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The N-Queens problem plays an important role in academic research and practical application. Heuristic algorithm is often used
to solve variant 2 of the N-Queens problem. In the process of solving, evaluation of the candidate solution, namely, fitness
function, often occupies the vast majority of running time and becomes the key to improve speed. In this paper, three parallel
schemes based on CPU and four parallel schemes based on GPU are proposed, and a serial scheme is implemented at the baseline.
The experimental results show that, for a large-scale N-Queens problem, the coarse-grained GPU scheme achieved a maximum
307-fold speedup over a single-threaded CPU counterpart in evaluating a candidate solution. When the coarse-grained GPU
scheme is applied to simulated annealing in solving N-Queens problem variant 2 with a problem size no more than 3000, the

speedup is up to 9.3.

1. Introduction

The Eight-Queens problem was first proposed by Max
Bezzel in a Berlin chess magazine in 1848 [1]. The original
question was how to place eight queens on the chessboard
and make them unable to attack each other. If the number
of queens of the problem is expanded, it becomes the fa-
mous N-Queens problem. The N-Queens problem has
many applications in real-world and theoretical research,
such as artificial intelligence, graph theory, circuit design,
air traffic control, data compression, and computer task
scheduling [2]. The input of the N-Queens problem is only
the number of queens. According to different require-
ments, the output can be the number of solutions or the
sequence of each solution. Since the problem has been
proved to be NP-hard, the only way to obtain the number of
solutions is to find these solutions. Therefore, the amount
of calculation required to obtain these two types of outputs
is the same, and the only difference is whether each solution
is saved in the calculation process. There are three variants
of N-Queens problem according to the different demands
for the number of valid solutions:

Variant 1: finding one valid solution for each problem
size

Variant 2: finding a set of different valid solutions for
larger problem scale

Variant 3: finding all valid solutions if the problem scale
is small enough

Variant 1 has been solved in 1969. Hoffman [3] proposed
a construction method by analyzing the inherent mathe-
matical laws of the N-Queens problem. This method can
obtain a valid constructive solution within the time com-
plexity of O(1). However, his construction method can only
construct one fixed valid solution for each N value that is not
universal.

Variant 3 was mathematically proven to be NP-hard,
and there is no deterministic algorithm in polynomial time
to solve all valid solutions. For variant 3 with small N value,
brute force, backtracking, and tree-based search algorithm
can be used to get all valid solutions. Somes [4] solve the
problem for N = 23 by recursive backtracking algorithm;
Kise et al. [5] solve the problem for N =24 using MPI
(Message-Passing ~ Interface) on  general-purpose
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processors; Caromel et al. [6] solve the problem for N = 25
by using a heterogeneous grid of 260 computers; and
Preufler et al. [7] solve a 26-queens problem in 270 days
using a cluster of 26 FPGAs (field programmable gate
arrays); to the best of our knowledge, this is a current world
record.

Based on the performance of current computers, it is not
realistic to find and save all valid solutions of the large-scale
(N >26) N-Queens problem in terms of running time and
storage space. Therefore, for N-Queens problem variant 3,
some researchers study the case of N greater than 26 by
building devices with higher computing power, while others
design new parallel algorithms to accelerate the case of
N <26.

Before the dynamic parallel technology appeared on
GPU, the usual way to solve the combinatorial optimi-
zation problem with the backtracking algorithm imple-
mented by GPU was to divide the problem into two steps:
first, the precalculated subsearch trees are generated on
the CPU, and then, these subtrees are assigned to the GPU
thread to complete the further search [8-10]. Amrasinghe
etal. [11] use NVIDIA Cg language to solve the N-Queens
problem on GeForce 6800 hardware, but the performance
of their algorithm is proved to be lower than that of
Pentium M CPU with 2.0 GHz frequency. Pamplona et al.
[12] design an N-Queens problem solver running on
GeForce 9600 by using CUDA 1.0. The performance of
their algorithm is also lower than that of the C++
implementation on an Intel quad core processor with
2.4 GHz frequency. Feinbube et al. [10] transplant Somers’
algorithm to GPU for parallelization and use four opti-
mization methods such as using shared memory to im-
prove the performance of his algorithm. Their parallel
algorithm is used to speed up the solving process of an
N-Queens problem with a size range from 14 to 17 on
GPU devices with a computing capability of 1.1 and 1.3
(GTX275, GTX295, NVS295, and GeForce8600M). Zhang
et al. [13] optimize a GPU-based N-Queens solver by
increasing L1 cache configuration, reducing shared
memory bank conflicts, balancing thread load, etc. and
obtain more than 10 times speedup with the number of
queens ranging from 15 to 19 on GTX480. Thouti et al.
[14] use the OpenCL programming model to analyze and
solve the issues of atomicity and synchronization and
obtained speedup of 20X with the number of queens
between 16 and 21 on the Quadro FX 3800. Plauth et al.
[15] use CDP (CUDA dynamic parallel) technology to
solve the N-Queens problem. In his scheme, the kernel in
each layer of the CDP recursive stack is responsible for
one row or multiple rows of the chessboard. Plauth uses
his scheme to solve the N-Queens problem with the
problem size between 8 and 16 on Tesla K20, and the
experimental results show that the performance of his
scheme is lower than that of Feinbube’s GPU non-CDP-
based scheme and even lower than that of Somers’ serial
scheme in some cases. Carneiro et al. [16, 17] use a CDP-
based backtracking algorithm to solve N-Queens problem
variant 3 with a size ranging from 10 to 17. He concluded
that CDP is less dependent on parameter tuning, but due
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to the high cost imposed by dynamically launched kernels,
the performance of the CDP-based scheme is out-
performed by non-CDP bitset-based implementation with
well-tuned parameters and multicore counterparts.

The methods used to solve variant 3 can also be used to
solve variant 2 to obtain a set of different solutions, but the
efficiency is very low because these algorithms need to
ensure that every position in the solution space is searched
without omission. In addition, because these algorithms
search all the solution spaces in a certain order, the solutions
are likely to be located in the close position in the solution
space, and the diversity of solutions is not strong enough. So,
variant 2 is usually solved by heuristic algorithm and ran-
dom algorithm.

The output of variant 2, a set of valid solutions for the
large-scale N-Queens problem, can be used in scientific
research and practice. For example, we want the neural
network to have the ability to generate zero conflict or less
conflict N-Queens layout, and the output of variant 2 can
provide a set of solutions to the neural network as a
training sample set. In circuit design, for the reason of
signal interference, or in arts and crafts, just for the sake of
beauty, it may be required that devices and patterns
cannot be placed in the same line, column, or diagonal. In
this case, the output of variant 2 can complete this
requirement.

Variant 2 can be regarded as a permutation-based
combinatorial optimization problem or a constraint
satisfaction problem, and researchers often get valid so-
lutions by using random algorithm and heuristic algo-
rithm. The process of solving is to generate a group of
random solutions first, then guide these candidate solu-
tions to evolve in a better direction through various
heuristic information, and finally, get the optimal solu-
tion. Hu Xiaohui et al. [18] use the improved PSO (Particle
Swarm Optimization) algorithm to obtain part of the valid
solutions with N <200; Jafarzadeh et al. [19] use PSO and
SA (Simulated Annealing) to obtain part of the valid
solutions with N <2000; Zhang et al. [20] use CRO
(Chemical Reaction Optimization) algorithm to solve an
eight-queens problem; Hu Nengfa et al. [21] use simplified
GA (Genetic Algorithm) to calculate a valid solution for
N=500 in 45 seconds; Zhang Buzhong et al. [22] im-
plement an operator-oriented parallel genetic algorithm
in the multicore platform for solving N = 1500 in 20655
seconds; Turky et al. [23] use the genetic algorithm to
obtain a valid solution with N =2000 in 9123 seconds;
Wang et al. [24] use four core i5 processors to implement
the parallel genetic algorithm and achiev a speedup of 2.8
compared with a serial counterpart when the problem
scale reached 512; and Cao et al. [25] constructed a two-
level parallel genetic algorithm based on a GPU cluster,
which expands the N-Queens solution scale to 10000 in
the acceptable time.

Those heuristic algorithms need to evaluate candidate
solutions generated in the search process. The number of
queens with conflicts in the candidate solutions is an ap-
propriate evaluation criterion. The conflict number can be
calculated with the following formulas:
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n-2 n-1

conflicts = Z Z g, 7), (1)
i=0 j=it1
if NQ, == NQ,
g, j) = or|[NQ; - NQ| == j - -i, (2)

0, otherwize.

This calculation process is usually encapsulated as an
evaluation function. In other works, it is also called cost
function, objective function, or fitness function. This
function has the time complexity of O(N?) and high par-
allelism. Because it needs to be executed repeatedly, this
function takes up a lot of running time in the heuristic
algorithm.

Simulated annealing [26] is a kind of heuristic algorithm
which simulates the process that metals tend to be stable
during heating and cooling in metallurgy. Simulated
annealing algorithm has been proved to be asymptotically
convergent and can converge to the global optimal solution
with probability 1 under the condition that the initial
temperature is high enough, the cooling speed is slow
enough, and the termination temperature is low enough.
Because the simulated annealing algorithm is simple and has
few control parameters, we use this algorithm to demon-
strate the acceleration effect of parallelization of evaluation
function on the whole algorithm.

Because the time cost to ensure the algorithm converges
to the valid solution with probability 1 is too high, we use the
parameters in Table 1 to get the result with a probability
higher than 0.5. With this set of parameters, the algorithm
can get a valid solution in a few hours. The average running
time of the algorithm is 9443 seconds with problem size
3000. We use std: : shuffle to shuffle the sequence from 1 to
N to get the initial random solution.

Figure 1 depicts the running time proportion of the
evaluation function in the whole simulated annealing al-
gorithm for different N values.

It can be seen from Figure 1 that the larger the N, the
higher the proportion of the evaluation function. When N is
greater than 700, the proportion of evaluation function
exceeds 99%. Therefore, for heuristic algorithms based on
search and evaluation, such as simulated annealing, genetic
algorithm, and chemical reaction optimization, accelerate
evaluation function is the key to improving the speed of the
whole algorithm in solving a large-scale N-Queens problem.

Since evaluation function has high parallelism and
simple operation, it is very suitable for GPU (graphical
processing unit), which uses the SIMT(Single Instruction
Multiple Threads) model, originally designed for graphics
applications and optimized for high throughput by allo-
cating more transistors to compute unit, instead cache,
prediction unit, etc.

Our objective is to speed up the search and evaluation-
based heuristic algorithm in solving variant 2 of the
N-Queens problem by accelerating the fitness function. The
main acceleration method is the thread-level parallel tech-
nology of CPU and GPU. In this paper, we propose four

GPU-based parallel schemes by using CUDA 8.0 [27]
parallel technology with different parallel granularities and
three CPU-based parallel schemes by using C++ multi-
threading technology, Intel TBB library, and Java Fork-Join
framework. Performances of these schemes are verified
through experiments. The scheme with the highest speedup
is applied to simulated annealing algorithm for accelerating
N-Queens problem variant 2.

The organization of this paper is as follows. In Section 1, we
introduce three variants of the N-Queens problem and related
research. The significance of improving the performance of the
evaluation function is also discussed here through an exper-
iment. In Section 2, one CPU-based serial scheme, three CPU-
based parallel schemes, and four GPU-based parallel schemes
of realizing evaluation functions are proposed. In Section 3, we
compare the performance of the first seven schemes, and the
eighth scheme is also discussed separately here. In Section 4,
the validity of the GPU-based coarse-grained scheme is verified
by the simulated annealing algorithm. Section 5 discusses
future work and concludes this paper.

2. Parallel Schemes of Fitness Function

An N-Queens problem is a two-dimensional optimization
problem. In order to facilitate the mutation, crossover,
synthesis, splitting, and other operations in the evolution
process of the heuristic algorithm, the candidate solution is
usually encoded by an integer and expressed as one-di-
mensional arrays or a vector. The subscripts of the array or
vector are used as abscissas, and the element values are used
as ordinates. For example, we use array NQ = {2,4, 1,3} to
represent a candidate solution {(1,2), (2,4), (3,1), (4,3)}
and variable N to store array length.

The initial solution is obtained by shuffling the number
sequence from 1 to N with std: : shuffle function. After the
heuristic algorithm improves these initial solutions
according to the heuristic information, the candidate so-
lutions are sent to the fitness function. The number of
conflicts calculated by fitness function is returned to heu-
ristic algorithm as evaluation result. This process is often
repeated many times.

2.1. CPU Single-Threaded Scheme. With a single-threaded
processor, the scheme has to compare all pairs of queens
sequentially. This scheme is described in Algorithm 1 and
only used as a baseline to calculate the speedup of other
parallel schemes.

2.2. CPU-Adaptive Multithreaded Scheme. We use the class
std: : thread introduced in C++11 to implement a CPU
multithreaded scheme, the task of thread function is described
in Algorithm 2. In order to avoid the high cost of atomic
operation, we design a counter array with the same length as the
number of threads to store the number of conflicts calculated by
the corresponding thread. After all threads are finished, STL
function accumulate is used to get the total conflicts number of
all threads. Algorithm 3 describes the process of accumulating
all conflicts. Limited by the number of cores, the most



TABLE 1: Parameter setting of simulated annealing algorithm.
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FIGURE 1: Time proportion of evaluation function in SA algorithm.

Input: N, NQ
Output: conflicts
(1) conflict «— 0;
(2) for i=0; i | N; ++I do
(3) forj=i+1;j<N; ++j do
(4) i NQ == NQ;orINQ, - NQ|==j-i
then
(5) conflict++;
(6) end
(7) end
(8) end

ALGoRrITHM 1: Calculation conflicts with single-threaded CPU.

Input: N, NQ, thr_i dx
Output: conflict_arr
(1) conflict_arry, ; 5, <— 0; /% clear counter s/
(2) batchs «— (N +thr_num -1)/thr_num;/* get task batchs /
(3) for int batch = 0; batch < batchs; batch++ do
(4) i=thr_num * batch + thr_idx; /* get position i %/
(5) forj=i+1;j<N; ++j do
(6)  if NQ == NQ; orINQ, - NQ|==j-i
then
) conflict_arry, ; 4, ++;
) end

ALGORITHM 2: thread_function.

appropriate number of CPU threads is often less than 100, and
the summation of the array can be performed quickly.

In this scheme, the number of threads can be set
manually. We observe the performance of this scheme in
different problem sizes when the number of threads varies
from 1 to 60 and find that the optimal number of threads is

related to the size of the problem. Figure 2 shows the
speedup of this scheme compared with the single-threaded
scheme with different thread numbers, and different colors
in the legend indicate different problem sizes.

For the case of N <1000, the maximum speedup is less
than 5, and the optimal number of threads is about 10. If the



Complexity

number of threads participating in the calculation exceeds
the optimal number, the cost of redundant threads is greater
than the benefit and the performance will decrease.

For the case of 1000 < N < 10000, the maximum speedup
is between 10 and 15, and the optimal number of threads is
about 20. For the cases of N > 20000, the maximum speedup
is between 10 and 20, the optimal number of threads is about
40, which is the number of logical cores of our test platform.
If the number of threads exceeds the optimal value, the
performance will be only slightly affected because at this
time, all processors are fully utilized, and increasing the
number of threads will not continue to improve the utili-
zation of the processors.

The maximum speedup and the corresponding optimal
number of threads for each different problem scale are
plotted in Figure 3. We observed that as the size of the
problem increased, the speedup and the corresponding
number of optimal threads gradually approached the
number of cores. We store the optimal number of threads
corresponding to each problem size in std: : map data
structure. In the later experiments, this map is used to select
the optimal number of threads for different scale problems,
so that the algorithm has a certain adaptive ability.

2.3. CPU Intel TBB Scheme. Intel Threading Building Blocks
(TBB) is a library that takes full advantage of multicore
performance. The key notion of TBB is to separate logical
task patterns from physical threads and to delegate task
scheduling to the system. Compared with using the raw
thread library, such as POSIX threads, std: : thread, or Boost
threads, users can focus on the decomposition of tasks in-
stead of allocating computation and data to threads man-
ually and the synchronization issue among threads.

We use the function tbb: : parallel_reduce provided by
TBB to decompose and summarize the calculation tasks of
evaluation function. To make use of this function, we need to
design a class and override function operator and join in the
NQClass which is defined in Algorithm 4. The function
SubTask() is used to complete the decomposed subtask, that
is, calculate the number of conflicts caused by the queen i.
This function is called infunction operator.

Block_range used in Algorithm 5 is a class defined by TBB
in the file blocked_range.h to indicate the range of data to be
processed. After the required class is defined, the use of
function tbb: : parallel_reduce is very simple. Without speci-
fying the number of threads manually, TBB can automatically
decompose subtasks and complete them in parallel.

2.4. CPU Fork-Join Scheme. Fork/Join is a framework pro-
vided by JAVA?7 for parallel task execution. By using job
stealing technology to schedule tasks, the Fork/Join
framework can achieve better load balancing among mul-
tiple cores. The key to implementing the evaluation function
with this framework is to inherit class RecursiveTask and
override function compute.

As shown in Algorithm 6, tasks larger than the threshold
are divided into smaller tasks recursively and delivered to
multiple cores for execution. We tried different thresholds

and found that best performance can be achieved when the
threshold is between 2 and 10. The experimental data used in
the following section are obtained with threshold = 2, which
means that each thread only calculates the number of
conflicts caused by a single queen.

2.5. GPU Fine-Grained Scheme 1. Considering the SIMT
structure of the GPU, one can run thousands of threads at
the same time. To make full use of the number of threads in a
fine-grained scheme, we use one thread to compare a pair of
queens to ascertain if there is a conflict between them. We
use the CPU to calculate the subscript pairs of queens that
need to be compared, as shown in Algorithm 7. There are a
total of (N (NN —1)/2) pairs of subscripts to be stored in
array. The array is then transported along with the candidate
solution to the GPU through the PCI-E data bus. In the GPU
kernel, each GPU thread reads a pair of subscripts and
extracts the location of the corresponding queen according
to the subscript. If there is a conflict between the two, the
atomic operation is used to add one to the counter in the
global memory of GPU.

Array NQ and subscript array Pairs have been trans-
ferred from the host memory to the GPU memory by
cudaMemcpy before kernel run. The task of each thread of
GPU is described in Algorithm 8 which has O(1) time
complexity. Variable conflicts is a global variable that can be
accessed by all threads.

When problem size N increases to 50000, approximately
1.164G pairs of queens need to be compared. If the subscript
is saved with the unsigned short type, more than 4GB
memory is needed. The huge amount of data transfer be-
tween CPU and GPU takes up most of the running time,
which completely offsets the benefits of parallel computing.
The performance of this scheme is 2 to 4 orders of magnitude
lower than that of the coarse-grained GPU scheme. As the
scale of the problem increases, the disadvantage will con-
tinue to be magnified. Even if GPU can reduce the cost of
data transmission by multistream and overlap of compu-
tation and data transmission, this scheme has few perfor-
mance advantages. So, we did not continue to test the
performance of this scheme for N > = 50000.

2.6. GPU Fine-Grained Scheme 2. Considering fine-grained
scheme 1, the subscripts array is generated by the CPU and
transferred to the GPU through the PCI-E bus. With the
increase in problem size N, the memory consumption of
subscript array increases at the speed of O (N?). To avoid the
communication overhead caused by a large amount of data
transmission between the CPU and GPU, in this scheme, the
subscripts of the two queens that each GPU thread needs to
compare is calculated by GPU thread according to its own
index, The process of using GPU to generate subscript is
shown in Algorithm 9. This scheme can improve the par-
allelism and improve the utilization of GPU resources. The
part of the algorithm for calculating subscripts has O(N)
time complexity.

The disadvantage of this scheme is that the tasks of each
thread are very few to give full play to make full use of GPU
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Input: N, NQ[ ], thr_num’, conflict arr| 1
Output: conflicts
(1) for int i=0; i< thr_num; i++;/+ start thr_num threads =/
(2) do
(3) thr_arr; «— thread (thread_func,NQ,N,i,thr_num,conflict_arr)
(4) end
(5) for int i=0; i < thr_num; i++; /* wait for threads finish =/
(6) do
(7) thr_arr;.join()
(8) end
(9) conflicts «— accumulate (conflict_arr, conflict_arr + thr_num, 0)

ArLGoriTHM 3: Calculation of conflicts with multithreaded.

7 1 20 4
6 4
5 | 15 -
o o \
5 4 5 / A 2L
S S 10 : S = Y
23 2
B2 52
2 A 5 |
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Number of threads Number of threads
— 100 — 500 800 — 2000 5000 —— 8000
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Speedup
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Number of threads
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—— 50000 100000 600000 1000000
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FIGURE 2: Performance with different number of threads. (a) Problem size from 100 to 1000, (b) problem size from 2000 to 10000, and
(c) problem size from 20000 to 1000000.
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Input: N, NQ
Output: m_sum
begin 2
int* m_NQ;/# array name */
int m_Nj/* array length */
int m_sum;/* result */
FunctionNQClass (int NQ[], int N):
m_NQ «— NQ
m_N «— N
m_sum «— 0
End Function
Function NQClass (NQClass & x,split)
m_NQ «— x.m_NQ
m_N «— x.m_N
m_sum «— 0
End Function
Function SubTask (int7)
conflict «— 0;
For int j=i+1; j<N; ++j/+ for every index after i */
do
if NQ; == NQ; orlNQj - NQ;|==j-i
then
conflict++
end
end
End Function
Function operator (const blocked_range <int> & r):
int end «— r.end()
For int i=r.begin(); i # end; ++i) do
m_sum+ = SubTask (m_NQ,m_N, i)
end
End Function
Function join (const NQClass & y):
m_sum + =y.m_sum
End Function
end

ALGORITHM 4: Class NQClass.




Input: N, NQ

Output: conflicts
(1) NQClass my_class (NQ, N)
(2) tbb:parallel_reduce(blocked_range < int> (0,N), my_class)
(3) conflicts «— my_class.m_sum

ALGORITHM 5: Calculation of conflicts by using TBB Library.

Input: N, NQ
Output: conflicts

(1) start «— 0
(2) end «— N-2
(3) if end-start < threshold;//calculate small task directly

(4)  then
(5) For i=start; i j=end; ++i do
(6) For j=i+ 1;j i N; ++j do
@) if NQ; == NQ; or [NQ; - NQ| = =j-i
then
(8) conflicts++
9) end
(10) end
(11) end
(12) else
(13)  middle «— (start+end)/2; //large task need to be splited
(14)  leftTask «— new CountTask(start, middle); //generate sub_task_1

Complexity

(21) end

(15)  rightTask «— new CountTask(middle+1,end); //generate sub_task_2
(16) leftTask.fork(); //submit sub_task_1

(17)  rightTask.fork(); //submit sub_task_2

(18)  leftResult «— leftTask.join(); //wait for sub_task_1

(19)  rightResult «— rightTask.join(); //wait for sub_task_2

(20)  conflicts «— leftResult + rightResult; //merge subtask results

ALGORITHM 6: Calculation of conflicts with the Fork_Join framework.

computing power, which makes the performance of this
scheme lower than that of the coarse-grained scheme by
about two orders of magnitude. Since this huge performance
difference cannot be compensated by thread task merging,
we gave up this scheme when the number of queens reached
50000.

2.7. GPU Coarse-Grained Scheme. Each GPU thread cor-
responds to a queen’s location to calculate whether this
location conflicts with the queen behind the location and to
accumulate the number of conflicts into the counter in the
global memory of GPU with atomic operations. Algo-
rithm 10 describes the task of one thread in GPU; it has a
time complexity of O(N).

The GPU kernel is launched with the following pa-
rameters:
Kerel < < (N + block_size — 1)/block_size, block_size > > .
With Nvidia Tesla K80 [28], this scheme can theoretically be
used to calculate the number of conflicts for 2! — 1 queens at
maximum. Since only the candidate solution array needs to

be transferred to the GPU, the data transmission burden of
this scheme is very small.

2.8. GPU CDP-Based Scheme. The coarse-grained GPU
scheme is relatively simple, but there are problems with un-
balanced tasks between threads. For example, for queens
number 2000, thread_0 has to check 1999 pairs of queen
conflicts, while thread 1998 only checks whether 1 pair of
queens conflict; therefore, the task amount of those two threads
is 1999 times different. For larger N values, the issue is even
more serious. To balance the amount of tasks between multiple
threads, we set a threshold for using CDP (CUDA dynamic
parallelism). CUDA dynamic parallelism technology appears
for the first time in NVIDIA devices with a computing ca-
pability of 3.5 or higher. It empowers GPU kernels to launch
nested subkernels by themselves, without the participation of
the CPU, thereby avoiding the communication cost between
the CPU and GPU. When a thread in the kernel is responsible
for more comparisons between the two queens than the
threshold, this thread uses dynamic parallel technology to
launch subkernels, divides its task into more fine-grained
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Input: N
Output: Pairs| ]
(1) index «— 0;
(2) For p;=0; p; < N-2; p;++ do

(3)  For pj=p;+1; pj < N-1; pj++ do
(4) Pairs;, 4o X1 «— ps

(5) Pairs; 4o X2 < pj

(6) index++;

(7)  end

(8) end

ALGORITHM 7: Generation of subcript array in CPU.

Input: N, NQ, Pairs

Output: conflicts
(1) tid «— global thread id in GPU Kernel
(2) X; «— Pairs;;4.x1
(3) X; — Pairs;g.x2

(4) Y; ——NQy;

(5) Y; «— NQy;

(6) if Y, == Y;or |Yj -Y,| == X;-X; then
(7)  atomicAdd(conflicts)

(8) end

ArcoriTHM 8: Calculation of conflicts with fine-grained scheme 1 in GPU.

Input: N,NQ
Output: conflicts
(1) tid «— global thread id in Kernel;
(2) NumofRound «— N-1;
(3) For iRound =0; iRound j N-1; iRound ++;/* find queens to be compared for current thread =/
(4) do
(5) if tid - NumofRound; 0 then
(6) X; < iRound;
(7) Xj— tid +1 +iRound;

(8) break;

(9) end
(10)  tid «— tid - NumofRound;
(11)  NumofRound «— NumofRound - 1;
(12) end

(13) Y; — NQy; ;

(14) Yj (—NQX]- ;

15) if Y, == Y;or IYJ- -Y,;| == X;-X; then
(16)  atomicAdd(conflicts);

(17) end

ALGORITHM 9: Generate subscripts in GPU.

subtasks, and gives it to the subkernel to run. Algorithm 11
describes the process of deciding whether to call the subkernel
according to the threshold, and Algorithm 12 describes the
tasks of each subkernel. In theory, this scheme can alleviate the
problem of unbalanced tasks between threads and also improve

the parallelism. For the case of N = 2000 and threshold = 32,
the task amount(pairs of queens to be checked) of thread_0 is
1999, which is greater than the threshold value of 32. This task
is divided into 63 small subtasks with task amount not greater
than the threshold. The number of subtasks can be determined
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Input: N, NQ
Output: conflicts

(2) Y; «—NQy; ;
(4) do
(5) Yj<—Nij;

(8) end
(9) end

(1) X; < global thread id in Kernel;

(3) for Xj =X;+1 Xj <N; ++ Xj ;/% for index after X; =/

(6) ifY;==Y;orlY;-Y;| ==X; - X; then
(7) atomicAdd (conflicts);

ArGoriTHM 10: Calculation of conflicts with the coarse-grained scheme in GPU.

Input: N,NQ

Output: conflicts
(1) tid «— global thread id in Kernel;
(3) if num_tasks < threshold then

(5) else

(2) num_tasks «— N-tid -1;/# Get task amount of current thread by thread ID */
(4) call Algorithm 10;/+ For smaller tasks, calculate the results directly #/

(6) num_subtasks = (num_tasks + threshold -1)/threshold; (Algorithm 11)
(7) call Algorithm 12;/# Using dynamic parallel to call subkernel =/

(8) end
ALGorITHM 11: CUDA dynamic parallelism scheme.
Input: N, NQ
Output: conflicts
(1) sub_tid «— global thread id in subkernel
(2) Y; «— NQy;
(3) start «— X; + 1+ threshold * sub_tid
(4) end «— X; + 1+ threshold * (sub_tid +1)
(5) for X; =start; X; <end and X;<N; X ++do
6) Y i NQy;
(7) ifY; == Y;or IYJ- -Y,| == Xi—X; then
(8) atomicAdd (conflicts)
(9) end
(10) end
ALGORITHM 12: Task of the subkernel.
by the following formula: num_subtasks = 3, Experiment

((num_tasks + threshold — 1)/threshold) = ((1999 + 32 — 1)
/32) = 63 Each subtask is completed by a thread in the sub-
kernel, so the launch parameters of the subkernel are as follows:
Sub_Kerel < < ((num_subtasks + sub_block_size — 1)/sub_
block_size, sub_block_size > >). The parent grid and the
subkernel have their exclusive local memory and shared
memory space, so the parent kernel should pass data to the
child kernel by passing values or global memory space pointers
instead of pointers of local memory or shared memory space.

3.1. Test Platform. All trials were performed on an HP
Proliant DL580 Gen9 server with a Tesla K80. The config-
uration of the experimental platform is shown in Table 2.

With 2 Xeon E7-4820 v4 CPU, our experimental plat-
form has 20 physical cores, which can be virtualized into 40
logical cores through Intel Hyper-Threading Technology
and run 40 threads at the same time. Nvidia Tesla K80 has up
to 2.91 Teraflops of double-precision performance and
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TaBLE 2: Experiment configuration.

CPU GPU

Processors Intel(R) Xeon(R) Nvidia Tesla K80
Chips E7-4820 v4 * 2 GK210 * 2
Cores/chip 10 cores 2496 CUDA cores
Frequency 2.0GHz 560 MHz 824 MHz
Memory 128 GB 12GB *2
Compiler version g++ 5.4.0 CUDA 8.0

oS Ubuntul6.04 Ubuntul6.04

480 GB/sec memory bandwidth. Most of the experimental
data used in charts below were averaged over 100 runs, and a
few very time-consuming experimental data use the average
value of 10 runs. We use the high-precision std: : chrono
library provided in C ++11 standard for timing and use
microseconds as the timing unit for the small-scale problem
(N <900) and milliseconds for the large-scale problem
(N >900). CUDA function cudaEventSynchronize is used
for synchronization between GPU and CPU.

Schemes based on CPU are implemented with C++ and
Java, and schemes based on GPU are implemented with
CUDA-C. We set the block size of GPU kernels to 512 based
on experience. For GK210, the maximum number of con-
current threads in each SM is 2048, and the block size we set
can ensure that there are 4 blocks in each SM. Because the
number of subkernel threads caused by CUDA dynamic
parallelism is often in the order of tens and hundreds, we set
a smaller block size (32) for the subkernel. For fairness and
portability on different hardware, all codes are compiled
with the default optimization option.

Java virtual machine supports hotspot detection
technology, which can analyze hotspot code and optimize
it automatically. We tried C1 and C2 compiler with the
(—server/—client) option in the compilation phase and
forced JIT mode with the -Xcomp option in the runtime
phase. The results show that the best performance can be
achieved by default compiling and running configuration .

3.2. Performance Comparison. As shown in Figure 4, the
rank of performance of seven schemes is a coarse-grained
GPU scheme, multithreaded CPU schemes (including an
adaptive scheme and TBB scheme), Fork-Join scheme,
single-threaded CPU scheme, and fine-grained GPU
schemes 1 and 2. The dynamic parallelism scheme will be
discussed in Section 3.3 separately.

Because of the cost of thread startup and management,
the performance of the CPU-adaptive multithreaded scheme
and TBB scheme is lower than that of the single-threaded
scheme with small problem sizes. However, as the problem
size increases to 300, these two schemes keep their advan-
tages over other schemes until the problem size is more than
3000, which is replaced by the GPU coarse-grained scheme.

Fork-Join scheme has more extreme characteristics:
when the problem size is less than 2000, its performance
is even lower than that of the single-threaded scheme;
when the problem size reaches 50000, its performance
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exceeds that of the multithreaded scheme and TBB
scheme. The highest speedup of multithreaded and TBB
schemes is 22.04 and 20.71, while the Fork-Join scheme
achieved a maximum speedup of 29.18. Considering that
40 logical cores of our experimental platform are vir-
tualized on 20 physical cores by Intel Hyper-Threading
Technology, this scheme has achieved a high CPU re-
source utilization.

The performance of fine-grained scheme 1 is lower than
that of the CPU scheme because of the large memory usage,
high transmission cost, and the number of tasks per thread
being too small to offset the overhead caused by thread
management.

Fine-grained scheme 2 gave the task of calculating the
subscripts of the queens to be compared to the GPU to avoid
a large amount of data transmission. However, the SIMT
architecture of the GPU is suitable for executing a code with
large amount of tasks and simple control structure. While
calculating subscripts of the queens, we use loop and branch
structure, which causes GPU thread divergence. In the most
extreme cases, 32 threads in a warp will execute in sequence
and seriously reduce the execution efficiency. The experi-
mental results show that, in the heterogeneous architecture
of CPU+GPU, the optimization scheme must compre-
hensively measure various factors, such as thread parallel-
ism, data transmission throughput, SM (Streaming
Multiprocessor) core utilization, and load balancing among
multiple SMs. Only one factor of increasing parallelism does
not necessarily lead to performance improvement.

When the problem size N <700, the performance of the
coarse-grained GPU scheme is lower than that of the CPU
single-threaded counterpart. The reason is that, in the case of
problems with small sizes, only a small number of threads
participate in the calculation, the utilization of GPU cores is
low, and the overhead caused by the GPU thread startup and
data transmission covers the gain brought by computational
parallelism. When N >700, the advantages brought by the
massive parallelism of the GPUs make the speedup to the
single-threaded scheme continue to rise. When the size of
the problem reaches 400,000, the speedup is stable at ap-
proximately 300, ten times more than that of the CPU
multithreaded scheme. These phenomena can also be ob-
tained by observing the speedup changes of these schemes
under different problem sizes, which is described in a log-
arithmic form in Figure 5.

3.3.  Performance of the GPU CDP-Based Scheme.
NVIDIA Tesla K80 has a computing capability of 3.7 and
supports dynamic parallelism. Function cudaDeviceSetLimit
cudaLimitDevRuntimeSyncDepth, MAX DEPTH is used to
set the depth of the dynamic parallel stack, and the maxi-
mum depth is 24. If the program’s recursive call depth of
dynamic parallel exceeds this limit, no error will be reported,
but the result returned from GPU is wrong.

In our scheme, for threads whose task amount exceeds
the threshold, the dynamic parallel is only triggered once,
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FIGURE 5: Speedups of schemes in Sections 2.1-2.7.

and the recursion depth of dynamic parallel is 1. The task is
divided into several subtasks whose task amount is less than
the threshold. Because the dynamic parallel scheme is very
sensitive to the threshold parameters, we discuss the per-
formance of this scheme separately in this section.

Tables 3 and 4 record the running time of the dynamic
parallelism scheme when the threshold is set to 1k, 2k, 4k,
8k, 16Kk, 32k, 64k, and 128 k. The first column is the number
of queens. The second column is the running time of the
coarse-grained GPU scheme, which is used here for com-
parison. The remaining columns are the running time of the

dynamic parallel scheme with different thresholds. The time
unit used here is millisecond.

The experimental results show that no matter how
large the threshold is, the performance will drop sharply
as long as the dynamic parallelism is triggered. This ex-
periment shows that CDP is not suitable for the accel-
eration of the evaluate function of the N-Queens problem.
We believe that, for the larger N-Queens problem, the
coarse-grained GPU scheme has started enough threads
and reached a high SM occupation. If one GPU thread
uses dynamic parallelism to launch new subkernels, it will
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TABLE 3: Performance of the CDP-based scheme. Threshold from 1k to 8k.
N Coarse-grained scheme 1024 2048 4096 8196
1000 1 1 1 2 2
2000 2 242 2 2 2
3000 3 234 447 3 3
4000 4 665 463 3 4
5000 4 1168 1218 856 3
6000 5 1753 2171 881 4
7000 6 2394 3078 2235 5
8000 6 2949 4160 4049 6
9000 7 3592 5098 5746 1699
TaBLE 4: Performance of the CDP-based scheme. Threshold from 16k to 128 k.
N Coarse-grained scheme 16k 32k 64k 128k
10000 7 8 6 6 6
20000 14 12891 14 14 12
30000 21 81920 16 18 22
40000 29 155067 73637 24 24
50000 37 227734 211633 30 28
60000 52 301992 350017 52 38
70000 71 379358 490801 73664 57
80000 87 457052 639331 340804 72
90000 91 538742 777274 613907 84

not reduce the total workload (queens comparison times),
but instead increase the number of extra thread startup
and the management workload, resulting in performance
degradation.

CDP is very suitable for writing recursive patterns to
implement divide and conquer or backtracking algorithm.
The advantage of this technology is to deal with irregular
tasks, such as searching in the unbalanced tree of N-Queens
problem variant 3. However, to evaluate the candidate so-
lution of the N-Queens problem with a fixed size is a regular
workload and its calculation amount can be predicted in
advance, and the overhead caused by dynamic subkernel
launches outweighs the benefits of the improved load bal-
ance yielded by CDP.

3.4. Stability Analysis of the Coarse-Grained Scheme.
Statistics show that a random candidate solution contains a
number of conflicts of approximately 2/3 of the length of the
solution. In the evolutionary process of heuristic algorithms,
candidate solution will continue to evolve in the optimal
direction, and the number of conflicts included in the can-
didate solution will gradually decrease until a valid solution
with zero conflict appears. This process leads to a reduction in
the number of atomic operations in the evaluation process of
the candidate solution, which theoretically shortens the
running time of the coarse-grained GPU scheme.

To observe the effect of the reduction of the conflict
number on the performance of the coarse-grained GPU
scheme, we test the performance of the coarse-grained GPU

scheme with a random solution set and valid solution set
with length ranging from 100 to 1 million. We shuffle the
sequence from 1 to N to construct the random candidate
solution set and use the Hoffman construction method to
construct the valid solution set.

As shown in Figure 6, as the length of the solution
increases, the performance difference on the two datasets
gradually decreases. The reason is that as the length of the
solution increases, the number of threads and the amount of
computation gradually increase, and the delay caused by the
atomic operation in GPU global memory has more chances
to be hidden by other threads/warp running. Compared with
the valid solution set, the performance of the coarse-grained
GPU scheme on the random candidate solution set is re-
duced by 0.95% on average. The fluctuation of about 1%
indicates that the coarse-grained GPU scheme has strong
stability in different datasets.

4. Application of the GPU Coarse-Grained
Scheme to Simulated Annealing

In order to verify the effectiveness of our scheme, we apply
the coarse-grained GPU scheme to simulated annealing to
solve N-Queens problem variant 2. We keep the parameters
and the experimental platform intact and only replace the
evaluation function from the CPU single-threaded scheme
to the coarse-grained GPU scheme.

As can be seen from Figure 7, because the evaluation
function takes a very high proportion of time in the whole
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FIGURe 7: Speedup of the GPU scheme in SA algorithm.

simulated annealing algorithm, the performance gain of
fitness function brought by GPU parallelism directly im-
proves the performance of the SA algorithm. Taking into
account the experimental errors and that simulated
annealing is a probabilistic technique, we think that the
acceleration of fitness function is directly reflected in the SA
algorithm\enleadertwodots.

5. Conclusions

Variant 2 of the N-Queens problem is a classical problem
which has been proved to be NP-hard, so heuristic algo-
rithms are often used to obtain valid solutions. At present,
the parallelization of these methods is often at the algorithm
level, such as dividing the large population into several small
populations for evolution in parallel or mutating individuals
in parallel. In this paper, we focus on how to improve the
speed of the heuristic algorithms for solving variant 2 by
accelerating the evaluation function.

Besides a CPU single-threaded serial scheme, three
CPU multithreaded parallel schemes and four GPU par-
allel schemes are proposed to evaluate candidate solutions
for the N-Queens problem. The performances of all
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schemes are measured under uniform experimental. In
solving N-Queens problem variant 2 with the simulated
annealing algorithm, the advantage of the coarse-grained
GPU scheme has been proved. Usually, the evaluation
function is the most time-consuming part of a heuristic
algorithm, and we believe that our schemes based on CPU
and GPU can improve the performance of all algorithms
based on search and evaluation in solving N-Queens
problem variant 2 without changing the algorithm process
and parameters. These algorithms include simulated
annealing, genetic algorithm, chemical reaction optimi-
zation, etc. Users can choose the appropriate scheme
according to their hardware devices to speed up their
computing process. Our scheme does not conflict with the
parallel methods at the algorithm level; they can be used
together. For example, in the case of GPU hardware,
replacing the fitness function in the island model of
parallel genetic algorithm with the GPU scheme proposed
in this paper can further shorten the execution time.

The performance of the coarse-grained GPU scheme can
be further improved by the following means, which is also
our next work:

(1) In the current GPU coarse-grained GPU scheme,
device memory is allocated and freed for each
evaluation function call. Performance can be im-
proved theoretically if device memory is reused in
multiple evaluation function calls. Data transmission
from CPU to GPU and computation in kernel can be
parallel by using CUDA multistream technology.

(2) Some CUDA kernel configuration parameters can be
further optimized. We plan to use NVidia NVVP [29] to
read the hardware counters in the GPU to analyze the
microperformance bottleneck of the program and to
turther improve the performance of GPU schemes by
optimizing parameters, such as the block size and L1D/
Share memory settings. For the dynamic parallel
scheme, we plan to use bypass technology to cancel
some subkernel launch random in order to reduce the
thread management burden and improve performance.

(3) This paper focuses on using thread-level parallel
technology to improve the efficiency of the eval-
uation algorithm. Instruction-level parallelism is
also an important optimization method. In the
next step, we plan to combine these two methods
to further improve the performance of the
algorithm.
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