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The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with
corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in
particular, bond-based indices play a vital role. The bond-additive topological indices of a molecular graph are defined as a sum of
edge measures over all edges in which edge measures can be computed based on degrees, closeness, peripherality, and irregularity.
In this study, we provide the mathematical characterization of the transformation of a structure that can be accomplished by the
novel edge adjacency and incidence relations. We derive the exact expressions of bond type indices such as second Zagreb, sigma
indices, and their coindices of total transformation and two types of semitransformations of the molecules which in turn can be

used to characterize the topochemical and topostructural properties.

1. Introduction

Topological indices are graph invariants that play an important
role in chemical and pharmaceutical sciences, since they can be
used to predict physicochemical properties of organic com-
pounds in view of successful applications in QSAR and QSPR
techniques [1-5]. These indices are mainly classified into
distance-based and degree-based. Development of such to-
pological indices is of immense value in quantitative structure-
activity relations. The first and second Zagreb indices were the
oldest degree-based indices and found significant applications
[6, 7]. The Zagreb indices have first appeared in the topological
formula for the total -energy of conjugated molecules and also
useful in the study of anti-inflammatory activities of chemical
instances. The generalization of the first Zagreb index is named
as general sum-connectivity index [8] and there are many types

of generalization and reformulation on the Zagreb indices
based on vertex and edge degrees [8-11], in particular, the
forgotten index is recently revisited with important applica-
tions to drug molecular structures [12, 13].

It was known that most of the molecular structures are not
regular and, hence, the quantitative measure based on ir-
regularity is of great importance in mathematical chemistry.
In the case of octane isomers, the application of various
degree-based irregularity measures for the prediction of
physicochemical properties such as boiling point, standard
enthalpy of vaporization, acentric factor, enthalpy of
vaporization, and entropy was tested and predicted with good
accuracy [14]. As a result of which many topological indices of
this kind have been discussed and a few of them are Col-
latz-Sinogowitz, degree variance, discrepancy, Albertson,
Bell, and total irregularity and sigma indices [14-17].
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The Albertson index is the most commonly used ir-
regularity measures that provide the structural perfection
of chemical compounds. For this purpose, the imbalance of
an edge is defined as the absolute difference between the
degrees of end vertices and the summation is taken over all
edges. In this paper, we focus our attention on the recently
popular, sigma index, which is defined as the sum of
squares of imbalance of every edge. Moreover, there is a
nice relationship between second Zagreb, forgotten, and
sigma indices which states that the difference between
forgotten and sigma indices is twice the second Zagreb
index [18] and some properties of the sigma index dis-
cussed in [19].

The structure of a molecular graph G can be trans-
formed into another graph T (G) by imposing desired rules
based on the original structure of G so that there is a one-
to-one correspondence between original graph G and the
transformation graph T (G). Such a transformation of
graphs and their characterization was attempted by many
researchers in chemical graph theory [20-26] because the
complex structure of transformation graph can be easily
analyzed by the original graph. For instance, the first
Zagreb index [21, 25], second Zagreb index [21, 27], for-
gotten index [20, 28] of transformation graphs, and Zagreb
indices of transformation of line graph of subdivision
graphs [29] were discussed. In this, we observe that the
entire process of the second Zagreb index [27] was wrongly
dealt and we will discuss with details in Section 3.
Moreover, the forgotten index [20, 28] of transformation of
graphs was considered with vertex a-Zagreb and (a, b)-
Zagreb indices. In this study, we give the correct expres-
sions for the second Zagreb index of transformation graphs
and rewrite for the forgotten index via general sum-con-
nectivity index. Finally, we derive the analytical expressions
for the sigma index of two types of semitransformations
and a total transformation.

Throughout this paper, we write G to denote a simple
connected graph with vertex set V(G) and edge set E(G).
The number of elements in the vertex set and the edge set,
respectively, is denoted by n (order) and m (size). The
number of edges incident with a vertex s € V (G) is called
the degree of the vertex s, denoted by d; (s). The neigh-
borhood of a vertex s, denoted by N (s), is a set of all
vertices which are adjacent to s. Two edges e, f € E(G) are
said to be adjacent if they share a common vertex and we
write as e ~ f and in case they are not adjacent, e+ f. In the
same line of notation, s € V(G), f € E(G), and s ~ f mean
that s is an end vertex of f while s+ f that s is not an end
vertex of f.The degree of an edge e = st, denoted by d; (e),
is the number of edges that are adjacent to e, ie,
dg(e) = dg(s) +dg (t) — 2. The complement of a graph G,
represented by G, is a graph obtained from G with the same
vertex set of G such that s is adjacent to ¢ in G if and only if s
is not adjacent to t in G. Hence, the size of G is
(1/2)[n* = n — 2m], and the degree of each vertex s € V (G)
is dg(s) =n—dg(s) - 1.

We close this section by listing down (in Table 1) certain
bond-additive topological indices [7-13, 18, 28, 30, 31] and
their coindices which are needed for our study.

Complexity

2. Transformation Graphs

The concept of transformation graphs is to construct a new
graph from the original graph G based on the structural
connectivity. Generally, we can transform the original graph
by imposing any combinations of the following:

For o, B,y € {+,-}, v; € V(G), 1<i<n, and e; € E(G),
1<j<m,

(1) v;,v; € V(G), v; is adjacent to v; in G ifa=+andv;

is not adjacent to v; in G if a = -

(2) e;,e; € E(G), e; isadjacent toe; in G if f=+ande;is

not adjacent to e; in G if f = -
(3) v; e V(G) and e; €E(G), ¢;is incident to v; in G if
y =+ and ¢; is not incident to v; in G if y = -

The type-1 semitransformation of a graph G, denoted by
Ty (G), is a graph with the vertex set V (G) U E (G), and for
s,t € V(T,,(G)),sand t are adjacent in T, (G) if and only if
(#1) and (#3) hold [21]. Following this, it is natural to define
another semitransformation, called type-II semitransformation
and denoted by Top, (G), whose vertex setis V (G) U E (G), and
for s,t € V(Tzﬁy (G)), s and ¢ are adjacent in Top, (G) if and
only if (#2) and (#3) hold. The total transformation graph
T,p,(G) is a graph with the same vertex set as above
V(G)UE(G), and for s,t € V(T44,(G)), s and ¢ are adjacent
in T g, (G) if and only if (#1), (#2), and (#3) hold [32].

The concept of semitotal point, semitotal line, and total
graphs came into the literature earlier [33, 34] and these
three graphs are particular cases of our T',, (G), Ty, (G),
and T, (G), ie, Ty, (G) is the semitotal point graph,
T,., (G) is the semitotal line graph, and T, ,, (G) is the total
graph. Since there are four distinct 2-permutations of {+, -},
we can construct totally eight different graphs from two
types of semitransformations. For a graph G depicted in
Figure 1, the two types of semitransformation graphs are
shown in Figure 2. In the same way, there are eight distinct
3-permutations of {+, -} and again totally eight graphs can
be constructed from the total transformation in which
T _(GQ)=T,,.,@G), T_,(G=T, (G, T, (G=
T, .(G), and T_,, (G) =T,__(G). For the same graph in
Figure 1, the eight classes of total transformation graphs are
given in Figure 3.

Lemma 1 (see [21]). Let G be graph with n and m as its order
and size, respectively. Then, the order of T, (G) is (m + n),

lay
and the size is
( 3m, ta=+,Y =+
m(n-1), Ta=+y=-,
'ETMV(G)| R
-nn-1)+m, a=-y=+
1
En(n—1)+m(n—3), a=—y=-
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TaBLE 1: Bond-additive indices of G.

Item Index Coindex
First Zagreb M, (G) = Ygep) ldg (s) + dg ()] M, (G) = ¥ gep(c)[dg (s) +dg (1))]
Second Zagreb M, (G) = Zsth(G)dcz(S)dc (f)2 M, (G) = Zstgs(c)dcz(s)dc (t)z
Forgotten F(G) = Y gerg)ldg ()" +dg ()] F_(G) = Yaeec) ldg ()" +dg ()]
Sum-connectivity Xa (G) = Yer () ldg (s) +dg ()] Xo (G) = Yagpo)[dg () + dg ()]*
Reformulated first Zagreb EM,(G) = X, re(Gpe~s ldg (€) +dg ()] EM,(G) = ¥, rer(Gyess ldg (€) +dg ()]
Reformulated second Zagreb EM,(G) = ie)feE(G)%fdG (e)ds (f) EM,(G) = i,feE(G)wfdG (e)ds (f)
Sigma 0(G) = Yyeriqldg () —dg (D) 5(G) = Y e ldg (5) —dg (D)

Uy

€34
U3
€13 €3
Uy €12 U,

F1gure 1: The graph G.

Uy Uy Uz Uy Uy uz Uy

€12 €13 €3 €4 €12 13 €3 €34

FIGURrE 3: (a) T,,, (G); (b) T,,_(G); () T_,_(G); (d) T_,, (G); (&) T___(G); () T__.(G); (8) T,_, (G); (h) T,__(G).



Lemma 2. Let G be graph with n and m as its order and size,
respectively. Then, the order of Ty, (G) is (m +n), and the
size is

%MI(G)+m, p=+y=1
%Ml(G)+mn—3m, Pf=+Hy=-,

(T, - {
%[m2+5m—M1(G)], B=—y=+
%[m2+2mn—3m—M1(G)], f=—y=—
(2)

% [M, (G) + 4ml],

51
[E(Tas, @)

<

%[M1 (G) +2m(n-2)],
Ir 5
5 [m +7m - M, (G)],

L M, (G) +n(n-1)],
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Lemma 3. Let G be graph with n and m as its order and size,
respectively. Then, the order of T s, (G) is (m +n), and the
size is

apy

ra=+pf=+y=+

:a:+:ﬁ:+)y:_)

%[(m+n)2—5m—n—M1(G)]’
%[mz +n(n—1)+3m-M,(G)),
%[MI(G) +2m(n-4) +n(n-1)],

% [m2 +2mn—m— M, (G)],

(3)
a=—p=—y=-
a=-f=-y=+
a=-B=+y=-
a=+p=—y=-

We now recall the results pertaining to the first and
second Zagreb indices of type-I semitransformation graphs
and the first Zagreb index of total transformation graph
which are helpful for our study.

Lemma 4 (see [21, 25]). Let G be a graph with order n and
size m. Then,
(i) M, (T1,,(G)) =4[m+ M, (G))]
(i) M, (T,,_(G)) = nm?® + m(n - 2)*
(iii) M, (T,_, (G)) = n(n—1)* + 4m

(iv) M, (T,__(G)) = 4M,(G) + m(n—2)* + (m + n— 1)
[nm+n-1) - 8m]

Lemma 5 (see [21]). Let G be a graph with order n and size
m. Then,
(i) M, (T,,(G)) = 4M, (G) + 4M, (G)
(i) M, (T,,_(G)) = m®> + m* (n - 2)*
(iii) M, (T,_, (G)) = (1/2)[n(n—1)* = 2m(n—1)*+ 8m
(n—1)]
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(iv) My(T,__(G)) = (1 /2)[4(n-2)M, (G)-4(m+n -
)M, (G) + 8M, (G) + (m+n—1)*(n* — n—2m) +
2m(m+n-— 1)(n—2)2—8m2(n—2)]

Lemma 6 (see [25]). Let G be a graph with order n and size
m. Then,

(i) M, (T,,,(G)) =4M, (G) + 2M, (G) + F(G)
(ii) M, (T,,_(G)) =mn(m+n-8)+16m+2(n—4)
M, (G)+2M,(G) + F(G)

(iii) M, (T,_, (G)) = m(m+3)* =2(m + 1)M, (G)+
2M, (G) + F(G)

(iv) M, (T_,, (G)) = n(n—1)* + 2M, (G) + F(G)

(v) M\ (T___(G)) = (m+n)[(m+ n)? — 10m — 2n+
1]+8m—-2(m+n-3)M,(G) +2M,(G) + F(G)

(vi) M, (T__,(G)) =n(n- D?+m@m+3)? - Qm+
6) M, (G)+2M,(G) + F(G)

(vii) M, (T_,_(G)) =m(m + 3?2 + (m+n)(m+ n —1)°
2m*+7m)(m+n-1)+2n-2)M,(G) +
2M, (G) + F(G)

(viii) My (T,__(G)) =m[(mn+1) + (m+n)(m + n—
2)] -2(m+n-1)M,(G) +2M, (G) + F(G)

3. Main Results

In this section, we derive the analytic expressions for the
sigma index and coindex of semi and total transformations
of graphs. Bearing the relation 0(G) = F(G) - 2M,(G) in
mind, we first study the second Zagreb index and then the
forgotten index and finally deduce the results for the sigma
index.

3.1. Second Zagreb Index of Transformation Graphs. The
second Zagreb index of total transformation of graphs was
expressed in [27], and by careful inspection, we notice that
the entire process is vague and results in incorrect expres-
sions. For instance, it was proved [27] that
M, (T,,,(G)) =8M,(G) + 6M,(G) + F(G). Suppose
G = P,, a path on n vertices. Then, T, (P,) is a graph on
2n— 1 vertices and 4n — 5 edges in which 2 vertices of de-
grees 2 and 3 each and 2n — 5 vertices of degree 4 while 2

M2 (T+++ (G))

steE (T, (Q))

2

steE(T,,, (G)NE(G)

+ Z dr (6 (s)dr

steE (T,,, (G)N[E(G)UE(L(G))]

2

steE(G)s ~ t

> 2dg(s)2d (t) +

steE(G)

Y dro®dr O

dr,., ) (9dr, )8+

edges with degrees of end vertices (2,3) and (2, 4)each, and
4 edges with (3,4) and 4n — 13 edges with (4,4). Hence,
M,(T,,, (G)=6x2+8x2+12x 4+16x (4n—13) =
64n —132. However, M, (P,) =4n—-6, M,(P,) =4n-238,
and F(P,)=8n—-14, resulting that 8M,(P,)+ 6M,
(P,) + F(G) = 64n—110. Hence, we now compute the
correct analytic expressions of the second Zagreb index and
coindex of total transformation graphs using reformulated
Zagreb indices. Moreover, the type-II semitransformation is
newly introduced in this paper, and hence we also obtain the
exact expressions for first and second Zagreb indices. The
following theorem gives the exact expression for second
Zagreb indices of first four transformations in terms of edge
version of first and second Zagreb indices of the arbitrary
graph.

Theorem 1. Let G be a graph with order n and size m. Then,

(i) M, (T, ., (G)) = EM, (G) + 2EM, (G) + 8M, (G)+

2M, (G) + 2F (G) — 4m

(i) M, (T,,_(G)) = EM, (G) + (n—2)EM, (G)+
(172)[(n=2)* + 2m(n—2)]M, (G) + m*> + m?* (n -
2)(n—4)-m(n-2)>

(iii) M, (T,_, (G)) = EM, (G) = (m + 1)EM, (G)+
(1/2)[m(m +1)*] = (1/2)[(m* = 2m — 11)M,
(G)] -2F(G)

(iv) M, (T_,, (G)) = EM, (G) + 2EM, (G) + 2nM,
(G) + (1/2)n(n-1)° = m[n* - 2n+5]

Proof. 'The graph T, (G) has m+mn vertices and
(1/2)M, (G) + 2m edges in which m edges are actual edges
in G by condition (#1), (1/2)M, (G) — m edges are produced
by condition (#2) called edge adjacency relation edges (line
graph edges), and 2m edges are edges produced by condition
(#3) called incidence relation edges. For any vertex
s € V(T+++ (G))’

if s e V(G),

.00 = ifs € E(G)

+++

{ 2dG (S)> (4)

dg(s) +2,

Therefore,

2

steE (T, (G)) NE(L(G))

dr,., ) ()dr, ()

@)

o+

(dg(s)+2)(dg () +2)
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+ y 2d;; (s) (dg (1) +2)
seV (G),teE(G)s ~ t

=4M,(G)+ Y dg(s)dg(t)

s,teE(G)s ~ t

+ Z 2[dg(s) +dg (t)] + 4|E(L(G))]

s,teE(G)s ~ t

+ YN 2d6(s)[dg (s) +dg (x)]

eV (G) xeNg (s) (5)
— 4M, (G) + EM, (G) + 2EM, (G) + 4|E(L(G))|

+2 ) dg(9+2 ) Y dg(9)dg(x)

seV (G) seV (G) xeNg; (s)
_ M, (G)
=4M,(G) + EM,(G) + 2EM, (G) + 4 T_m +2F(G) +4M, (G)

= EM, (G) + 2EM, (G) + 8M, (G) + 2M, (G) + 2F (G) — 4m.

This completes the proof of assertion (i). Next, for any It can be seen that
vertex s € V(T,,_(G)),
p ©) {m, ifs e V(G), ©)
S =
T (@) dg(s)+n-2, ifseE(G).

My(T,, Q)= ) de(dg®)+ > dg(s)dg(t)+ D dg (s)dg (t)

steE(G) S,teE(G)s ~ t s€V (G),teE(G)s+t
= Y mm+ Y (dg(s)+n-2)(dg() +n-2)+ Y m(dgt)+n-2)
steE(G) s,teE(G)s ~ t s€V (G),teE(G)s+t

=m’ + EM, (G) + (n—2)EM, (G) + (n—-2)*|E(L(G))|

+ Y Y m(dgt)+n-2)

teE(G) seV (G)s+t

=m’ + EM,(G) + (n—-2)EM, (G) + (n - 2)2(M17(G) - m)

+m Y (n-2)(dg(t) +n-2)
teE(G) (7)

=m’ + EM, (G) + (n—2)EM, (G) + % [(n=2)’M,(G) - 2m(n - 2)’]

+m(n—2)< Y dG(t)> +m?(n-2)>°

1€E(G)

=m’ + EM, (G) + (n-2)EM, (G) +% [(n=2)’M,(G) - 2m(n-2)’]
+m(n—-2)[M,(G) - 2m] + m* (n-2)*

= EM, (G) + (n—-2)EM, (G) +% [(n=2)* +2m(n-2)|M, (G)

+m +mi(n-2)(n—4)-mn-2)>~
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To complete the proof of assertion (iii), we notice that for
any vertex, s € V(T,_, (G)),

2d (s), if s € V(G),

dr_ (s = {m +1-dg(s), ifseE(G). ©

As before, we can easily write that

My(T, (@)= ) 2dg(s)2ds(t)+

steE(G) s,t€E (G)s+t

)

seV (G),teE(G)s ~ t

(m+1-dg(s)(m+1-dg(t))
2dg(s) (m+ 1 - dg (1))

m(m—1)

= 4M, (G) + (m+1)° ~IE(L(G)I | - (m+DEM, (G) + EM, (G)

2 3N dg(s)(m+3 - (dg (s) + tdgn(x))) (9)

se€V(G) xeNg (s)
= EM, (G) - (m + 1)EM, (G) + 4M, (G) +% [m(m+1)° = (m+1)°M, (G)]

+2(m+3)M,(G) - 2F(G) - 4M, (G)

= EM, (G) — (m + 1)EM, (G) +% [m(m+1)°] —% [(m* —2m - 11)M, (G)] - 2F (G).

The final assertion follows from the fact that for any
vertex s € V(T_,, (Q)),

n-1, if s e V(G),

dr @) = {dG(s) +2, ifseE(G). (l(l)j)

Theorem 2. Let G be a graph with order n and size m. Then,

(1) M,(T___(G)) = (1/2)[M?(G) - B(m+n—1)*~ 8
2m+n-2)) M (G)+ (dm+4n-22) M,(G)+
(2m + 2n - 7)F(G) - 2EM, (G) - 4EM, (G) + (m+
n(m+n-1)>-12m(m+n-1)>+8m(2m + 1)]

(2) My(T__, (G)) = (1/2)[M}(G) = (3m* + 14m+ 12n—
17)M,(G) + 4m+4n—-6) M,(G)+ (2m+2n-3)
F(G) - 2EM,(G) -2(n-2)EM; (G)+m*+7m*+
d4mPn+ 11m? = 2mn®  + 24mn—29m +n* - 33+
3n? —n]

(3) M,(T_,_(G)) = (1/2) [Mf(G) + Bm+n-1>*-
2m* +7m) =2(m+1) (2m+2n-3)+m? - 2m—
IDM,(G)+2(2m+2n-3) M, (G) + 2m + 2n+ 1)
F(G)-2EM,(G)+2(m+1) EM, (G)+ (m+n)
m+n-1°-3m+n-1>m*+7m) + (m*+
7m)* + m(m +3)> 2m+2n-3) —m(m+1)*]

(4) M, (T,__(G)) = (1/2)[M?(G) + 2n(n—1)-3 (m+
n—1)* —4n)M, (G) +2(2m + 2n - 3)M, (G)+ (2m+
2n—-3)F(G) - 2EM, (G) — 4EM, (G) + (m+ n) (m+
n-1°-3nn-Dm+n-1*+n*(n- 1+ nn-
D? Cm+2n-3)—n(n-1>+2mn% - 2n+ 5)]

Proof. It was proved [35] that

230 (G) - My (G),

2
(11)

and known that T,,, (G)=T___(G), T,,_(G) =T__, (G),
T,.,(G)=T__(G),and T,__(G) =T_,, (G). By Lemma 6
and Theorem 1, we can easily complete the proof. O

— 1
My (G) =5n(n- 1)’ =3m(n—-1)" +2m* +

The Zagreb coindices are introduced in [36] with ex-
tensive applications in the field of chemical graph theory and
widely discussed in [9, 10, 37-39]. Therefore, it will be worth
finding the second Zagreb coindices of total transformations.

Theorem 3. Let G be a graph with order n and size m. Then,

(1) M, (T, (G)) = (1/2)[M7(G) + 8(m — 1) M, (G) -
18M, (G) - 5F (G) - 2EM, (G) — 4EM, (G) + 8m (2
m+1)]

(2) My(T,,_ (G) = (1/2)[M? (G) + (2mn—4m —n* +
2n+4)M, (G) - 2M, (G) - F (G) — 2EM, (G) - 2(n
—-2)EM, (G) + 2m*n* — 2m>® — 5m*n + mn® — 8m)

(3) M, (T,_, (G) = (1/2) IM}(G) — (m* + 14m +9)
M, (G)-2M,(G) +3F(G) - 2EM, (G)+ 2(m+1)
EM, (G) + 10m> + 40m? — 10m]

(4) My(T_,.(G) = (1/2)[M7(G) +2n(n~3) M,(G)-
2M, (G) — F(G) - 2EM, (G) — 4EM, (G) + 2m (n*—
2n+5)]




(5) My(T___(G) = (1/2)[2EM,  (G) +4EM, (G)+
(m*+ n?+2mn—10m - 10n+13)M, (G) -4 (m+
n-5M,(G)-2(m+n-3) F(G)+4m® +8m’n—
8m? + 4mn® — 8mn — 4m)

(6) M,(T__,(G)) = (1/2)[2EM, (G) +2(n~2)  EM,
(G) + (m? - 21* + 10m + 14n — 11) M, (G) — 4(m+
n-1)M,(G) -2 (m+n-1)F(G)-2m> + 2m?*n*~
6m*n — 8m? + 8mmn?* — 30mn + 20m)

(7) My(T_,_(G)) = (1/2)[2EM, (G) -2(m+1) EM,
G+ 2m*-n* +2mn+4m+6n+6) M,(G) -4
(m+n-1)M,(G)-2(m+n+1) F(G)+m?n*+
Tmn® — 32mn — 2m> — 16m?* + 26m]

(8) My(T, _(G) = (172)  [2EM,(G) + 4EM, (G)+
(m*+ 2mn-2m+n®+2n+1)M,(G) —4(m +n-
DM,(G)-2(m+n-1) F (G)+m?n*-2mn’-
m?n + 4mn — 10m)|

Proof. It was shown in [35] that

M, (G) = 2m? —%MI(G) M, (G), (12)

and combining the results of Lemma 6 and Theorem 1, we can
finish the proof by simple mathematical calculations. O

The following theorem fills the gap in the literature with
respect to the results found in [21, 25].

Theorem 4. Let G be a graph with order n and size m. Then,

(1) M, (T,,,(G)) = M, (G) + F(G) +2M, (G) [25]

(2) M, (T,,_(G)) =2M,(G) + F(G) + 2n—-7)M, (G)+
mn(m+n) —4m(m+2n—4)

(3) M, (T,_, (G)) =2M,(G) + F(G) — 2m+
(G)+ m(m+ 3)*

(4) M, (T,__(G)) = 2M, (G) + F(G) — (2m + 2n—3)M,
(G)+mr(n-4)+mm+n—1)>

(5) M, (T,,,(G)) = (m+n-2)M,(G) -2M,(G)- F
(G) +2mn+2m(m—1) [25]

(6) M, (T,, (G)) = (m-n+6) M,(G)-2M,(G)- F
(G) +mn(m+n) —2m(m+5)

(7) My (T, (G)) = (m-n+6)M,(G)-2M,(G)- F
(G)+mn(m+5)-2m(m+7)

(8) M, (T,__(G)) = (m+n-2)M,(G)-2M,(G)- F
(G)+mn(n-3)+2m(m+1)

5M,

Proof.  From the construction of type-II semi-
transformation, it is easily seen that for any vertex
s€ V(Tzﬁy(G)) such that s € V(G),

dg (s), f=+y=1+

deﬁ (G)(S) = Ao (5) PEmy=t (13)
Y m—-dg(s), :f=+y=-
m—dg(s), :f=—-y=-

Complexity

In the same way, for any vertexs € V (T2/3y (G)) such that
s € E(G),

dg(s) +2, f=+y=+
m+1-dg(s), Pf=-y=1

dr, () = (14)
! n—2+dg(s), B=+y=-,
m+n-3-dg(s), :f=—-y=-.

The proof follows from routine mathematical simplifi-
cations and, in addition, using the relation M, (G) = 2m (n —
1) - M, (G) [35]. a

In [25], the authors have made an attempt to find the
second Zagreb index of type-I semitransformation and
left the calculations of type-II semitransformation due to
its computational complexity. The following theorem
gives the exact analytical expressions of the second
Zagreb indices for type-II transformations of an arbi-
trary graph.

Theorem 5. Let G be a graph with order n and size m. Then,

(1) M, (T,,, (G)) = EM, (G) + 2EM, (G) + 2M, (G)+ 2
M, (G) + F(G) - 4m

(2) M, (T,, (G)) = EM,(G) + (n—2)EM, (G)+2M,
(G)+ (1/2)  [W*+2mn-8m—-2n—-4]M,(G)+F
(G)+m2(n-4)>*-m(n-2)>

(3) M, (T, . (G)) = EM,(G) - (m+1) EM,(G) - 2M,
(G) - (1/2) (m* - 5)M, (G)-F(G) + (1/2)m
(m+1)°

(4) My(T,__(G)) = EM,(G) - (m+n-3) EM,(G)-
(1/2) [(m+n—3)*+2mn—10m - 2n+ 2]M, (G)-
2M,(G) - F(G) + (1/2)  [m(m+1)(m+n—3)"+
2m*(n—4)(m+n-1)]

(5) M, (T, (G) = (1/2) [M}(G) + (4m -5)M, (G)-
3F(G) -2EM, (G)-4EM,(G)-6M,(G)+ 4m
(m+2)]

(6) M, (T,,_(G)) = (1/2) [M?(G) + (2mn—n* — 4m+
1M, (G) -3 F(G) - 2EM, (G) - 2(n - 2)EM,
(G)- 6M,(G) + mn(2mn —9m + n) + 8m(m — 1)]

(7) My (T,_, (@) = (1/2) [M}(G) —m(m+8)M, (G)+
2M, (G) -2EM, (G)+2(m+1)EM,(G) + F(G)+
2m(3m? + 8m — 5)]

(8) M, (T,__(G)) = (1/2)  [M?(G) - (m? —n* + 8m-+
6n—8)M, (G) +2M, (G) + F(G) - 2EM, (G)+ 2
(m+ n-3)EM,(G) + mn(mn—-m—2n+8)+2m
(3m? +2m - 5)]

Proof. The proof of (i)-(iv) is similar to Theorem 1, and for
the sake the completeness, we give the proof of (i). The graph
T,., (G) has m + n vertices and (1/2)M, (G) + m edges in
which (1/2)M, (G) —m edges are produced by condition
(#2) called edge adjacency relation edges (line graph edges)
and 2m edges are edges produced by condition (#3) called
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incidence relation edges. Also, for any vertex,
S € V(T2++ (G))a

d. (s), if s e V(G),

dr,. ) (s) = { ¢ . (15)
** ds(s)+2, ifse E(G).
My(Ty (@)= ) dr, ) (dr, O

steE (T, (G))
= Z dT2++ (G) (S)dTZ++ (G) (t) +

steE (T, (G)) NE(L(G))

Z (dg (s) +2)(dg (£) +2) + Z

steE(G)s ~ t

Y dg(dg )+ )Y

s,teE(G)s ~ t s,teE(G)s ~ t

+ Y Y dg(s)[dg(s) +dg (x)]

seV (G) xeNg (s)

Y dgdgt)+ Y

s;teE(G)s ~ t steE(G)s ~ t

2[dg (s) +dg (O] +4IELG) + Y dg(s)’+ )

Hence,

Z dr, ) (dr, () (1)

st€E (T, (G))~E(L(G))

dg(s)[dg (t) +2]

seV(G),teE(G)s ~ t

2[dg(s) +dg (D] + 4[E(L(G))

Y dg(9)dg (x)

seV(G) seV (G) xeNg (s)

= EM, (G) + 2EM, (G) + 4<MIT(G) - m) +F(G) +2M, (G)

= EM, (G) + 2EM, (G) + 2M, (G) + 2M, (G) + F(G) — 4m.

To complete the remaining parts, we apply equation (12)
with the help of Theorem 4. O

3.2. F-Index of Transformation Graphs. The forgotten index
and coindex of type-I semi and total transformations of
graphs have been obtained [20, 28] in terms of first Zagreb,
second Zagreb, vertex a-Zagreb, and (a, b)-Zagreb indices. In
this section, we rewrite vertex a-Zagreb and (a, b)-Zagreb
indices in terms of the sum-connectivity index. Before
proceeding to this, we shall state a basic lemma.

Lemma 7 (see [28]). Let G be a connected graph of order n
and size m. Then,

(i) F(G)=n(n-1)°-F(G) - 6m
M, (G)
(i) F(G) = (n—1)M, (G) - F(G)

(n-17%+3mn-1)

The following theorem is crucial for finding the sigma
index of the transformation of an arbitrary graph.

(16)

Theorem 6. Let G be a connected graph of order n and size
m. Then,

1) F(T,,.(G)) = 8F(G) + x5 (G)

(2) F(T,,-(G)) = x5 (G) + (3n—-12)[F(G) +2M,
(@] +3(n-4)"M,(G) + m(n—4)° +m’n

(3) F(T,_, (G)) = B3m+17)F(G) — x5 (G) + m
3y~ 3(m+3)*M, (G) + 6 (m + 3)M, (G)

(4) F(T_,,(G)) = n(n—1)° + 1, (G)

(5) F(T___(G))=6(m+n-1)M,(G) — (3m> — 18m+
6mn — 18n + 3n* + 15) M, (G)+ 3m+3n-11)
F(G) =) (G) + (m+m)(m+n— 1)’ -12m  (m+
n-—1)

(6) F(T__,(G))= 3m+9) F (G)-yx;(G)- (3m*+
18m+ 27)M,(G) + (6m + 18)M, (G) + m*+ 9Im>+
27m? + 27m +n* =31 + 3> —n

(7) F(T_,_(G)) = x5 (G) + (3n - 20)F (G) + (3n*~
2n+12m+36)M, (G) + (6n-24)M,(G) + (m+
nm+ n-1>-mm+3)>-3m+n— 1> (m*+
7m)+3m(m+3)>(m+n—1)

(m+
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(8) F(T,__(G)=3(m+n-1)F(G)+6 (m+n-1)
M,(G)=3(m+n-1"M, (G)~x;(G)+ (m+n)
m+n-1°-nn-17>-3mnn-1)(m+n-1)

Proof. 'The proof of (i)-(iv) can be derived using the degrees
of vertices from the proof of Theorem 1 and the remaining
parts from Lemma 7. O

The following theorem is an easy consequence of
combining Lemma 7 and Theorem 6, which will be used to
compute the analytical expressions of the forgotten coin-
dices of total transformations of an arbitrary graph.

Theorem 7. Let G be a connected graph of order n and size
m. Then,

() F(T,,,(G) =4(m+n-DM,(G)+2 (m+n-1)
M, (G)+ (m+n-9)F(G) — x5(G)

(2) F(T,,_(G)) = (m-2n+11)F(G) —x; (G) - (n*-
2mn + 8m — 14n + 40)M, (G) + 2m —4n+22) M,
(G) + 2m?n® — Im*n + 16m?* + 3mn® — 24mn + 48m

(3) F(T,_, (G)) = (n-2m - 18)F(G) +x; (G)+ (m?+
18m —2mn —2n+29)M, (G) + 2n—4m—  20)M,
(G) + mPn — 4m> + 6m*n — 24m>+ 9mn — 36m

(4) F(T_,,(G))= (m+n-1)F(G)+2(m+n-1) M,
(G) = x3(G) + mn® = 2mn* + mn

(5) F(T___(G)) = x3(G) - 2m+2n-10)F(G)+ (m* +
n*+2mn—10m—10n+9)M,(G) -4 (m+n-1)
M, (G) + 4m> + 8m*n — 8m? + dmn* — 8mn + 4m

(6) F(T__, (G)) = x3(G) + (m* + 14m — 2mn — 6n+ 33)
M, (G)- (4m-2n+20) M,(G)- (2m-n+10)
F(G) + m’n — 4m® + 6m*n — 24m* + mn® — 2mn’+
10mn — 36

(7) F(T_,_(G)) =2(m-2n+11) M, (G) — x5 (G)-
(n*— 2mn+ 16m — 6n+ 32)M, (G) + (m - 2n+ 19)
F(G) + 4m® + m*n® + 8m? + 7mn® - 32mn + 52m

(8) F(T,__(G)=x;(G) -4  (m+n-1)M,(G) -2
(m+n—1)F(G)+ (m+n—-1)*M, (G) + m*n*~ m*n

Theorem 8 (see [20]). Let G be a connected graph of order n
and size m. Then,
(1) F(Ty,, (G)) = 8F (G) + 8m
(2) F(T,, (G)) =nm* +m(n-2)°
(3) F(T,_, (@) =n(n- 1)® + 8m
(4) F(T\__(G))=12(m+n-1)M, (G)-8F(G)+n
m+n-1°-12mm+n-17°+mmn-2)>

(5) F(T\,,(G)=4m (m+n-1)-8m+4(m+n—1)
M, (G) - 8F(G)

Complexity

(6) F(T1,-(G) = (m+n~-1) 2)*)-
wm® —m(n-2)°

(7) F(T,_,(G)) = (m+n-1)
(n-1)°-8m

(8) F(T,__(G))=8F (G)-8(m+n-1)M,(G)+m
(m+ n-1Dmn-2%+m+n-1)>nm+n-1)+
am)-n(m+n-17° —mmn-2)>

(mm? + m(n—

(Am+nn-17%)-n

Theorem 9. Let G be a connected graph of order n and size
m. Then,

(1) F(T1,,(G)) = F(G) + x5 (G)

(2) F(T,,_(G)) =m*(n—6) +m (n—4) +y; (G)+
(B3n—13)F(G) +6(n—4)M, (G) + [3(n—4)" + 3m]
M, (G)

(3) F(T,_,(G) = F(G) +m(m+3)’ =3(m+3)* M,
(G) +3(m+3)[F(G) +2M,(G)] — x5 (G)

(4) F(T,__(G)=m*(n—-6)+m (m+n-1)+ 3m+
3n-4)F(G)+6(m+n—-1)M,(G)+ [3m -3 (m+
n-1°IM, (G) - x;(G)

(5) F(T5,, (G)) = (m+n-1)[M,(G) +2M,(G)] + (m
+n—2)F(G) - x5 (G)

(6) F(T,,_(G)) = (2m—4n+22) M, (G) + (2mn —n?
+15n — 10m — 41)M, (G) + (m —2n+ 12)F(G) — x5
G+ (m+n-1)(mn(m+n)—4m(m+2n-—4)) —
m? (n—6) -m(n-—4)>

(7) F(T,_, (G)) = 2n- 4m -20) M, (G) + (n-2m
~11)F (G) + (m* + 15m — 2mn — 5n+ 32)M, (G) +
1 (G) +m(m + 32 (n—4)

(8) F(T,__(G)) = x3(G)—4 (m+n-1)M, (G) + (m?
+2mn—4m —n+n*)M, (G) - 2m +2n-3)F(G) +
2m® +mPn? — 5mPn + 4m?

Proof. The proof of the theorem follows from using the
degrees of vertices as given in the proof of Theorem 4 and
Lemma 7. O

3.3. o-Index of Transformation Graphs. In this section, we
first derive a relation between o-index of a graph and its
coindex. Following this, we derive another relation between
o-coindex of a graph and o-index of the complement graph.
Finally, we list down the o-index and coindex of semi and
total transformations of graphs from the above subsections.
The following theorem gives the relationship between the
sigma index and its coindex.

Theorem 10. Let G be any graph with n vertices and m edges.
Then,
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0(G) +3(G) = nM, (G) — 4m”. (17)

11

Proof. 'The proof is completed from the definitions of
o-index and coindex as explained in the following:

c(@+3(G) = Y [de()-de®]’+ )Y [dg(s)-ds®]

steE(G)

- 3

{s,t}<V (G)

st ¢ E(G)

[dg (s) - dg (1))

= Y [dg(s) +dg (1) - 2dG (s)dg (1)]

{1}V (G)
= Y [de P +da @] - Y 2dg(9)dg (®) (18)
{5}V (G) {s,t}SV(G)

= F(G)+ F(G) - 2M, (G) - 2M, (G)

= (n-1)M, (G) - 2M, (G) - 2(2m2 - M, (G) -

=nM,(G) - 4m*.

Corollary 1. Let G be any graph with n vertices and m edges.
Then,

7(G) = nM, (G) + 2M, (G) — F(G) — 4m”. (19)

The following theorem establishes interesting result that
the sigma index of the complement of a graph and sigma
coindex of a graph is one and the same.

Theorem 11. Let G be any graph with n vertices and m edges.
Then,

d(G) =3(G). (20)

Proof. For any vertex s € V(G), dg(s) =n—1-dg(s), and
we have

@)=Y [dg(s)-dz ]

steE(G)

= Y [(r-1-dg(®) - (n-1-dg )]

st ¢ E(G)

= Y [de®-ds()]

st ¢ E(G)
=0(G).
(21)
O

M, (G)
2

O
Corollary 2. Let G be any graph with n vertices and m edges.
Then,

7(G) = 0(G). (22)

The main objective of this section is the following
theorem.

Theorem 12. Let G be a connected graph of order n and size
m. Then,

(1) o(T,,,(G)) =4F(G) + x5 (G) - 2EM, (G) - 4EM,
(G) - 16M, (G) — 4M, (G) + 8m

(2) o(T,,_(G)) = x3(G) + 3n—12)[F(G) + 2M, (G)]
~[(n-2)* +2m(n-2)-3(n-4)*IM,(G) - 2E
M, (G) - 2(n-2)EM, (G) - 2m* = 2m* (n—2) (n -
D+2mn-272 +mmn-4)>+m’n

(3) (T, (G)) = 12F (G) = x5 (G) + 3(m + 3)x, (G) - 2
EM, (G) +2(m + 1)EM, (G) + [m* —=2m — 11 -3
(m+ 3)2]M1(G) +mm+3)P} —mm+1)°

(4) 0(T_,, (G)) = x5 (G) - 2EM, (G) — 4EM, (G) - 4n
M, (G) +2m(n* —2n+5)

(5) o(T___(G)) = 2EM, (G) + 4EM, (G) - M?(G) + 4
(n-m+ 1M, (G)+2(m+n+8)M,(G)+ (m+n
—4)F(G) - x5(G) —8m(2m + 1)

(6) 0(T__, (G)) = 2EM, (G) + 2(n - 2)EM, (G) - M}
(G) —x;3(G) + (12n— 4m — 44)M, (G) + 2m —4n
+24)M, (G) + (m = 2n + 12)F (G) + 2m* + 16m* —
4m’n + 2mn? — 24mn + 56m
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FIGURE 4: The molecular graph of perhydrophenalene G.

TABLE 2: Second Zagreb and sigma indices of total transformations of perhydrophenalene G.

S. no. Total transformations of G Second Zagreb index Sigma index

1. T, (G) 1587 48

2. T,, (G) 41652 342

3. T,..(G) 16968 2334

4. T .. (G) 11331 1584

5, T __(G) 155358 504

6. T _,.(G) 28560 534

7. T . (G) 86868 12582

8. T, _(G) 99894 8760

TABLE 3: Second Zagreb and sigma indices for semitransformations of perhydrophenalene G.

S. no. Semitransformations of G Second Zagreb index Sigma index

1. T,,.(G) 636 288

2. T,, (G) 30600 2640

3 T, (G) 9792 3000

4. T,__(G) 72372 22608

5, T,..(G) 885 192

6. T,, (G) 33069 318

7. T, . (G) 15678 3654

8. T, _(G) 217794 15120

(7) 0(T_,_(G)) = 2EM, (G) - 2 (m + )EM, (G) - M2 (3) 3(T,_.(G)) = 2EM, (G) - 2 (m + DEM, (G) + 1,
(G) +x3(G) + 2m? + 32m — 2mn + 38 — 2n) M, (G) (G) - M3 (G) + (2n—4m - 18)M, (G) + (2m?* + 32
+(2n—4m - 18)M, (G) + (n-2m - 21)F(G) + m’ m—2mn+ 38 - 2n)M, (G) + (n—2m - 21)F(G) +
n—14m> + 6m*n — 64m?* + 9mn — 26m min — 14m> + 6m*n — 64m?* + 9mn — 26m
(8) 0(T,__(G)) = 2EM, (G) + 4EM, (G) - M3(G) - 5 () 5(T_,, (G)) = 2EM, (G) + 4EM, (G) +2(m + m)M,

(G)-2n(n-3)M,(G) + 2m+2n)M, (G) + (m + (G)-2n(n-3)M,(G)+ (m+n)F(G) - x; (G) -
n)F(G) + n®m — 4n*m + 5nm — 10m M2(G) + mn(n—1)* - 2m(n® - 2n + 5)

(5)d(T___(G)) = U(T+++ (G)
(6)o(T__,(G)) =0(T,,_(G))
(7) 3(T_,_(G) = a(T,_, (G))

In sequence to Theorems 3 and 7, we have the following.

Theorem 13. Let G be a connected graph of order n and size (8) (T, _(G) =0o(T_,,(G))
m. Then,
(1) 3(T... (G)) = 2EM, (G) + 4EM, (G) + 2 (m + n + 8) The following theorems give the exact expressions of the
M, (ES tA(n—m +21)M1 ) +1(m +n—4)F(G) - sigma index of type-I and type-II semitransformations.

13 (G) = M%(G) - 16m* - 8m

(2) 5(T,,_(G)) = 2EM, (G) + 2(n—2)EM, (G) + 2 (m
-2n+12)M,(G) +4(Bn-m—-11)M, (G) + (m -2
n+ 12)F(G) - x3(G) - M3 (G) +2m° — 4m’n + 16 1) (T, (G)) = 8F(G) - 8M, (G) — 8M, (G) + 8m
m? + 2mn® — 24mn + 56m ) 6(T,,_(G)) = nm® + m(n - 2)° = 2m* — 2m? (n— 2)?

Theorem 14. Let G be graph with n and m as its order and
size, respectively. Then,
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FIGURE 5: (a) Total transformation of the second Zagreb and sigma indices; (b) semitransformation of second the Zagreb and sigma indices.

(3) o(T\_,(G)) =2m(n— 1)?-8m(n-1)+8m

(4) 0(T,__(G)) =4(m+n-1)M, (G) - 8F(G) +4(3m
+2n—-1)M, (G) — 8M, (G) + m*n — 8mn® — 6m*n +
17mn — 10m® — 4m? — 10m

(5) o(T,,(G) =4(m+n+2)M,(G) + 8M,(G) — 8F
(G)—4m(8m—n+2)

(6) 7(T,,_(G)) =2m?>(m—2n+4) +2mn(n—4) + 8m

(7) 5(T,_, (G)) = mn® — 8mn* + 21mn — 18m

(8) a(T,__(G))=8F(G)-4(2m+n—-1)M,(G) —4(m
+n— 1M, (G) + 8M, (G) + 2m* (m + 4n — 10) + 2m
(4n* - 8n +5)

Theorem 15. Let G be graph with n and m as its order and
size, respectively. Then,

(1) 0(T,,,(G)) = x3(G) = 2EM, (G) — 4EM, (G) - 4M,
(G) —4M, (G) - F(G) + 8m

(2) 0(T,,_(G)) = x5(G) +3(n-5)F(G) + 2(3n - 14)
M, (G) + (2n* = 2mn + 11m — 22n+ 52)M, (G) — 2
EM, (G) - 2(n-2)EM, (G) + m*n+mn’> — 6m> — 2
m?n® + 16m?n — 10mn® — 32m? + 40mn — 56m

(3) 0(T,_, (G)) = 2(m + 1)EM, (G) - 2EM, (G) — (2m?
+18m + 32)M, (G) + 3(m +4)F(G) + 2(3m + 11)
M, (G) - x5 (G) + 6m* + 24m* + 26m

(4) 0 (T,__ (G)) = 2(m+n-3)EM, (G) - 2EM, (G)-
(2 m?* +2mn+2n* + 7m +2n - 8)M, (G) + 3m +3
n-2)F(G) + (6m + 6n—-2)M, (G) — x5 (G) + 4m> +

mn® — 4mn?® + 8m*n + 9mn — 8m?* — 10m

(5) G(T,., (G)) = 2EM, (G) + 4EM, (G) — (3m —n — 4)
M (G)-M}(G)+ (m+n+1)F(G)+2(m+n+2)
M, (G) = x5 (G) — 4m* - 8m

(6) 3(T,,_(G)) = 2EM, (G) +2(n - 2)EM, (G) - M}
(G) — x5 (G) + (15n — 6m — 52)M, (G) + (2m — 4n+
28)M, (G) + (m —2n+ 15)F(G) + 2m> — dm’n + 12
m? + 2mn® — 24mn + 56m

(7) 3 (T,_, (G)) = 2EM, (G) = 2 (m + 1) EM, (G) - M}
(G) +x;(G) + 2m? = 2mn + 23m — 5n + 32)M, (G)
202m-n+11)M,(G) - 2m-n+12) F(G) + m®
n—10m> + 6m*n — 40m?* + 9mn — 26m

(8) 3 (T,__ (G)) = 2EM, (G) -2 (m +n-3) EM, (G)+
1 (G) = M3 (G) + 2m? +2mn+ 4m + 5n — 8) M,
(G)-202m+2n-1)M,(G) -2(m+n—-1)F(G) -
4m® — 4 m*n + 2mn® — 8mn + 10m

4. Results and Discussion

The various expressions for the Zagreb and sigma topological
indices computed here can be extremely useful in the ther-
modynamic properties such as the heat of formation and en-
tropy for the structure-property predictions of the
transformation of molecular materials when combined with total
and semitype transformations. Since the enumeration and
construction of different structures under given specific con-
straints have found potential applications in drug discovery via
topological indices [40, 41], it can help the chemists by reducing
the number of potential drug compounds that need to be ex-
perimentally considered. We computed expressions based on the
degree measures of the given graph, and hence it can be con-
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sidered as an efficient technique for vibrational spectroscopic
chemical analysis through the vertex partitioning and providing
significant simplifications in the vibrational mode analysis.
Moreover, sigma indices obtained here offer the regularity
perfection of the structure.

The semi and total transformation considered here
provide 16 classes of new structures for the given graph
based on the edge adjacency and incidence relations. Once
we compute the topological indices such as Zagreb, refor-
mulated Zagreb, forgotten, sum-connectivity, and sigma for
the base graph and then using the results from Theorems
1-15, one can readily obtain the Zagreb and sigma indices
for the new structures.

We now present the applications of our computed re-
sults for perhydrophenalene. The molecular graph of per-
hydrophenalene G is shown in Figure 4 and has 13 vertices
and 15 edges. Moreover, G has 9 vertices of degree 2 and 4
vertices of degree 3. Clearly, the edge partition of G has three
classes based on the degree of end vertices, namely, (2,2),
(2,3), and (3,3) while the number of edges in the classes,
respectively, are 6, 6, and 3.

From the above data, one can easily derive M, (G) = 72,
M, (G) =87, EM, (G) = 126, EM, (G) = 195, F(G) = 180,
EM, (G) = 462, EM, (G) = 624, M, (G) = 288,
M, (G) =327, x,(G) =354, and y;(G) = 1782. Then, the
calculations of second Zagreb and sigma indices of total and
semitransformations of G are obtained from Theorems 1-15
and presented in Tables 2 and 3, respectively. These values
are compared graphically and depicted in Figure 5.

In the case of the second Zagreb index of the molecular
graph G of perhydrophenalene, we infer that M, (T,
G)<M, (T_ (G)<My(T,, (G)<M,(T_,(G))
<SM,(T,,_(G)<M,(T_ +-(G)<M,(T,__(G)< M,
(T___(G)) and M,(T,,(G))<M,(T,,,(G)) <M,(T,_,
(G) <M, (T, (G) <M, (T,, (G) < My(T,, (G)<M,
(T1_(G) £ M,(T,__(G)).

On the other side, for the sigma index, we observe that
0(T,,,(G)<o(T,,_(G)) <o(T___(G))<a(T__, (G))<0
(T_,(G)=o(T,_ (G)<so (T, (G)<o(T_,_(G)) and
0(T,,,(G) <o(T,,(G)<0o(T,_ (G)<0o(T,_(G))<
o(T,_ +(G)<o(T,_,(G)<0(T,__(G))<a(T,__(G)).

5. Conclusion

The topological characterization of graphs and their
transformations has been discussed in many research pa-
pers, in particular to Zagreb indices. Unfortunately, we
have noticed the study on the second Zagreb index in total
transformation graphs with some technical failures such as
missing out edge degree-based indices and giving incorrect
expressions. In this paper, we made a detailed study and
derived the exact analytic expressions by incorporating
reformulated Zagreb indices. As a byproduct, we have
derived the sigma index of transformation graphs effec-
tively using the forgotten index, and in addition, we have
considered all possible semitransformations. The locus of
this work will be definitely useful in computing other
pending topological indices which are not computed for
total transformation of graphs.

Complexity
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