
Research Article
An Implementation of Lipschitz Simple Functions in Computer
Algebra System Singular

Yanan Liu,1 Muhammad Ahsan Binyamin ,2 Adnan Aslam ,3 Minahal Arshad,2

Chengmei Fan,4 Hassan Mahmood,5 and Jia-Bao Liu 6

1Department of Management, Anhui Business and Technology College, Hefei 231131, Anhui, China
2Department of Mathematics, GC University, Faisalabad, Pakistan
3Department of Natural Sciences and Humanities, University of Engineering and Technology (RCET), Lahore, Pakistan
4College of Modern Service Industry, Hefei College of Finance and Conmomics, Hefei 230601, China
5Department of Mathematics, GC University, Lahore, Pakistan
6School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Correspondence should be addressed to Muhammad Ahsan Binyamin; ahsanbanyamin@gmail.com

Received 13 February 2021; Revised 9 March 2021; Accepted 17 March 2021; Published 1 April 2021

Academic Editor: Huihua Chen

Copyright © 2021 Yanan Liu et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A complete classification of simple function germs with respect to Lipschitz equivalence over the field of complex numbers C was
given by Nguyen et al.)e aim of this article is to implement a classifier in terms of easy computable invariants to compute the type
of the Lipschitz simple function germs without computing the normal form in the computer algebra system Singular.

1. Introduction and Preliminaries

LetK be a field andOn be the collection of all germs of smooth
function at 0 ∈ Kn. )e collection of all germs f ∈ On such
that f(0) � 0 is denoted bym. If K � C, then it is equivalent
to consider On as C[[x1, . . . , xn]], the local ring of formal
power series in n variables and m its maximal ideal. Let
R � AutC(C[[x1, . . . , xn]]), the set of all C-automorphisms
of C[[x1, . . . , xn]], and H � HomC (C [[x1, . . . , xn]]), the
set of allC-bi-Lipschitz homeomorphisms ofC[[x1, . . . , xn]].
Two smooth germs f and g ∈ m are right equivalent (resp.,
bi-Lipschitz right equivalent) denoted by f ∼ rg (resp.,
f ∼ Lg) if there exists an automorphism ϕ ∈R (resp., a bi-
Lipschitz homeomorphisms ϕ ∈H) such that ϕ(f) � g. In
case of two variables (resp., three variables), we will later use
C[[x, y]] (resp., C[[x, y, z]]) instead of C[[x1, x2]] (resp.,
C[[x1, x2, x3]]) [13].

In seventies, Arnold [1–3] introduced the notion of
modality for singularities over the fields R and C. He gave a
classification of hypersurfaces of modality 0, 1, and 2 under

right equivalence. )ese are also classifications with respect
to contact equivalence. Also we have the contributions by
Guisti [4], Wall [5], and many others [6–11]. Mostowski [12]
showed that germs of complex analytic set do not admit
moduli with respect to bi-Lipschitz equivalence. Note that
the result of Mostowski does not hold for function germs.
Henry and Parusiński [13] proved that function germs do
admit moduli under bi-Lipschitz right equivalence. Nguyen
et al. [14] gave the classification of Lipschitz simple function
germs. )e aim of this article is to implement a classifier for
this classification in the computer algebra system SINGULAR

[15].
Let f ∈ m; then k-jet of f denoted by jk(f) is the Taylor

expansion of f up to degree k terms. Let f − g ∈ mk+1 for
all g ∈ C[[x1, . . . , xn]] and f − g ∼ rf, then f is called
k-determined. A finitely determined germ f is Lipschitz 0-
modal if there is a neighborhood jk(f), the k − th jet of f

for sufficiently large k ∈ N that meets only finitely many bi-
Lipschitz equivalence classes. We use the following in-
variants for our classifier.
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Definition 1. )e Taylor expansion of f at 0 is an expression
of the form

Tf(0) � fk + fk+1 + · · · , (1)

where each fi is a homogeneous polynomial of degree i and
fk ≠ 0. In this expansion, fk denotes the homogenous
polynomial of lowest degree, and we denote it by H(f).
)en m � k is the multiplicity of f at 0.

Definition 2. Let J(f) � 〈fx1
, . . . , fxn

〉 be a Jacobian ideal
and Mf � C[[x]]/J(f) be the Milnor algebra over
C−algebra.)en μ(f) � dim(Mf) is called the codimension
of f.

Definition 3. Let f ∈ m and Hess(f) � ((z2f/zxizxj)

(0))1≤ i,j≤ n be its corresponding Hessian matrix. )en
n−rank(Hess(f)) is called the corank of f and is denoted by
corankf.

Remark 1. Lemma 4.2, Lemma 4.3, and )eorem 4.7 of [14]
give the bi-Lipschitz invariantsm(f), H(f), and corank(f).

2. AClassifier for Simple FunctionGerms under
Lipschitz Equivalence

In this section, we present propositions and algorithms
deduced from propositions to characterize the simple
functions germs with respect to Lipschitz equivalence in
terms of certain invariants such as multiplicity, corank, and
codimension of f. To differentiate some cases, we use locus
of H(f). For a proof of the following results, see )eorem
8.4, )eorem 8.5, and )eorem 8.7 of [14].

Theorem 1 (see [14]). A germ f is Lipschitz simple if and
only if it is bi-Lipschitz equivalent to one of the normal forms
given in Tables 1 and 2.

Theorem 2 (see [14]). Every germ with corank greater or
equal to 4 is the Lipschitz modal.

2.1. Lipschitz Simple Function Germs of Corank 1 and 2.
In the following, Propositions 1 and 2 give the possible
overlapping of Lipschitz simple germs in case of corank 2.

Proposition 1. Let f ∈ C[[x, y]] be a map germ of corank 2
and multiplicity 3.

(1) If codimension of f is 6, then f is Lipschitz simple of
type D6 or E6.

(2) If codimension of f is 7, then f is Lipschitz simple of
type D7 or E7.

(3) If codimension of f is 8, then f is Lipschitz simple of
type D8 or E8.

Proposition 2. Let f ∈ C[[x, y]] be a map germ of corank 2
and multiplicity 4. If codim(f) � 11, then f is Lipschitz
simple of type T2,5,5 or Z11.

Proof. )e statements of Propositions 1 and 2 follow )e-
orem 8.4 of [14], and these overlappings can be differentiated
by computing the zero set of H(f). □

2.2. Lipschitz Simple Function Germs of Corank 3. )e fol-
lowing Proposition 3 describes the possible overlappings of
Lipschitz simple germs in case of corank 3.

Proposition 3. Let f ∈ C[[x, y, z]] be a map germ of corank
3 and multiplicity 3.

(1) If codimension of f is 10, then f is Lipschitz simple of
type T3,3,5 or Q10.

(2) If codimension of f is 11, then f is Lipschitz simple of
type T3,4,5, T4,4,4, Q11, or S11.

(3) If codimension of f is 12, then f is Lipschitz simple of
type T3,5,5, T4,4,5, or S12.

Proof. )e statement follows from)eorem 8.5 of [14], and
the overlappings can be differentiated by computing the zero
set of the H(f). □

Table 1: Lipschitz Simple Function Germs of corank 1 and 2.

Type Normal form Codimension
Ak xk+1 + y2 k≥ 1
Dk x2y + yk− 1 k≥ 4
E6 x3 + y4 6
E7 x3 + xy3 7
E8 x3 + y5 8
X9 x4 + y4 + x2y2 9
T2,4,5 x4 + y5 + x2y2 10
T2,5,5 x5 + y5 + x2y2 11
Z11 x3y + y5 + xy4 11
W12 x4 + y5 + x2y3 12

Table 2: Lipschitz simple function germs of corank 3.

Type Normal form for f ∈ C[[x, y, z]] Codimension
P8 � T3,3,3 x3 + y3 + z3 + xyz 8
T3,3,4 x3 + y3 + z4 + xyz 9
T3,3,5 x3 + y3 + z5 + xyz 10
T3,4,5 x3 + y4 + z5 + xyz 11
T3,5,5 x3 + y5 + z5 + xyz 12
T4,4,4 x4 + y4 + z4 + xyz 11
T4,4,5 x4 + y4 + z5 + xyz 12
T4,5,5 x4 + y5 + z5 + xyz 13
T5,5,5 x5 + y5 + z5 + xyz 14
Q10 x3 + y4 + yz2 + xy3 10
Q11 x3 + y5 + yz2 + xy3 11
S11 x4 + y2z + xz2 + x3z 11
S12 x2y + y2z + xz3 + z5 12
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2.3. Singular Examples. We have implemented the Algo-
rithm in the computer algebra system SINGULAR [15].
Code can be downloaded from https://www.mathcity.org/
files/ahsan/classiFyLip-Procrdure.txt.

We give some examples:

ring R�0, (x, y), ds;

poly f�x4−x3y−3x2y2+5xy3−2y4+2x5+17x4y+
59x3y2+88x2y3+55xy4+22y5

+2x4y2+5x3y3+30x2y4+34xy5+10y6+9x5
y2+60x4y3+147x3y4+138x2y5

+52xy6+2y7+4x4y4+24x3y5+51x2y6+29xy
7+16x5y4+78x4y5+120x3y6

+56x2y7+xy8+6x4y6+24x3y7+24x2y8+14x
5y6+44x4y7+32x3y8+4x4y8

+8x3y9+6x5y8+9x4y9+x4y10+x5y10;

> LclassiFy2(f);

f is of type Z11

poly g�x3−3xy2+2y3+2x2y2+2xy3−4y4+x3y2
−2x2y3+2xy4+2y5+2x2y4−2xy5

+x7+14x6y+84x5y2+280x4y3+560x3y4+67
2x2y5+449xy6+128y7+7x7y2

+84x6y3+420x5y4+1120x4y5+1680x3y6+
1344x2y7+448xy8+21x7y4

+210x6y5+840x5y6+1680x4y7+1680x3y8+67
2x2y9+35x7y6+280x6y7

+840x5y8+1120x4y9+560x3y10+35x7y8+
210x6y9+420x5y10+280x4y11

+21x7y10+84x6y11+84x5y12+7x7y12+14x
6y13+x7y14;

> LclassiFy2(g);
f is of type D8

Input: f ∈ C[[x, y]].
Output: Type of f w.r.t. Lipschitz equivalence.

(1) Compute c, the corank of f;
(2) Compute k, the codimension of f;
(3) Compute m �, the multiplicity of f;
(4) if c � 1, then
(5) return f is of type Ak;
(6) end if
(7) if c � 2 and m � 3, then
(8) Compute V(H(f)), the zero set of the lowest degree homogeneous part of f;
(9) if V(H(f)) is the intersection of a line and a double line, then
(10) return f is of type Dk;
(11) end if
(12) if V(H(f)) is a triple line and k � 6, 7, or 8, then
(13) return f is of type Ek;
(14) end if
(15) end if
(16) if c � 2 and m � 4, then
(17) if k � 9, then
(18) return f is of type X9;
(19) end if
(20) if k � 10, then
(21) return f is of type T2,4,5;
(22) end if
(23) if k � 11, then
(24) Compute V(H(f)), the zero set of the lowest degree homogeneous part of f;
(25) if V(H(f)) is the intersection of a line and a triple line, then
(26) return f is of type Z11;
(27) end if
(28) if V(H(f)) is the intersection of two double lines, then
(29) return f is of type T2,5,5;
(30) end if
(31) end if
(32) if k � 12, then
(33) return f is of type W12;
(34) end if
(35) end if

ALGORITHM 1: Type of f, when corank of f � 1 or 2.
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Input: f ∈ C[[x, y, z]].
Output: Type of f w.r.t. Lipschitz equivalence.

(1) Compute c, the corank of f;
(2) Compute k, the codimension of f;
(3) Compute m, the multiplicity of f;
(4) if c � 8, then
(5) return f is of type T3,3,3;
(6) end if
(7) if c � 9, then
(8) return f is of type T3,3,4;
(9) end if
(10) if c � 10, then
(11) Compute V(H(f)), the zero set of the lowest degree homogeneous part of f;
(12) if V(H(f)) is irreducible and has in the singular locus a fat point of multiplicity 6, then
(13) return f is of type T3,3,5;
(14) end if
(15) if V(H(f)) is irreducible and has in the singular locus a fat point of multiplicity 4, then
(16) return f is of type Q10;
(17) end if
(18) end if
(19) if c � 11, then
(20) Compute V(H(f)), the zero set of the lowest degree homogeneous part of f;
(21) if V(H(f)) is the intersection of a plane and a node and has as a singular locus, the union of the lines V(x, y)∪V(x, z) and

the point V(x, y, z) as embedded point, then
(22) return f is of type T3,4,5;
(23) end if
(24) if V(H(f)) is the intersection of 3 planes and has as singular locus, the union of three lines V(x, y)∪V(x, z)∪V(y, z), then
(25) return f is of type T4,4,4;
(26) end if
(27) if V(H(f)) is irreducible and has in the singular locus a fat point of multiplicity 4, then
(28) return f is of type Q11;
(29) end if
(30) if V(H(f)) is the intersection of a plane and a node and has as a singular locus, the line V(x, z), then
(31) return f is of type S11;
(32) end if
(33) end if

ALGORITHM 2: Type of f, when corank of f � 3.

(1) if c � 12, then
(2) Compute V(H(f)), the zero set of the lowest degree homogeneous part of f;
(3) if V(H(f)) is the intersection of a plane and a node and has as a singular locus, the union of the lines V(x, y)∪V(x, z) and

the point V(x, y, z) as embedded point, then
(4) return f is of type T3,5,5;
(5) end if
(6) if V(H(f)) is the intersection of 3 planes and has as singular locus, the union of three lines V(x, y)∪V(x, z)∪V(y, z), then
(7) return f is of type T4,4,5;
(8) end if
(9) if V(H(f)) is the intersection of a plane and a node and has as a singular locus, the line V(x, z), then
(10) return f is of type S12;
(11) end if
(12) end if
(13) if c � 13, then
(14) return f is of type T4,5,5;
(15) end if
(16) if c � 14, then
(17) return f is of type T5,5,5;
(18) end if

ALGORITHM 3: Continuation of Algorithm 2.
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ring R�0,(x,y,z),ds;

poly h�2x3+5x2y+4xy2+y3+5x2z+9xyz+4y
2z+4xz2+4yz2+z3+x4+4x3z+6x2z2

+4xz3+z4+x5+5x4y+10x3y2+10x2y3+5xy4
+y5;

> LclassiFy3(h);
f is of type T_3, 4, 5

poly p�2x3+3x2y+xy2+5x2z+6xyz+y2z+4xz2
+3yz2+z3+x4+4x3y+6x2y2+4xy3

+y4+x3z+3x2yz+3xy2z+y3z+x5+5x4y+10x
3y2+10x2y3+5xy4+y5;

> LclassiFy3(p);
f is of type S12

3. Conclusion

)e aim of this paper is to implement the classification of
simple function germs with respect to the Lipschitz
equivalence given by Nguyen et al. in computer algebra
system Singular. )e proposed algorithms compute the type
of the Lipschitz simple function germs without computing
its normal form.
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