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*e use of multimodal sensors for lane line segmentation has become a growing trend. To achieve robust multimodal fusion, we
introduced a newmultimodal fusion method and proved its effectiveness in an improved fusion network. Specifically, a multiscale
fusion module is proposed to extract effective features from data of different modalities, and a channel attention module is used to
adaptively calculate the contribution of the fused feature channels. We verified the effect of multimodal fusion on the KITTI
benchmark dataset and A2D2 dataset and proved the effectiveness of the proposed method on the enhanced KITTI dataset. Our
method achieves robust lane line segmentation, which is 4.53% higher than the direct fusion on the precision index, and obtains
the highest F2 score of 79.72%. We believe that our method introduces an optimization idea of modal data structure level for
multimodal fusion.

1. Introduction

Reliable and robust lane line segmentation is one of the basic
requirements of autonomous driving. After all, in order to
ensure that unmanned vehicles drive on the correct and
reasonable roads, the vehicle must be able to detect the lane
line the first time. *e driving assistance system provides a
decision-making basis for the autonomous driving control
module through the results of lane line detection [1]. In this
article, we focus on lane line segmentation based onmultiple
sensor fusion.

Existing algorithms rely heavily on the camera, which
provides a rich visual description of the environment [2, 3].
*e camera image has the original high-resolution and ef-
ficient array storage structure. It can provide long-distance
dense information under good light and sunny weather
conditions, and it is efficient in storage and calculation.
However, when perceiving the surrounding environment,
the performance of the camera is easily affected by the light
intensity and sharp changes in light [4, 5]. Unlike cameras,
LiDAR retains an accurate three-dimensional point cloud of

the surrounding environment and directly provides accurate
distance measurement. Although the depth information is
very accurate, the LiDAR usually has a measurement range
of only 10 to 100meters and can only provide sparse and
irregular point cloud data. *e empty voxels caused by the
sparse point cloud bring the accuracy requirements of lane
line detection. Here comes the challenge.

At present, most of the sensing sensors of vehicles on the
road work independently, which means that they hardly
exchange information with each other. Instead, their re-
spective sensing modules process the data of a single sensor
and then deliver the sensing results to the decision-making
module. *is method increases the number of perception
modules and imposes a great burden on the calculation
efficiency of onboard computing resources and decision-
making modules [6, 7]. *e fusion of information from
multiple sensors is a growing trend and the key to efficient
autonomous driving. Multimodal fusion can take advantage
of the complementarity of different sensor information and
use feature-level fusion to promote semantic segmentation,
thereby improving the accuracy and efficiency of lane line
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segmentation and ensuring the correctness and timeliness of
decision-making.

Some recent work has explored the use of camera images
and LiDAR point clouds for lane line segmentation tasks in
autonomous driving. Due to the perspective transformation
in imaging, the camera image cannot describe the accurate
distance information, and the method of directly using the
two-dimensional camera image for lane line segmentation is
unreliable [8]. Although the depth information of the LiDAR
point cloud is already available, so far, the main success of
the fusion method is to use the advantages of multimodal
data to supplement the camera image with the precise depth
information of the LiDAR. Previous studies put multimodal
fusion in a two-dimensional space, usually using a direct
stacking method to fuse the depth information of point
cloud data with the camera image with a fixed weight.
Another idea is to fuse multimodality [9, 10]; they put it in
the three-dimensional space, make full use of the accurate
representation of the distance information of the point cloud
data, and fuse the data in the three-dimensional space.
However, the camera image and the LiDAR point cloud are
data of different modalities and have great differences[11].
*e direct stacking fusionmethod ignores the characteristics
of multimodal data and will inhibit the respective advantages
of multimodal data, andmay even appear the effective fusion
information is misjudged as the negative effect of noise.
While placing multimodal fusion in a high-dimensional
space, algorithms based on 3D detection often require large
computing resources, which are difficult to meet the needs of
lightweight and real time in autonomous driving[12]. For
this reason, we propose a novel multimodal fusion lane line
segmentation method based on multiscale convolution and
channel attention mechanisms. We believe that multimodal
fusion should focus on the fusion feature space, and use
reasonable methods and weights to guide multimodal
fusion.

In order to make full use of multisource data for rea-
sonable control and use, we need to explore a question: what
method should be used to promote semantic segmentation
to obtain better lane line segmentation results. To this end,
we first analyzed the benchmark dataset for lane line seg-
mentation. In the KITTI dataset, the area occupied by lane
lines in the image is only 1.5% to 2%, and the problem of
class imbalance is quite serious. In this article, we hope that
when the deep learning network is extracting features, it can
more effectively focus on the characteristics of lane lines,
thereby improving the quality of the segmentation results.
For this reason, we use multiscale convolution for feature
fusion in multimodal fusion and introduce the channel
attention mechanism to modify the fusion weight. *e re-
sults are shown in Figure 1, and we believe that the task of
lane line segmentation should find a way to maximize the
effect of multimodal data under the premise of ensuring the
quality of the data.

*is article is organized as follows: in Section 2, we
separately analyzed the current lane line segmentation al-
gorithms based on camera images and point clouds and
introduced the current status of the fusion method; in
Section 3, we carried out the proposed method and network

structure in detail; Section 4 discussed the processing of the
dataset, as well as the experimental results and performance
evaluation obtained after applying the proposed method; in
Section 5, an ablation experiment was used to measure the
contribution of each module in the proposed method; and in
Section 6, the proposed methods are summarized and future
directions are provided.

In conclusion, the main contributions of the article are as
follows: (1) an idea of using multiscale convolution for
multimodal fusion lane line segmentation is proposed; (2)
ECANet[13] is used for the weight correction of the fusion
feature channel, which effectively improves the accuracy of
the lane line segmentation model; and (3) the proposed
multiscale efficient channel attention(MS-ECA) can be
widely used in the field of multimodal fusion and has good
mobility.

2. Related Work

2.1. Lane Line Segmentation. *e traditional lane line seg-
mentation uses the canny operator to detect the sharp change
in brightness[14], which is defined as an edge under a given
threshold, and then uses the Hough transform to find the lane
line. In recent years, the emergence of machine learning has
promoted the development of artificial intelligence, and the
wide application of deep learning has made feature-level lane
line segmentation algorithms gradually mature [15, 16].
Wenjie Song et al. [17] designed an adaptive traffic lanemodel
in the Hough space. *e model has a maximum likelihood
angle and a dynamic rod detection area (ROI) of interest.*is
model can also be improved through geographic information
systems or electronic maps to obtainmore accurate results. To
get more accurate results. Xingang Pan et al.[18] proposed
spatial CNN(SCNN), which extended the traditional layer-by-
layer convolution to the slice-by-slice convolution in the
feature map, thereby enabling message passing between pixels
between rows and columns in a layer. Bei He et al. [19]
designed a DVCNN network that optimizes both the front
view and the top view. *e front view image is used to
eliminate false detections, the top view image is used to
remove nonclub-shaped structures, such as ground arrows
and text, and a large number of complex constraints are used.
Conditions improve the quality of lane line detection.
However, due to the photosensitivity of the camera, lane line
detection based on pure vision still has great challenges in
terms of performance and robustness.

Some recent work has explored the use of multimodal
fusion for detection and segmentation tasks in autonomous
driving [17, 20, 21]. Andreas Eitel introduced a multistage
training method that effectively encodes the depth infor-
mation of CNN[22], so that learning does not require large
depth datasets, through the data enhancement scheme of
robust learning of the depth image, it is corroded with the
real noise mode [23]. Hyunggi Cho et al. [20] redesigned the
sensor configuration and installed multiple LiDAR pairs and
vision sensors. Based on the combination of measurement
models of multiple sensors, they proposed a new moving
target detection and tracking system. Reference [24] ex-
plored all aspects of pedestrian detection by fusing LiDAR
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and color images in the context of convolutional neural
networks. *is work samples the point cloud into a dense
depth map, then extracts three features representing dif-
ferent aspects of the 3D scene, and use LiDAR as an ad-
ditional image channel for training. However, current fusion
algorithms pay more attention to data quality and network
structure, and the characteristics of multimodal data and the
representation of fusion data have not been paid attention to.
*e difference is that our proposed method naturally selects
the fusion weight and the fusion channel adaptively in the
fusion and effectively shows the advantages of multimodal
data.

2.2. Attention Mechanism. *e attention mechanism has
recently been widely used to learn the weight distribution
[25], and the neural network is used to focus on different
parts of the input data or feature maps, so that the attention
module is designed to weight the input data or feature maps.
Jianlong Fu et al. [26] used a classification network and a
network to generate attention proposal on each target scale
of concern, defined a rank loss to train the attention pro-
posal, and forced the final scale to obtain a classification
result that was better than the previous one, so that the
attention proposal extracts the target part that is more
conducive to fine classification [27]. In the classification
network, an attention module composed of two branches is
added [28]: one is a traditional convolution operation, and
the other is two downsampling plus two upsampling op-
erations; the purpose is to obtain the larger receptive field
serves as an attention map. High-level information is more

important in classification problems; they use an attention
map to improve the receptive field of low-level features and
highlight features that are more beneficial to classification.
Liang-Chieh Chen et al. [29] constructed multiple scales by
scaling the scale of the input picture. *e traditional method
is to use average pooling or max pooling to fuse features of
different scales, and they constructed an attention model
composed of two convolutional layers to automatically learn
the weights of different scales for fusion. We have empiri-
cally found that due to the small proportion of lane lines in
the image, the overall attention of the spatial attention
mechanism may interfere with segmentation. *erefore, our
work pays more attention to the effect of the channel at-
tention mechanism on multimodal fusion.

3. Methods

In this part, we introduce the basic structure of our network
and introduce the proposed multiscale convolution fusion
module, and related experiments are completed based on
this part of the network.

3.1. Baseline for Multimodel Fusion. Lane line segmentation
is a typical pixel-level segmentation task. We established a
baseline fusion model based on Unet [30]. As shown in
Figure 2, its input is two modal data, which is the same as
most current fusion methods. Multimodal data are concat-
fused together after a convolution. *e baseline model is
trained end-to-end by an encoder and a decoder, and the size
of the convolution kernel of all convolution blocks is 3 ∗ 3.
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Figure 1: Test results on KITTI-aug dataset. *e rows from top to bottom are input images, ground truth, output from LaneNet, SCNN,
ENet-SAD, and ours.
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Based on Unet’s skip connection, we link the output of each
block in the encoder to a block of the corresponding size in
the decoder and use different levels of feature map semantic
information through concatenating.

3.2. Multiscale Convolution Fusion. Generally, for a given
task model, the size of the convolution kernel is determined,
and the convolution kernel of uniform size can be easily
calculated. However, studies have shown that for a given
input, if the network can adaptively adjust the size of the
receptive field according to the multiple scales of the input
information, extract the features under the multiscale re-
ceptive field, and finally, use the “selection” mechanism to
fusemultiscale features, the performance of themodel can be
effectively improved. For the camera image and LiDAR
point cloud data, although they are not the same input data,
they are aligned to describe the same scene. We creatively
use multiscale convolution to extract features for these two
modalities. Obtain multimodal features under different sizes
of receptive fields, and finally fuse them to obtain multiscale
multimodal fusion features.

Based on SKNet’s[31] dynamic selection strategy, we also
choose 3 ∗ 3 and 5 ∗ 5 size convolution kernels as mul-
tiscale convolution kernels. Generally speaking, a camera
image will have millions of pixels. In contrast, the perfor-
mance of LiDAR for the same scene is often only tens of
thousands of effective points. Even after point cloud com-
pletion processing, it still looks sparse compared to the
camera image. *erefore, as shown in Figure 3, we use the 5
∗ 5 size convolution kernel for the point cloud branch and
use the 3 ∗ 3 convolution kernel for the camera image
branch, which will be more conducive to the extraction of

the original effective information. In order to further im-
prove the efficiency, the conventional convolution of the 5 ∗
5 convolution kernel is replaced with a 3 ∗ 3 convolution
kernel and an expanded convolution with an expansion size
of 2.

We naturally use the Fuse and Select operations in
SKNet to calculate fusion multiscale features. We embed
global information by simply using global average pooling to
generate channel-level statistics. Specifically, the c-th ele-
ment of s is calculated by reducing the spatial dimension H
∗ W:

sc � Fgp Uc(  �
1

H × W


H

i�1


W

j�1
Uc(i, j), (1)

and then, a simple fully connected layer is used to realize the
guidance of accurate and adaptive selection, and reduce the
dimension to improve the efficiency:

z � Ffc(s) � δ(B(Ws)), (2)

where δ is the ReLU function and B is the batch nor-
malization, and W ∈ Rd×C. Finally, we adaptively choose
different spatial scales to obtain cross-channel attention
weight. Specifically, the softmax operator is applied to the
channel-wise digits; in (3), z is the compact feature de-
scriptor, and a, b denote the soft attention vectors:
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. (3)

In this process, convolution kernels of different sizes
provide multiscale receptive fields for the two modes of data,
and large convolution kernels can extract the features of
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Figure 2: Our fusion modal baseline: it takes an RGB image and a point cloud as input and outputs a 512 ∗ 256 binary map.
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sparse point cloud data more effectively, which is very
helpful for multiscale fusion. In addition, in the process of
using channel-level statistical information to embed global
information, the nonlinear learning in the network is in-
creased, which alleviates the negative impact of rough
conversion of multimodal data to the same feature space to a
certain extent, and improves the learning ability of the
network. After weighting the features of multimodal
branches with the weights of channel level, the expression of
lane line features of each modal branch can be increased
better, so that lane line features can be extracted more ef-
fectively after fusion.

3.3. Local Interaction of Fusion Feature Channels. In the task
of lane line segmentation, the proportion of the lane line area
in the image is very small, and it is a serious challenge to
efficiently extract the lane line features from a large amount
of background or noise. In this kind of unbalanced data, in
order to allow the network structure to adaptively pay at-
tention to the lane line features, we use an efficient attention
mechanism. It can be seen from the figure that in the process
of extracting features from the network, due to the difference
of filters, the focus of feature extraction from different
feature channels is different. In this process, some feature
channels can extract rich features. Information and some
feature channels contain a lot of noise information. In a
neural network, these feature channels will be stacked in
sequence to act on the segmentation task. Naturally, how to
enhance this part of the efficient feature channel becomes a
problem.

At the same time, considering that the lane line seg-
mentation task is a prerequisite for unmanned driving de-
cision planning and has high real-time requirements, we use
the lightweight channel attention mechanism model ECA-
Net for the fusion features after multimodal fusion. Note
that we only discuss the effect of lightweight attention
mechanism on multiscale and multimodal fusion. *rough
the channel attention mechanism, we calculate the impor-
tance of each feature channel of the fusion feature in the
network and let the network adaptively learn the contri-
bution of each feature channel to the lane line segmentation
task, and the feature channels that make a positive

contribution to the segmentation will be adaptively en-
hanced; otherwise, they will be suppressed.

As shown in Figure 4, in the idea of ECANet, the im-
portance of each feature channel will be represented by
modeling, and the neighboring channels are correlated, and
the weight of each feature channel will be calculated by its
neighboring neighbor channels, so that it can avoid di-
mensional loss while capturing local cross-channel inter-
active information. We integrate ECANet into the task of
multimodal fusion lane line segmentation and obtain a
model with lower model complexity and smaller network
parameters. *e network structure of ECANet is shown in
Figure 5.

Without dimensionality reduction, ECANet calculates
the nearby k channels of each feature channel centered on
itself and uses the correlation between adjacent channels to
interact with local information. In this channel weight
calculation, the lane feature channels that perform well in
the effective features of the line will receive greater attention,
which will lead to positive positive contributions to the
feature channels nearby. When the channel dimension C is
given, the value of k can be determined adaptively according
to the following formula:

C � ϕ(k) � 2(c∗k− b)
. (4)

k � ψ(C) �
log2(C)

c
+

b

c



o dd

, (5)

where |T|odd indicates the nearest odd number of t. Same as
ECANet, we set c and b to 2 and 1. In the experiment, the
calculation result of k is an odd number not exceeding 9.

We embed the channel attention module after the fusion
module to perform channel-level weight correction on the
fusion features after multimodal fusion. *e fusion features
obtained through fusion between the image branch and the
point cloud branch are used as the input of the channel
attention module, and the output of the channel attention
module is used as the input of the next layer of the network
structure in the original baseline. *e network structure is
shown in Figure 5, and the whole of the multimodal fusion
module and the channel attention module is called MS-ECA
(Table 1).

U VS Z
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Image branch

Point cloud
branch

3*3

5*5

Figure 3: Structure of multimodal multiscale fusion. We use a 3 ∗ 3 convolution kernel for the image branch and a 5 ∗ 5 convolution
kernel for the point cloud branch.
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4. Experiment

4.1. Dataset Preparation. *e current multimodal lane line
segmentation dataset is relatively lacking. To verify the
proposed method, we conducted extensive experiments on
the benchmark datasets KITTI-Road[32] and A2D2[33]. As
shown in Figure 6, the KITTI-Road and A2D2 datasets
include synchronized camera images and LiDAR point
clouds with calibration parameters and ground truth values.
We filter out complex cross-lines or forward lines in the
dataset and use the remaining data to validate our proposed
method and model.

In the processing of the dataset, we also filtered out
confusing lane lines, such as markings on the sidewalk and
signs outside the lane lines to better meet the task re-
quirements of lane line segmentation. Compared with the
TuSimple dataset, in order to extract the lane line features
more accurately, we only use the visible lane line pixels on
the image and ignore the part of the lane line behind

obstacles or other invisible lane lines to ensure that the
network learns completely the characteristics of the lane line.
Finally, the dataset annotations are redone as pixel-level lane
line labels. In training, we use the same feature extraction
module to extract features of the camera image and the point
cloud. As for the network input, the initial size of the original
camera image and the corresponding point cloud is 1242 ∗
375, in order to reduce the calculation overhead, in the data
preprocessing, we reshape them to the size of (256, 512) in
the same way and then input them into the network.

*e KITTI and A2D2 datasets have limited samples. In
order to conduct experiments better, we need to carry out
reasonable data enhancement. In the acquisition of the
A2D2 dataset, only one 8-line and two 16-line LiDARs are
used to collect point cloud data. *e point cloud is very
sparse and contains little information. In contrast, KITTI
uses a 64-line LiDAR to complete the point cloud collection,
and the resulting point cloud has a richer description of the
entire space.*erefore, we use the KITTI dataset as the main
verification dataset. In addition, we performed strategies
such as cropping, brightness conversion, and adding noise to
the KITTI data and obtained a dataset 12 times the original
KITTI data, which is represented by KITTI-AUG. All ex-
periments use 60% of the data as the training set, 30% for the
test model, and the remaining data for verification in
training. *e dataset information we use is shown in Table 1.

1
64

1
64

GAP

1*1*C 1*1*C

σ

1
64

k=Ψ (C)
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Table 1: Information of the lane line segmentation datasets.

Name Frame Train Validation Test Resolution
KITTI 383 228 40 115 1242 × 375
KITTI-aug 3331 2736 480 115 1242 × 375
A2D2 470 282 47 141 1920 × 1208
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4.2. Training Procedure. In order to ensure fairness, all
experiments are implemented on a standard training plat-
form, with only differences in the methods in the neural
network. Our hardware platform has the following: 8GB of
RAM, a three-core E5 series CPU, and an NVIDIA TiTan XP
GPUwith 12Gmemory, and the operating system is Ubuntu
16.04. All the codes are based on the PyTorch framework.
We have implemented end-to-end network training. In
order to speed up the convergence, we use the Adam op-
timization algorithm, and the parameters in Adam are
default values. In order to prevent the difficulty of finding the
optimal solution during training, we also use a learning rate
LR with periodic decay:

nllloss � − 
N

n�1
ynlogprob xn( , (6)

and we use the Adam optimization algorithm [34] to train
the network end-to-end, using a periodic decay learning rate
LR:

lr0 � 0.0001lr � 2⌊epoch/50⌋
× 0.8⌊epoch/1⌋

× lr0, (7)

where lr0 � 0.0001lr0 is the initial learning rate.*e training
rounds and batch sizes of all experiments are set to 200 and
4, respectively. In the training process, we use the strategy of
using the validation set to verify the current model while
training. Specifically, we will use the current model pa-
rameters to perform a performance evaluation on the val-
idation set every 5 epochs of training. If the current model
parameters have achieved performance upgrade, the cor-
responding weight file and related verification results will be
automatically saved.

In semantic segmentation tasks, recall and accuracy are
both important indicators to measure model performance.
For lane line segmentation, the recall rate reflects the pro-
portion of lane line pixels correctly predicted by themodel in
all positive samples, and the accuracy rate reflects the
proportion of real lane line pixels in the result of the model
prediction. *e formula is as follows:

precision �
tp

tp + fp
. (8)

recall �
tp

tp + fn
. (9)

In addition, in order to make a clearer comparison, we
also used F-measure(including F1 and F2) and calculated the
accuracy of the overall prediction as “acc.” Finally, in order
to verify the real-time performance of the proposed method,
we calculated the FPS of the lane line segmentation in the
test for some experimental models.

4.3. Experimental Results. *e experiment in Table 2
compares the performance of single-mode and multi-
modal fusion for lane line segmentation in the two datasets
of KITTI and A2D2. It can be seen that in the task of lane line
segmentation, using only camera data has a slight advantage
over using only LiDAR data, and multimodal fusion has
obvious advantages over single-modal data. Lane line seg-
mentation is a pixel classification problem. Camera data with
good pixel continuity are more suitable for lane line seg-
mentation. *e data structure of the LiDAR point cloud is
discrete points, and the accurate description of the edge of
the lane line is not as good as the camera image. *is is also
an important factor for us to project the point cloud data to
the camera plane for multimodal fusion. From the com-
parison of the experimental results of KITTI and A2D2, it
can be seen that the lane line detection effect of the KITTI
data is better, and the detection results reflect the data
quality and the difficulty of the scene. We can see that KITTI
data is more universal, therefore, in subsequent experiments,
we will mainly use KITTI dataset and the data-enhenced
KITTI-aug. In the experiment, we will mainly use the KITTI
dataset and the data-enhanced KITTI-aug.

We have conducted extensive experiments on the KITTI
dataset and KITTI-aug. As shown in Table 3, we have
conducted experimental comparisons between the single-
modal, multimodal direct fusion and the proposed method.

Figure 6: Examples of KITTI(top row) and A2D2(bottom row). *e columns from left to right are camera image, lane line label, and point
cloud.
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After data enhancement, the overall test effect of the direct
fusion of single modal and multimodality has been signif-
icantly improved. Among them, the F2 score of direct fusion
of multimodality on KITTI-aug is 5.9% higher than that on
KITTI, which shows that the used data enhancement can
improve the robustness of the model. After using the pro-
posed MS-ECA fusion method, the overall performance of
the model has been further improved, and the F2 scores on
KITTI and KITTI-aug have been improved by 6.46% and
1.45%, respectively. It can be seen that the precision index of
the main factor of performance improvement has been
significantly improved, which shows that the proposed
multimodal fusion method MS-ECA can effectively reduce
the false detection rate of the model to the lane line. *e
proposed fusionmethod is of great benefit to the detection of
actual lane lines.

We compared our model with the current advanced
models SCNN [18], LaneNet [3], and ENet-SAD [35]. All
models are trained from scratch, except SCNN, and LaneNet
load pretrained VGG-16 [36] weights to accelerate learning.
To be fair, we train SCNN and LaneNet for 60 000 iterations
(equivalent to 175 epochs). *ey stopped optimization after
3000 iterations. For ENet-SAD, we added the SAD strategy at
the 40 000 iterations. Our model was trained for 200 epochs,
and they almost converged after about 150 epochs. *e ex-
perimental results are shown in Table 4. It can be seen that our
model has the characteristics of lightweight and is in the same
order of magnitude as the lightest ENet-SAD. Compared with
the current state-of-the-art model, our model has obvious
overall performance advantages and at the same time has a
very high FPS, reaching 59.5 frames per second.

4.4. Ablation Study. In order to verify the contribution of
each structure in the proposedmethod to the performance of
the model, we conducted extensive ablation experiments
under different backbones, and the loss curve of using
ResNet34 is shown in Figure 7. As shown in Table 5, we
conducted experiments on the performance of themultiscale
fusion module and ECA module in the proposed method,
named, F-MS and F-ECA, respectively, and the visualization
results are shown in Figure 8. It can be seen that the impact
of multiscale module and the ECA module on the method is
mainly to improve the precision index. *e multiscale
module has a slight advantage in the gain of precision. When
ResNet50 is used as the backbone, the gain of multiscale to
precision reached 3.27%. It can be seen from the FPS that the
frame rate of all models is maintained above 50, and the
amount of calculation required to multiscale fusion module
is greater, which leads to a more significant increase in the
reasoning time of the model. Our method guarantees a high
frame rate, while the overall performance of the model is
excellent. It can be seen that as the network deepens, the
accuracy of all models is gradually improving. When
ResNet50 is used as the backbone, our method improves the
precision index by 4.53% compared to the direct fusion. It is
worth noting that the actual vehicle-mounted autonomous
driving platform needs to carry multiple deep learning
models. *e deeper the network parameters, the greater the
number of network parameters. Although when ResNet50 is
used as the backbone, our model still has at least 50 FPS on
the current test platform. In order to ensure sufficient ac-
curacy and lightness, we still recommend using ResNet18 or
ResNet34 as the backbone for actual use.

In order to verify the role of point cloud data in the lane
line segmentation task, we split the information in the point
cloud and fused the depth, height, and tensity with the
camera image for experiments. Note that this experiment
used ResNet34’s pretraining parameters, and the results are
shown in Table 6. It can be seen that the three types of
information contribute differently to the fusion. Among
them, precision is increased by 0.72 when using height
information, and recall is slightly reduced when using tensity
and depth information, but precision has been greatly im-
proved with 1.42 and 1.37, respectively. *is shows that the
tensity and depth information in the fusion is more im-
portant than the height. It is worth noting that the tensity has
a better effect in the task of lane line segmentation; however,
in other fusion tasks, we suggest to pay more attention to the
depth information in the point cloud, which canmake up for
the lack of depth information for two-dimensional images.

Table 2: Comparison of single-modal and multimodal fusion in
KITTI and A2D2. “REC” denotes “Recall” and “PRE” denotes
“Precision,” and we use the same abbreviation in the following
sections.

Dataset Mode REC PRE F1 F2 Acc
LiDAR 85.43 25.82 37.84 54.41 95.19

KITTI Camera 82.30 45.53 55.59 67.06 97.84
Fusion 93.34 45.89 57.89 71.22 98.16
LiDAR 84.44 22.60 35.51 48.54 94.45

A2D2 Camera 87.47 24.36 36.27 54.65 95.22
Fusion 87.06 32.09 45.06 61.57 98.87

Table 3: Comparision of different methods in KITTI and KITTI-aug.
F-MS-ECA denotes fusion with our method(multiscale efficient
channel attention).

Dataset Mode REC PRE F1 F2 Acc
LiDAR 85.43 25.82 37.84 54.41 95.19

KITTI Camera 82.30 45.53 55.59 67.06 97.84
Fusion 93.34 45.89 57.89 71.22 98.16

F-MS-ECA 93.66 48.16 62.81 77.68 98.50
LiDAR 85.19 29.40 42.57 60.83 96.22

KITTI-aug Camera 82.44 47.65 57.31 71.19 97.95
Fusion 92.24 48.57 62.89 77.12 98.44

F-MS-ECA 92.23 51.38 65.25 78.57 98.65

Table 4: Performance of different SOTA algorithms on KITTI-aug
testing set.

Algorithm Size (M) REC PRE F2 Acc FPS
LaneNet 285.7 80.97 32.81 60.97 96.87 69.1
SCNN 270.3 88.61 30.37 63.06 97.07 14.4
ENet-SAD 11.0 91.21 33.96 66.90 97.44 22.5
Ours 25.0 92.23 51.38 78.57 98.65 59.5
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Figure 7: Loss curve during training; all training uses the pretraining parameters of ResNet34.

Table 5:*e performance of using different pretrained parameters in fusion. F-MS denotes fusion only with multiscale strategy, and F-ECA
denotes that fusion only with ECA.

Backbone Method REC PRE F2 Acc FPS
Fusion 92.24 48.57 77.12 98.44 79.0

ResNet18 F-MS 92.17 50.52 77.97 98.41 66.5
F-ECA 92.13 50.66 78.03 98.57 78.3

F-MS-ECA 93.08 51.21 78.34 98.62 60.2
Fusion 92.75 49.37 78.23 98.54 75.3

ResNet34 F-MS 92.08 50.77 78.47 98.61 65.2
F-ECA 92.12 50.36 78.46 98.61 73.9

F-MS-ECA 92.23 51.38 78.57 98.65 59.5
Fusion 93.09 49.84 78.53 98.58 65.9

ResNet50 F-MS 92.35 53.11 79.15 98.73 57.1
F-ECA 92.27 52.97 78.83 98.69 62.8

F-MS-ECA 93.17 54.37 79.72 98.81 53.6
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Figure 8: Visualization results of the fusion with and without MS/ECA in the feature channels of two different convolution blocks in the
fusion.
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5. Conclusion

*is article proposes to optimize the multimodal fusion by
using the multiscale fusion and ECA module for the task of
lane line segmentation. By extracting features of different
scales from camera images and LiDAR point clouds, and
using the channel attention mechanism to calculate the
weights of fusion features, we have achieved excellent results
in a multimodal fusion network. In the test on the KITTI-
aug dataset, we obtained the best performance model when
using ResNet50 as the backbone, with the highest F2 score of
79.72%. At the same time, our method can maintain ex-
cellent test speed in actual tests. *e structural difference
between the modalities is one of the main problems that
make the current multimodal fusion difficult. In the future,
we will explore the fusion of different modalities in high-
dimensional space and analyze the differences and differ-
ences between the modalities from the structure of the data
and achieve more robust fusion.
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