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Social networks have become an important source of information from which we can extract valuable indicators that can be used
in many fields such as marketing, statistics, and advertising among others. To this end, many research works in the literature offer
users some tools that can help them take advantage of this mine of information. Community detection is one of these tools and
aims to detect a set of entities that share some features within a social network. We have taken part in this effort, and we proposed
an approach mainly based on pattern recognition techniques. 'e novelty of this approach is that we do not directly tackle the
social networks to find these communities. We rather proceeded in two stages; first, we detected community cores through a
special type of self-organizing map called the Growing Hierarchical Self-Organizing Map (GHSOM). In the second stage, the
agglomerations resulting fromGHSOMwere grouped to retrieve the final communities.'e quality of the final partition would be
under the control of an evaluation function that is maximized through genetic algorithms. Our system was tested on real and
artificial databases, and the obtained results are really encouraging.

1. Introduction

Social networks involve such a wealth that various people
from different fields try to exploit for valuable information.
Information coming from social networks is used in dif-
ferent areas such as marketing, politics, economy, statistics,
and education [1]. Community detection drew the attention
of a lot of researchers over the last few years [1, 2]. Knowing
the structure of communities of individuals inside a social
network helps target suitable people when achieving mar-
keting campaigns for instance or when trying to understand
the opinion of a given social category. Social networks are
made of individuals called nodes, like profiles on Facebook
or LinkedIn. Two kinds of features are characterizing every
node: topological features and semantic features. 'e to-
pological features are based on the links existing between
nodes [1]. Nodes belonging to the same community are
densely linked. However, semantic features are related to
information proper to each node such as age, family, edu-
cation, and comments. Nodes belonging to the same

community generally share some common information. As
it is complex to extract semantic information, most works
only rely on links to extract the communities.

Communities denote a collective behavior of nodes and
involve nodes that are strongly linked. Within one com-
munity, nodes do not have the same importance. Some of
them represent the core of the community and attract all the
community nodes, whereas others are peripheral nodes.
'ey are located on the border of the community. Detecting
communities in a social network is a complex task because
nothing is known about the structure of the communities,
their size, their core nodes, and so on.

In the literature [2], a social network is considered as a
graph G � (V, E), where V is a set of nodes or vertices and E
is a set of links, called edges that connect two elements of V.
Detecting communities means detecting subgraphs of nodes
with strong interactions between them and little interaction
with the other subgraphs. However, the main challenge is the
lack of a clear quantitative criterion that can be used to
delimit these subgraphs.'is explains whymost of the works
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deal with the extraction of communities in a sequential way.
'ey compare nodes two by two. 'is paper proposed a
different approach because it considered that grouping
nodes into communities has to be achieved to relatively all
the nodes and not through finding out direct similarities
between them two by two.'is study, therefore, proposed to
detect agglomerations of nodes as a first step in the process
of communities’ detection. Agglomerations are not neces-
sarily the final communities. 'ey represent the cores of the
final communities. Once detected, these agglomerations will
compete to attract each other to produce the eventual
partition of communities. 'is new vision ensures the im-
portant level of scalability, especially when dealing with big
social networks.

'e proposed approach can help explore social media to
detect political communities and help predict political
elections. Moreover, social networks are becoming the most
important market in the world. 'e proposed approach may
also be useful for business purposes. By detecting social
network communities, this approach can be used to target a
particular type of customers within social networks.

Our contributions can be summarized as follows:

(i) We introduced the concept of community cores and
used pattern recognition techniques, represented in
Growing Hierarchical Self-Organizing Maps
(GHSOM) to detect them.

(ii) We coupled the genetic algorithms with Growing
Hierarchical Self-OrganizingMaps (GHSOM) to
extract the final communities. It is not a simple
succession of steps. 'e genetic algorithm is tuned
when working with the results of the Growing Hi-
erarchical Self-OrganizingMaps.'is bias makes the
genetic algorithm faster and more efficient.

'e remainder of this paper is organized as follows.
Section 2 reviewed the works related to community detec-
tion, while Section 3 introduced our approach and contri-
butions. Section 4 was devoted to revealing the results
achieved by our approach. 'e major conclusions were
drawn in the final section before suggesting some per-
spectives for our future research work.

2. Related Works

Review papers [3, 4] classify these works into two per-
spectives: divisive and agglomerative approaches. Divisive
approaches are top-down ones. 'ey start with the entire
graph, and they split it into partitions by removing edges.
However, agglomerative approaches are bottom-up ap-
proaches; they start from vertices that will be gradually
merged to build communities. 'e best partition is the one
that maximizes a given metric. Most of the proposed works
are agglomerative ones.

2.1. Divisive Approaches. In the divisive category, Girvan
and Newman [5] proposed an approach based on the
concept of edge betweenness defined as the number of
shortest paths between pairs of nodes that run along that

edge. Li et al. proposed [6] a divisive method also, namely
local edge centrality (LEC) for community detection. In the
first phase, a weight is computed for each edge. 'e authors
relied on the node dissimilarity degree and edge between-
ness. Nonimportant edges are deleted to obtain an initial
partition of the network. After that, modularity optimization
is used to get the final partition of the network.

2.2. Agglomerative Approaches

2.2.1. Modularity-Based Approaches. In 2004, Newman
proposed the concept of modularity [7] used in many ag-
glomerative works. It is a metric that has been widely used to
characterize the partition quality and was used in Clauset
et al. [8]. In their approach known as CNM, the authors start
from lonely nodes, and the edges of the network are added
progressively to increase the modularity. Blondel et al. [9]
created the well-known Louvain method and also built their
approach on modularity optimization. Neighbor nodes are
grouped together through a repetitive step, and at each step,
the modularity is computed to evaluate the achieved gain.
Džamić et al. [10] proposed a community detection system
that maximizes the modularity function to find the best
partition. Hoffman et al. [11] use Cohen’s similarity measure
for categorical data. After that, the clustering is performed
using k-means.'e number of k-means clusters ranges from
2 to N (number of nodes). 'e best partition is the one that
maximizes the modularity function.

2.2.2. Evolutionary-Based Approaches. 'ere are ap-
proaches that used the genetic algorithms to optimize an
objective function and to find the best community partition
[12–18]. 'e most used objective function is the modularity
of Newman [7]. Some of these approaches used more than
one evaluation function; they are multiobjective [16]. Said
et al. [19] proposed an approach that uses a genetic al-
gorithm for detecting communities. 'e novelty suggested
by the authors is a new way for generating the initial
population and a new method for the mutation operation.
'e initial population is made up of nodes that have
neighbors because putting isolated nodes in the solution
space may increase the convergence time of the genetic
algorithm. 'e mutation operation proposed by the au-
thors is based on carrying out the operation on the selected
solution and its neighbors.

Recently, Li et al. [20] proposed a community detection
approach that uses attributes such as age, education back-
ground, hobby, and profession in addition to the topological
structure. 'e community detection problem is transformed
into a multicriteria optimization problem. To find the best
community partition they used multiobjective genetic
algorithms.

In [21], authors proposed an approach similar to genetic
algorithms.'ey proposed an evolutionarymethod based on
a fitness function and evaluating the quality of the partition
using a fitness function. 'e authors also proposed new
operators named vertex substitute operator and community
substitute operator.
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Qin et al. [22] worked in the same way as in [20]. 'ey
combined topology and content. An adaptive parameter is
used to combine topology and content to effectively control
the impact of content on community discovery. In the same
way and using another evolutionary technique, Rostami
et al. [23] proposed a particle swarm optimization-based
multiobjective approach to detect central nodes in medical
datasets. Ben Romdhane et al. [24] proposed the concept of
purity and density of communities to define an objective
function. 'ey use the ant colony technique to realize the
random walk and to optimize this objective function. In the
same way, Majbouri et al. [25] used the ant colony to predict
information diffusion paths. 'ey study and model the
propagation routes. 'ey cluster nodes, and the final in-
formation diffusion paths are predicted using the ant colony.

In [26], Cai et al. proposed an approach based on
multiagent systems. Single nodes are associated with agents.
'e agents affiliated with a similar cluster should gradually
assemble in their common state space. 'e authors used the
concept of consensus or quasi-consensus of the motions of
dynamical systems to make the final clustering.

2.2.3. Label Propagation Algorithm-Based Approaches.
Label propagation algorithm (LPA) [27–30] is also another
interesting technique, considered as the fastest because it is a
near-linear time algorithm.

'e LPA uses only the network structure to guide the
exploration process. 'ey are well adapted for large-scale
networks; they do not use a defined objective function nor
ask for any preliminary information on the existing com-
munities. 'e label assigned to each node depends on the
labels assigned to the neighbor nodes.'e main drawback of
this technique is the fact that it does not provide a unique
solution but an aggregate of many solutions.

In [31], authors used also the LPA to detect commu-
nities. 'ey worked on complex attributed networks. From
these networks, they develop a weighted graph. 'e weight
of each node is computed using Laplacian centrality. 'e
propagation of labels is proportional to the influence among
the adjacent nodes. Nodes with higher influence in terms of
structure and attributes update many tags. Community
overlap propagation algorithm (COPRA) [32] is an over-
lapping community detection method derived from the label
propagation algorithm. In the propagation process, the node
label is determined based on labels of adjacent nodes, and
hence, a node may belong to many communities.

2.2.4. Spectral Graph Partitioning Approaches. 'e spectral
graph partitioning approaches are based on the eigenvectors
of the Laplacian matrix. 'e eigenvector components with
similar values represent the nodes that belong to the same
community. In [33], Newman proposed the modularity
matrix that is made up of the eigenvectors computed for the
network.'is enhancement leads to a spectral approach that
returns better results than the classic modularity. Nar-
antsatsral and Kang [34] proposed an agglomerative ap-
proach for social community detection. In this approach, the
densely connected clusters are identified while

agglomerating. Nodes are projected into an eigenvector
space to be able to significantly distinguish between them.

2.2.5. Statistics-Based Approaches. Li et al. [35] proposed a
Markov cluster approach known as MCL. It is based on
simulations of using the concept of Markov chains to build a
fast and scalable unsupervised Markov clustering algorithm.
'e order statistics local optimization method (OSLOM)
[36] is an approach based on the local optimization of an
evaluation function. 'e entire graph network is trans-
formed into a network of subgraphs representing the
communities. In addition, the OSLOM can detect over-
lapping communities.

2.2.6. Metric-Based Approaches. Rosvall and Bergstorm [37]
introduced a random walk-based approach for detecting
communities known as Infomap. 'ey consider social
networks as a set of regularities (patterns). 'rough a
random walk, they try to detect these regularities by finding
the best path that maximizes the compactness and mini-
mizes information loss.

In [38], the authors proposed an approach based on
thread-level parallelism for the calculation of adding qual-
ified neighbor nodes to the community. 'is approach is
performing overweighted networks in irregular topologies.
Zardi et al. [39] proposed a hierarchical clustering. 'ey
define some metrics characterizing a good quality com-
munity partition. All these metrics are used to build an
objective function that should be maximized. 'e nodes
represent the initial communities, and they are merged
progressively to detect the final community partition.
C-Finder [40] is a local approach presented by Palla et al.
whose main principle is to detect k-cliques inside the net-
work. k-cliques mean small groups of k nodes that are totally
linked. Two cliques may form a community if they are
adjacent. Adjacent means they have at least (k− 1) common
nodes. Communities are made by merging the adjacent k-
cliques. In the same way, Zhang et al. [41] addressed the
problem overlapping communities by detecting weak cliques
and merging them. 'ey proposed the Salton index to
characterize node similarities, and the weak cliques detected
were merged into larger communities, whenever possible. In
[42], the authors proposed an original detection algorithm
based on the fire propagation behavior. 'e approach works
in two phases. 'e algorithm starts with a random node, and
they simulate the effect of fire spread to aggregate nodes and
constitute communities.

2.2.7. Influential Nodes Detection Based Approaches. 'e
identification of the most influential node in social media
networks has received a lot of attention in the data mining
community. It has become a crucial step in the community
detection approaches [43]. For instance, Chaabani and
Akaichi [44] proposed an approach that operates in two
steps. 'e first step aims at defining the communities and
detecting the most important nodes in them. In the second
step, the partition is defined, and the main communities are
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detected. 'e authors also introduced a function that
measures the strength of the links to define the communities.

3. Proposed Approach

3.1. Problem Formulation. 'e graphs were used to represent
social networks. 'e graph’s nodes represent the social actors,
and its edges are the connections between the nodes. In our
case, the social network is modeled as a graph G � (V, E),
where V is a set of nodes or vertices and E is a set of links or
edges connecting two elements of V. To represent a graph, we
use the adjacencymatrixA. If the network is made byN nodes,
the graph will be represented with the N × N adjacency matrix
A, where the entry at position (i, j) is 1 if there is an edge from
node i to node j, 0 otherwise.'e row i of the adjacencymatrix
represents the features of the node.

3.2. Approach Overview. Different from the proposed works
in the literature, we added a real step of initialization in our
work. We did not tackle the community clustering directly.
'e first step consists in detecting the intrinsic agglomera-
tions containing core nodes. After that, these agglomerations
can be merged to generate the final communities (Figure 1).

3.3. Detection of Agglomerations. 'e first step involves
identifying the skeleton of the communities called core
nodes. Core nodes are generally nodes that are in the center
of a community, and they are linked to most of the com-
munity nodes. We can distinguish them even without
achieving community detection. 'ey are generally located
in a small remarkable agglomeration. 'e first step is to
detect them. It gives a starting point better than single nodes
to start detecting communities.

'e main advantage of self-organizing maps is that they
give an efficient way to explore unbalanced and complex
structures. SOM provides a bidimensional visualization of
multidimensional data.

Moreover, we can use the neighborhood property in self-
organizing maps to have a better understanding of the re-
lationships between agglomerations of nodes. We have used
this tool in our previous works, in different contexts and the
results were very encouraging [45, 46].

In the literature, there are works that use only SOM [18]
to detect communities. 'e results found were not satis-
factory. SOM cannot give the real borders of communities.
'ey can only project input data on a bidimensional map.
Moreover, in [47], a classical variant of SOM has been used
to detect communities. 'is variant does not give a good
scalability level and especially when dealing with big size
social networks.

3.4. SOM and GHSOM. A self-organizing map is a set of
connected neurons on which we map input elements rep-
resented by n-dimensional vectors X � [x1, x 2, . . . , xn] [48]
(see Figure 2). 'e input elements are linked to the neurons
through weights Wij (see Figure 2). 'e neuron to which an
input element is attached is called the winning neuron.

Self-organizing maps work as follows:

Step 1: 'e connection weights are randomly
initialized.
Step 2: 'e winning neuron is calculated using the
following formula:

j
∗

� argminj 

n

Xi(t) − Wij(t) 
2
. (1)

Step 3: 'e weights of the winning neuron and their
neighbors are updated at every iteration as follows:

Wij(t) � Wij(t − 1) + a(t)hj j
∗
, t(  Xi(t) − Wij(t − 1) ,

(2)

where t represents the time, a(t) is a variable decreasing
with time, and h(t) represents a neighborhood func-
tion. 'e principle is to reduce the influence when the
neighborhood radius increases.

'e main limitation of the classic SOM is its static
architecture. 'e size of the map should be defined ini-
tially. For small problems, it can be used with no sig-
nificant effects. However, when we deal with big and
complex data, specifying the size of the map becomes very
important, and its exploration becomes very difficult. For
all these reasons, we used another variant of the SOM
called the Growing Hierarchical Self-Organizing Maps
GH-SOM [49]. 'ese maps proved their effectiveness with
big data problems [50].

'eGHSOM representsmore faithfully the input space by
arranging it according to the shape of the data and its
structure. It grows both in hierarchical and horizontal ways.
Instead of representing all the input space by one SOM, the
data are represented by multiple layers with a hierarchical
structure, where each layer includes an independent SOM (see
Figure 3). 'e training process starts with one layer (layer 0).
It consists of one neuron only. 'e weights vector repre-
senting this neuron is the average value of the input vectors.

'is vector is called m01 � [w1 1, w1 2, . . . , w1 n], where n

is the dimension of the input space.
In layer 1, a map of 2× 2 is created and randomly ini-

tialized. It is trained by the standard SOM learning algorithm
(see formula (2)). 'e GHSOM growth strategy is based on
the mean quantization error metric computed for each map
by averaging the quantization errors of the neurons of the
map as follows:

MQEm �
1
u


i

mqei, (3)

where u refers to the number of units i contained in the SOM
m.

'e quantization error of the neuron i of the map is
computed as follows:

mqei �
1
d



d

j�1
mi − Xj, (4)

4 Complexity



where mi is the vector representing the neuron i, d repre-
sents the number of inputs having the neuron mi as winning
neuron. 'e main idea of the growing process in GHSOM is
that each layer represents a deviation of the input data. In
other words, the GHSOM will grow horizontally and ver-
tically to reduce the deviation of the neuron of the previous
layer to a given rate.

'e criterion for the horizontal expansion is as follows:

MQEm > τ1 · MQE0. (5)

Hence, if this criterion is met on a specific neuron called
“e” on a given map, a new map will be added to this neuron.
'e neurons’ initial weights of this new map will be com-
puted based on the weights of the neighbors of the neuron
“e.” 'e learning of the GHSOM and its expansion will
continue until the two criteria are no longer satisfied.

Figure 4 shows a GHSOM used to detect teams’ ag-
glomerations inside the American football college data set.
'is data set is made up of 115 teams organized in 12
conferences. 'e edges correspond to matches played during
the 2000 season. 'e objective is to retrieve the 12 confer-
ences. As it can be noticed from Figure 4, the GHSOM output
is interesting because it detects almost all the conferences.
However, this is a specific case in which the data set is not big,
and hence, the GHSOM provides good results on the first
attempt. In our framework, the GHSOMs are mainly used to
provide only the starting point for detecting the communities.

3.5. Community Detection. 'e detected agglomerations
represent the skeleton of the future communities. 'ey can
be in communities themselves, or by merging them with
other agglomerations, they form new communities. In the
literature, there are many criteria that can be used to evaluate
a community partition. 'e most known one is modularity.
'e modularity Q proposed by Girvan and Newman [7] is
defined as follows:

Q � 
n

c�1

lc

m
−

dc

2m
 

2
⎡⎣ ⎤⎦, (6)

where n is the number of detected communities, lc is the
number of edges linking the nodes of the community, and
lc/m represents the percentage of links that join the same
community. dc is the total degree of nodes of C. 'e value of
Q ranges between “−1” and “1.” 'e value “1” means that we
have a good network partition.

Maximizing the modularity means maximizing the two
terms: 

n
c�1 lc/m and 

n
c�1 (dc/2m)2.

Maximizing the first term means having densely intra-
connected communities, while maximizing the second term
means having sparsely interconnected communities.

Genetic algorithms [51] are well-known for their global
search capability. We used them in many previous works

Social Network Detect Agglomerations Detect Communities

By Self-Organizing Maps By Genetic Algorithms

Nodes and links of 
Social Networks

Agglomerations 
Containing Core 

Nodes
Final Communities

Figure 1: Community detection steps.

X = (x1, x2, ..., xn)

Wij

Figure 2: A classic self-organizing map layer; each neuron has four
neighbors at most.

Layer 0

Layer 1

Layer 3

Layer 2

Figure 3: Growing hierarchical self-organizing map.
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[52–54], and they proved their efficiency. In our approach,
the exploration of solutions is guided by the GHSOM. In
fact, it is absurd to put two agglomerations in the same
community if they are not adjacent in the GHSOM. 'e
proximity in the GHSOM means that the agglomerations
share some common features and have strong relationships.

Genetic algorithms have also been widely used [12–17] in
community detection. However, our proposal is different.
Our contribution lies in the fact that the initial population
and the genetic operations are made by considering the
layout of agglomerations in the GHSOM.

'e solution (the chromosome) is represented in the
format of an integer array. Every gene of the array represents
an agglomeration of the GHSOM. So, if the GHSOM detects
N agglomerations, the chromosome will contain N genes
that can take values ranging from “1” to N. If the jth and the
ith gene have the same value, this means that i and j are in the
same community.'is representation is further explained by
Figure 5. 'e network is made up of 7 nodes.

'e network is made of 7 nodes that can be partitioned
into two communities. 'e community partitioning may be
represented by the chromosome C1 � {1, 1, 1, 2, 2, 2, 2} or the
chromosome C2 � {5, 5, 5, 6, 6, 6, 6}. 'e values of the genes,
the community identifiers, do not have a real meaning they
are simple labels.

3.5.1. Initialization. Creating an initial population consists
in generating a set of chromosomes randomly initialized.
Every gene of the chromosome is assigned to a random
community identifier. However, as we have already evoked,
the optimization process will be guided by GHSOM. So,
when we initialize the chromosomes, only adjacent

agglomerations could have the same community ID. 'is
bias in the initial population makes the genetic algorithm
converge faster and reduces the number of iterations.

3.5.2. Crossover. 'e goal is to make two new chromosomes
called children. 'ese children represent two new solutions
that are added to the solution space hoping to increase the
fitness function. However, this classic technique of crossover
is not efficient for our encoding. In fact, the same com-
munity identifier in the two-parent chromosome may
represent different communities. 'e crossover that we used
is called one-way crossover and was introduced in [15]. Two
chromosomes are selected: one is called the source, and the
other is called the destination. From the source chromo-
some, we select one gene, and we look for the genes that have
the same community ID. 'e community ID will be
transferred from the source chromosome to the destination
one by replacing the corresponding genes in the destination
with the same community ID. Following this procedure, we
are sure that the communities are faithfully transferred
between chromosomes. Figure 6 shows an example of a
crossover operation. 'e target community ID is 1.

3.5.3. Mutation. In our genetic algorithm, the mutation is
performed by selecting one node and changing its com-
munity ID to another, respecting the GHSOM neighbor-
hood principle.

3.6. Complexity of Our Approach. 'e complexity of the
approach is crucial in social network community detection
due to their large size. To evaluate the time of our approach,

Figure 4: Detecting agglomerations of teams in American football college data set.
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we start by calculating the complexity of each step. 'e
computational cost for GHSOM exhibits linear complexity.
'e processing time of a GHSOM is proportional to the
social network size n. 'erefore, the complexity is on the
order of O (n). A genetic algorithm’s complexity is O (g
(nm+ nm+ n)) with g the number of generations, n the
population size, andm the size of the individuals. 'erefore,
the complexity is on the order of O (gnm)). 'erefore, the
complexity of our approach is O (n)

4. Experiments

We detailed, in this section, a set of experiments to show the
efficiency of our approach. 'e used data sets are real and
artificial social networks.

4.1. Real Networks. We tested our system on four real
networks widely used in the literature. 'e data set includes
Zachary’s network of karate club [55], Lusseau’s network of
bottlenose dolphins [56], the American college football
network [5], and the political books network [7] as displayed
in Table 1.

4.1.1. Zachary’s Karate Club. 'is network was made by
Zachary. He studied the behavior of 34 members of a karate
club for 2 years. He constructed a network of friendships
between themembers of the club, using a variety of measures
to estimate the strength of ties between individuals [55]. He
identified 2 communities of friendship in his network as
plotted in Figure 7.

4.1.2. Bottlenose Dolphins Network. 'e bottlenose dolphins
network is achieved on a study on 62 bottlenose dolphins,
living in New Zealand. 'e study was made by Lusseau [56].
'e nodes are dolphins, and the edges are relationships
observed among the dolphins. 'e relationships are estab-
lished by observation of statistically significant frequent

associations. 'e number of edges in this network is 159.
Two communities are clearly identified as displayed in
Figure 8.

4.1.3. American College Football Network. 'e American
college football network comes from the United States
college football [5]. 'e data set is made up of 115 teams
organized in 12 conferences (see Figure 9). 'e 616 team
edges correspond to matches played by the teams against
each other during the regular season of the fall of 2000.

4.1.4. Political Books Network. In this network, nodes rep-
resent political books published in 2004 and that are pur-
chased online through the site Amazon.com [7]. Two books
are connected by an edge if they were frequently purchased
together. 'e network is made up of four communities (see
Figure 10). 'e number of nodes (books) is 105, and the
number of edges is 441.

4.1.5. Performance and Comparison Results. We compared
our work with the Agrawal approach [12], SOMSN [47],
MeanCD [44], Infomap [37], and CNM [8]. 'ese ap-
proaches were selected for the following reasons. First, we
compared our approach with Agrawal [12] because it used
the genetic algorithms, and we used its genetic operators.
'e goal was to see the GHSOM contribution when used in
conjunction with genetic algorithms. Second, we compared
our approach with SOMSN [47] because it is the only ap-
proach that uses a self-organizing map to detect commu-
nities. 'ird, we compared our approach with MeanCD,
Infomap, and CNM [8, 37, 44] because they are well known
for their good performance for their performance (results
and time execution). MeanCD is a recent approach and is
based on influential node detection like our approach. Fi-
nally, for all these approaches, we have either the results that
they achieved on the real networks mentioned above or their
source code.

1 2 3 4 5 7

1 1 1 2 2 2

Pos

C1

C2 5 5 5 6 6 6

1 2
5

6 4

73

Figure 5: Encoding of the genetic algorithm.

Source 1 1 3 4 4 6 6 5 8 1
Destination 2 3 4 4 1 5 7 8 8 2

Offspring
1 1 3 4 4 6 6 5 8 1
1 1 4 4 1 5 7 8 8 1

Figure 6: Crossover operation.
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'e modularity value was used to evaluate the perfor-
mance of each system. 'e results of this comparison are
displayed in Table 1. Our system is denoted by SOMG.

When examining the obtained results, our work,
MeanCD [44], and CNM [8] performed better than the
others. Moreover, when we focus on the results obtained by
the SOMSN system, we can conclude that using only self-
organizing maps cannot generate good community parti-
tions. Indeed, self-organizing maps can give the morphology
of the communities, the skeleton of the communities, but
not the whole communities’ structures.

'e results of genetic algorithms as implemented by
Agrawal [12] are interesting. However, they did not perform

as good as SOMG. When using the classical genetic algo-
rithms implementation, the initialization and the genetic
operations are achieved without any considerations of the
structure of the social network. 'e process is completely
random. 'e quality of the obtained solutions will be im-
pacted by the initialization.

CNM and Infomap [8, 37] detect communities starting
from lonely nodes through achieving progressive node
clustering. 'e clustering should increase the modularity.
Although Infomap and CNM have an oriented clustering
process, our approach performed better than them in all the
social networks. In fact, the use of GHSOM in the first step to
making initialization of communities made the community

Table 1: Results on real networks.

Network Nodes/edges SOMG Infomap CNM GA SOMSN MeanCD
Zachary karate club 34/77 0.40/ 0.38 0.38 0.38 0.28 0.4
American college football 115/615 0.61 0.55 0.59 0.50 0.45 0.56
Bottlenose dolphins 62/159 0.46 0.44 0.46 0.42 0.36 0.42
Political books 105/441 0.5 0.46 0.5 - 0.44 0.48

Figure 7: Zachary karate club network.

Figure 8: Bottlenose dolphins network.
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partitioningmore efficient.'e advantage of GHSOMs is the
fact that they provide reliable initial partitioning. In fact,
nodes located on the same neurons on the map certainly
belong to the same community. 'is is an intrinsic property
of GHSOM. GHSOM preserves the topology of social
networks. 'e mapping of social networks preserves the
relative distance between nodes. Nodes that are close to each

other in the social network are mapped to adjacent neurons
in GHSOM.

'e MeanCD also operates in two steps like our ap-
proach SOMG; yet SOMG performs better. In SOMG, the
detection of agglomerations is based on pattern recognition
techniques. However, in MeanCD, the detection of ag-
glomerations is based on measures computed on node pairs.

Figure 9: 'e American college football network.

Figure 10: Political books network.
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Detecting agglomerations must be relatively achieved to all
the nodes and not through finding direct similarities be-
tween them two by two. 'is may lead to oversegmentation.

According to Table 2, SOMG, Infomap, and CNM
performed clearly better in terms of execution time than the
other approaches. Infomap is the best because it is based on a
random walk. 'is makes the complexity of the Infomap
approach nearly linear and makes it quicker.

4.2. Artificial Networks. Our work, MeanCD, and the CNM,
which made the best performance in real networks, have
been tested on the LFR benchmark (Table 3). 'is bench-
mark was developed by Lancichinetti et al. [57].

In this study, the authors created a software that
generates a graph with a customized structure. 'e pur-
pose was to compare the three works on big size networks
having different structure features. Among these features,
we mention the number of nodes N; the average degree of
incoming edges k; the maximum degree of the incoming
edges max k; the fraction between incoming and outgoing
edges inside a community; the minimal community
size min c and the maximal community size max c; and the
mix parameter μ which controls the fraction of edges
between communities. An important value of μ corre-
sponds to a network with a blurred community structure.
'is experiment allowed us to test the scalability of our
approach.

To measure the performance of the two systems, we used
the NMI measure instated of modularity. In fact, contrary to
real networks, artificial ones have ground-truth partitions.
For this reason, we used the normalized mutual information
(NMI) proposed by Danon et al. [58]. 'e NMI value helps
to compare an obtained partition A and the ground-truth
partition B. When reading the formula, we can notice that
when partitions A and B are totally independent, the NMI
value will be 0. However, if they are matching, the NMI value
will be 1.

NMI(A, B) �
−2

CA

i�1 
CB

j�1 Nijlog NijN/Ni.N.j 


CA

i�1 Ni.log Ni/N(  + 
CB

i�1 N.jlog Nj/N 
.

(7)

4.2.1. Small Networks and Small Communities. In the first
test, we targeted the case of small networks (important
number of nodes) and small communities (small number of
nodes per community). We fixed the parameters as follows:
the number of nodes N is set to 1,000, the community size
C ϵ [50–100], and the average degree of nodes K is set to 25.
'e mix parameter μ ranges from 0.1 to 1. Results are
displayed in Figure 11.

4.2.2. Small Networks and Large Communities. In the sec-
ond test, we targeted the case of small networks (total
number of nodes) and large communities (number of nodes
per community). We fixed the parameters as follows: the
number of vertices N is set to 1,000, the community size C ϵ

[100–250], and the average degree of nodesK is set to 25.'e
mix parameter μ ranges from 0.1 to 1. Results are displayed
in Figure 12.

4.2.3. Large Network and Small Communities. In the third
test, we targeted the case of large networks (important
number of nodes) and small communities (a small number
of nodes per community). We fixed the parameters as fol-
lows: the number of vertices N is set to 10,000, the com-
munity size C ϵ [50–100], and the average degree of nodes K
is set to 25.'emix parameter μ ranges from 0.1 to 1. Results
are displayed in Figure 13.

4.2.4. Large Network and Large Communities. In the fourth
test, we targeted the case of large networks (important
number of nodes) and large communities (important
number of nodes per community). We fixed the parameters
as follows: the number of vertices N is set to 10,000, the
community size C ϵ [100–250], and the average degree of
nodes K is set to 25. 'e mix parameter μ ranges from 0.1 to
1. Results are displayed in Figure 14.

4.2.5. Performance and Comparison Results. As shown in
Figures 11–14, the NMI value is decreasing with the increase
of the mixing parameter μ for all works. 'is is not sur-
prising because it is easier for each system to detect com-
munities in a social network with a clear community
structure. In fact, when the mixing parameter becomes
bigger, the structure of the network becomes blurred, and
the communities become hardly distinguishable. However, it
can also be noticed that for all the tests, the CNM and
MeanCD performance decreases faster than that of our
system. 'is proves that our system is less sensitive to
blurring. Our system can detect the communities’ borders
better than both the CNM and MeanCD. However, we
consider that the blurred networks remain a real limitation
in our approach and need more investigation on the fitness
function. 'e actual fitness function is suitable for distin-
guishable communities rather than overlapping
communities.

In the case of small networks and large communities, all
three works achieved comparable results. In this case and
when the communities are distinguishable, we mean the
mixing parameter is less than 0.6, retrieving them is not a
complex task. However, when the communities become
smaller and precision becomes crucial, our approach per-
forms clearly better especially for the values of mixing pa-
rameter ranging from 0.3 to 0.6.

'e step of detecting agglomerations made by the
GHSOM provided a considerable contribution to discov-
ering at least the cores of communities. On the contrary, the
CNM failed in detecting the essential part of each com-
munity and provided under segmented communities. 'e
MeanCD performed better, and this is due to the initiali-
zation phase.

'e results obtained for large networks are coherent with
those obtained with the small ones. When the size of the
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community decreases, our system performs better. 'e gap
in performance becomes even more important. For the
values of the mixing parameter ranging from 0.3 to 0.8, we

performed clearly better. However, it is worth noticing that
for all works, the performance decreases faster when the size
of the network becomes important.

Table 2: Execution time in seconds on real networks.

Network Nodes/edges SOMG Infomap CNM GA SOMSN MeanCD
Zachary karate club 34/77 10.2 2.5 5.6 25.3 15 13.85
American college football 115/615 15.36 3.52 7.58 38.69 27.58 28.59
Bottlenose dolphins 62/159 11.23 2.63 8.64 20.48 17.7 19.8
Political books 105/441 10.41 3.57 8.2 45.25 32.14 29.15

Table 3: Synthetic networks.

Network Total number of nodes Number of nodes per community
Small networks and small communities 1,000 [50–100]
Small networks and large communities 1,000 [100–250]
Large network and small communities 10,000 [50–100]
Large network and large communities 10,000 [100–250]
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Figure 11: Comparison of the NMI values with different values of
the mixing parameter of our system and CNM for the case of small
networks and small communities.
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Figure 12: Comparison of the NMI values with different values of
the mixing parameter of our system and CNM for the case of small
networks and large communities.
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Figure 13: Comparison of the NMI values with different values of
the mixing parameter of our system and CNM for the case of large
networks and small communities.
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Figure 14: Comparison of the NMI values with different values of
the mixing parameter of our system and CNM for the case of large
networks and large communities.
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CNM performed slightly better than our approach in
terms of execution time (Table 4). 'is is due to the sim-
plicity of the CNM approach that starts from lonely nodes,
and the edges of the network are added progressively to
increase the modularity. We have to improve our perfor-
mance in this criterion. To reduce the time execution we can
parallelize the execution of a genetic algorithm. A parallel
genetic algorithm is an algorithm that uses multiple genetic
algorithms to solve a single task. All these algorithms try to
solve the same task, and after they have completed their job,
the best individual of every algorithm is selected.

5. Conclusion

A two-stage system to detect communities inside social
networks was proposed in this paper. 'e main idea of our
approach was to start by detecting cores of communities and
after that refining them to detect the final communities. 'e
experimental results on real and artificial networks showed
that starting by detecting community cores has an important
contribution. In fact, the two stages proposed in our system
are complementary. 'e first stage, which consists in
detecting cores of communities through the GHSOM, was
aimed at providing good initial conditions for the whole
process. However, the second was a refining stage in which
the genetic algorithms detected the final communities
through an oriented process. 'e obtained results are en-
couraging and should stimulate future research. 'e over-
lapping communities and blurred networks constitute our
first focus. 'e second focus will be parallelizing the exe-
cution of genetic algorithms to reduce the execution time.

Data Availability

'e test data used in this study have been taken from the
website (https://www-personal.umich.edu/∼mejn/netdata/).
'e implementation of self-organizing map that we used can
be downloaded from https://ifs.tuwien.ac.at/∼andi/ghsom/.
'e implementation of genetic algorithms that we used can
be downloaded from https://www.mathworks.com/
matlabcentral/fileexchange/39021-basic-genetic-algorithm.
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