrix:

Y
ϖ(t)

�
IN− 1 1N− 1

0 1
􏼢 􏼣. (35)

Let 􏽥φl(t) � φl(t) − xN(t) (l � 1, 2, . . . , N − 1), then we
have

Y
ϖ(t)

􏼐 􏼑
− 1
⊗ In􏼒 􏼓φ(t) � 􏽥φT

2 (t), . . . , 􏽥φT
N(t), x

T
1 (t)􏽨 􏽩

T
. (36)

*en, it follows from Δϖ(t)
l 1N− 1 � l

ϖ(t)
l that

Y
ϖ(t)

􏼐 􏼑
− 1

L
ϖ(t)

Y
ϖ(t)

�
L
ϖ(t)
f + Δϖ(t)

l 0

0 0
⎡⎣ ⎤⎦. (37)

Since Assumptions 1 and 2 hold, we can find that
L
ϖ(t)
f + Δϖ(t)

l is positive definite and symmetric. Hence,
there exists an orthonormal matrix 􏽥Y

ϖ(t) ∈ R(N− 1)×(N− 1)

such that

􏽥Y
ϖ(t)

􏼒 􏼓
T

L
ϖ(t)
f + Δϖ(t)

l􏼐 􏼑􏽥Y
ϖ(t)

� Ωϖ(t)
f � diag 􏽥λ

ϖ(t)

1 , 􏽥λ
ϖ(t)

2 , . . . , 􏽥λ
ϖ(t)

N− 1􏼚 􏼛,

(38)

where 0< 􏽥λ
ϖ(t)

1 ≤ 􏽥λ
ϖ(t)

2 ≤ · · · ≤ 􏽥λ
ϖ(t)

N− 1 are the eigenvalues of
L
ϖ(t)
f . Let 􏽥φ(t) � [􏽥φT

1 (t), 􏽥φT
2 (t), . . . , 􏽥φT

N− 1(t)]T and
((Yϖ(t))− 1 ⊗ In)􏽥φ(t) � η(t) � [ηT

1 (t), ηT
2 (t), . . . , ηT

N− 1(t)]T,
then network (33) is converted to the following two
subnetworks:
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_xN(t) � AxN(t),

_η(t) �

IN− 1 ⊗A − Ωϖ(t)
f ⊗BKlf􏼐 􏼑η(t) + 􏽥Y

ϖ(t)
􏼒 􏼓

T

⊗A􏼠 􏼡z(t) − 􏽥Y
ϖ(t)

􏼒 􏼓
T

⊗ In􏼠 􏼡 _z(t), t ∈ Ts,
􏽥Ts􏽨 􏼑,

IN− 1 ⊗A( 􏼁η(t) + 􏽥Y
ϖ(t)

􏼒 􏼓
T

⊗A􏼠 􏼡z(t) − 􏽥Y
ϖ(t)

􏼒 􏼓
T

⊗ In􏼠 􏼡 _z(t), t ∈ 􏽥Ts, Ts+1􏽨 􏼑.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(39)

Because Yϖ(t) and 􏽥Y
ϖ(t) are nonsingular, we can find that

network (31) reaches leader-follower time-varying forma-
tion if and only if limt⟶+∞η(t) � 0. Let

λlf � min 􏽥λ
i

1: ∀i ∈ 1, 2, . . . , k{ }􏼚 􏼛 and λlf � max 􏽥λ
i

1: ∀i ∈􏼚

1, 2, . . . , k{ }}, then we give the following theorem to show the
sufficient conditions of the leader-follower time-varying
formation design.

Theorem 3. Network (31) is leader-follower time-varying
formation reachable by protocol (32) with Klf � 0.5λ− 1

lf

ξBT 􏽥R
− 1 if the following conditions hold simultaneously:

(i) <e formation feasibility condition _zl(t) � Azl(t)

(l � 1, 2, . . . , N) holds.
(ii) <e discontinuous communication condition α(1 −

σmax)> μσmax is satisfied, where α> 0 and μ> 0.
(iii) <ere exist ξ > 0 and 􏽥R � 􏽥R

T > 0 such that

A􏽥R + 􏽥RA
T

− μ􏽥R< 0,

A􏽥R + 􏽥RA
T

+ α􏽥R − ξBB
T < 0.

(40)

Corollary 2. For any given gain matrix Klf, network (31)
with protocol (32) reaches leader-follower time-varying for-
mation if the following conditions hold simultaneously:

(i) <e formation feasibility condition _zl(t) � Azl(t)

(l � 1, 2, . . . , N) holds.
(ii) <e discontinuous communication condition α(1 −

σmax)> μσmax is satisfied, where α> 0 and μ> 0.
(iii) <ere exists R � RT > 0 such that

RA + A
T
R − μR< 0,

RA + A
T
R + αR − λlf RBKlf + K

T
lfB

T
R􏼐 􏼑< 0,

RA + A
T
R + αR − λlf RBKlf + K

T
lfB

T
R􏼐 􏼑< 0.

(41)

Remark 6. *e leader-follower time-varying formation can
be regarded as an extension of the leaderless time-varying
formation since their main conclusions are similar. In this
case, the control gains of these two cases can be designed via
solving the linear matrix inequalities in the similar form.
However, the topology structures of these two cases are
different, which can be reflected on the difference of the
eigenvalues of the Laplacian matrices. Moreover, the

formation trajectories of the leaderless time-varying for-
mation and the leader-follower time-varying formation are
different. For the leaderless case, the formation trajectory is
determined by the states of all agents and the formation
instruction, which is described by the formation center
function. For the leader-follower case, the formation tra-
jectory is determined by the leader.

5. Numerical Simulations

In this section, we provide two numerical simulation ex-
amples to demonstrate the effectiveness of the proposed
theorems regarding the leaderless and leader-following
time-varying formation design and analysis with discon-
tinuous communications.

Example 1. (leaderless topologies). Consider a group of
networked agents labeled by 1–6, which are of third order as
follows:

A �

0 1 0

0 0 1

0.5 − 1 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

1

2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(42)

*e initial states of the agents are set as

x1(0) � [3.5, − 5.1, − 2.8]
T
,

x2(0) � [− 2.3, − 7.5, 1.6]
T
,

x3(0) � [2.8, − 4.6, 1.3]
T
,

x4(0) � [2.7, − 2.1, 2.1]
T
,

x5(0) � [3.7, − 1.4, − 5.9]
T
,

x6(0) � [7.2, − 2.9, 4.3]
T
.

(43)

*e switching topologies are given in Figure 1, where the
dwell time is set as 0.3 s.

*e communication time unit and noncommunication
time unit are set to be t ∈ [s, s + 0.8)s and t ∈ [s + 0.8, s + 1)s,
respectively, which are period time units for better opera-
bility of the simulation. In this case, the maximum non-
communication rate σmax � 0.2. Choose α � 1.6 and μ � 6,
and then, we can find that the discontinuous communica-
tion condition α(1 − σmax)> μσmax is satisfied. *e time-
varying formation instruction is chosen as follows:
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Figure 1: Leaderless switching topologies.
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Figure 2: Trajectories of φl (l � 1, 2, . . . , 6).
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zl(t) �

sin t +
(l − 1)π

3
􏼠 􏼡

cos t +
(l − 1)π

3
􏼠 􏼡

− sin t +
(l − 1)π

3
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l � 1, 2, . . . , 6. (44)

Based on *eorem 2, the matrix variable and the gain
matrix are calculated as

β � 8.5573,

􏽥Q �

4.1772 − 2.2475 4.2758

− 2.2475 7.3766 1.4573

4.2758 1.4573 20.4770

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

K � [8.2490, 6.9729, − 0.6591].

(45)

Figure 2 shows the trajectories of φl (l � 1, 2, . . . , 6) for the
networked agents, where the full curves with different colors
denote the φl (l � 1, 2, . . . , 6) for the six agents and the

sequence of blue circles represents the formation center
function. We can see from Figure 2 that the curve of each agent
converges to that of the formation center function; that is, they
reach the consensus with the states of the formation center
functions.

Figure 3 depicts the state snapshots of six agents at
t � 0 s, t � 8 s, t � 9 s, and t � 10 s, where six agents are
depicted by blue circles, pink plusses, red hexagrams, black
squares, green hexagrams, and indigo x-marks. We can find
from Figure 3 that the six agents reach a time-varying regular
hexagon around the formation center at different times,
which can keep rotating. *e above simulation results in-
dicate that network (1) with protocol (2) can reach the
leaderless time-varying formation with discontinuous
communications.

Example 2. (leader-follower topologies). Consider a leader
labeled by 6 and five followers labeled by 1–5, whose dy-
namics and initial states are the same as the leaderless cases.
*e switching topologies are given in Figure 4, where the
dwell time is set as 0.3 s. *e communication time unit and
noncommunication time unit are t ∈ [s, s + 0.8)s and
t ∈ [s + 0.8, s + 1)s, respectively, and the corresponding
parameters are chosen as the same as the leaderless cases.
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Figure 3: State snapshots of six agents at different times: (a) t � 0 s; (b) t � 8 s; (c) t � 9 s; (d) t � 10 s.
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Figure 4: Leader-follower switching topologies.
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Figure 5: Trajectories of φl (l � 1, 2, . . . , 5) and that of the leader.
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*e time-varying formation instruction is chosen as

zl(t) �

sin t +
2(l − 1)π

5
􏼠 􏼡

cos t +
2(l − 1)π

5
􏼠 􏼡

− sin t +
2(l − 1)π

5
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l � 1, 2, . . . , 5. (46)

According to *eorem 3, the matrix variable and the
gain matrix are calculated as

ξ � 8.5573,

􏽥R �

4.1772 − 2.2475 4.2758

− 2.2475 7.3766 1.4573

4.2758 1.4573 20.4770

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Klf � [27.2831, 23.0624, − 2.1799].

(47)

Figure 5 shows the trajectories of φl (l � 1, 2, . . . , 5) for
five followers and that of the leader, where the full curves
with different colors stand for the φl (l � 1, 2, . . . , 5) for the
five followers and the sequence of red imaginary curves

denotes that of the leader. It can be found from Figure 5 that
the curves of all followers converge to that of the leader; that
is, they can track the trajectory of the leader.

Figure 6 depicts the state snapshots of five followers and
the leader at t � 0 s, t � 8 s, t � 9 s, and t � 10 s, where they
are depicted by blue circles, pink plusses, red hexagrams,
black squares, green hexagrams, and indigo x-marks.We can
find from Figure 3 that the six agents reach a time-varying
regular pentagon and keep rotating around the leader, which
means that network (26) with protocol (27) can reach the
leader-follower time-varying formation with discontinuous
communications.

6. Conclusions

*e leaderless and leader-follower time-varying formation
design and analysis for networked agents with discontinuous
communications were studied. *e leaderless time-varying
formation control protocol was proposed via the intermit-
tent control strategy, which contains both the communi-
cation time unit and the noncommunication time unit. An
explicit formulation of the formation center function was
determined, which can describe the formation movement
trajectory of the networked agents as a whole. Leaderless
time-varying formation design and analysis with discon-
tinuous communications were given, where the formation
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Figure 6: State snapshots of five followers and the leader at different times: (a) t � 0 s; (b) t � 8 s; (c) t � 9 s; (d) t � 10 s.
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feasibility conditions and discontinuous communication
conditions were constructed to ensure the stability of the
closed-loop subnetworks. Moreover, the main results of the
leaderless cases were extended to the leader-follower cases,
where the trajectory of the formation movement was de-
termined by the state of the leader.
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