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+e reduction of two-dimensional systems plays an important role in the theory of systems, which is closely associated with the
equivalence of the bivariate polynomial matrices. In this paper, the equivalence problems on several classes of bivariate polynomial
matrices are investigated. Some new results on the equivalence of these matrices are obtained.+ese results are useful for reducing
two-dimensional systems.

1. Introduction

Multidimensional (nD) systems, especially two-dimensional
(2D) systems, are widely used in the field of circuits, image,
signal processing, control systems, etc. [1–5, 12]. And the
theory of 2D systems has received increasing attention,
among which the reduction of 2D systems is an important
research content. Usually, a given system is desirable to
reduce to an equivalent system with fewer equations or
unknowns (named the equivalence of 2D systems). In this
way, the characteristics of the original system can be studied
in a better and simpler way. A 2D system can be represented
with two types of dynamical elements, so 2D systems are
often described by bivariate polynomial matrices. Hence, the
equivalence problems of 2D systems are usually transformed
into the equivalence problems of polynomial matrices
[6–11].

+e equivalence problem of univariate polynomial
matrices was solved by Rosenbrock in 1970 [6]. Using the
Euclidean division property of the univariate polynomial
ring, he proved that every univariate polynomial matrix in
this ring is equivalent to the Smith form. +e equivalence
problem of the bivariate polynomial matrix is more com-
plex. Lee and Zak gave an example of bivariate polynomial

matrix z2 − z1 − 1
− z

2
2 z2

 , which is not equivalent to the

Smith form [8]. Note that none of the bivariate polynomial
rings is a Euclidean ring, and the Euclidean division property
does not hold. So, many researchers study the equivalence of
some special types of bivariate polynomial matrices. In 1986,
Frost and Boudellioua proved that a full row rank bivariate
polynomial matrix T(z, w) is equivalent to the Smith form if
and only if there exists a unimodular column vector U such
that T U(  has a right inverse [9]. In 2012, Boudellioua
wrote an algorithm to enable the decomposition and
equivalence of some bivariate polynomial matrices to be
realized in Maple [10]. In 2019, Li et al. presented some
criteria on an l × l bivariate polynomial matrix F(z, w)

which is equivalent to the Smith form diag(Il− 1, detF(z, w))

with detF(z, w) being an irreducible polynomial [11]. +ere
are also some results on the equivalence of multivariate
polynomial matrices in special cases [13, 14, 16, 18, 19],
among which when an l × l polynomial matrix F(z) which is
equivalent to the Smith form diag (Il− 1, detF(z)) is in-
vestigated, such as detF(z) � x1 − f(x2, . . . , xn) [13],
detF(z) � (x1 − f(x2, . . . , xn))q [14], and detF(z) � (x1−

f1(x2, . . . , xn))q1(x2 − f2(x2, . . . , xn))q2 [19], diag (Il− 1,

detF(z)) is a very important kind of matrices in the
equivalence of multidimensional systems [9, 15, 17].

In this paper, K[z, w] denotes a bivariate polynomial
ring with K being a field, and we consider arbitrary poly-
nomial f(z, w) in K[z, w] as a polynomial in w with
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coefficient in K[z], written as f(z, w) � 
n
i�0 αiw

i, where
αi � αi(z) ∈ K[z]. Note that the coefficient ring K[z] is a
Euclidean ring, and combined with the Euclidean division
property ofK[z], we will investigate some classes of bivariate
polynomial matrices with their entries in K[z, w]. +e
following three problems are also considered.

Problem 1. Let F(z, w) ∈ Kl×l[z, w], and
detF(z, w) � hr(z), where h(z) ∈ K[z] is irreducible and r

is a positive integer. When is F(z, w) equivalent to

Il− r

h(z)

⋱

h(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
? (1)

Problem 2. Let F(z, w) ∈ Kl×l[z] with detF(z, w) � hq·r(z),
h(z) ∈ K[z] be irreducible, and q, r be positive integers.
When is F(z, w) equivalent to

Il− r

h
q
(z)

⋱

h
q
(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
? (2)

Problem 3. Let F(z, w) ∈ Kl×m[z] (l≤m) with
dl(F) � hq·r(z), where dl(F) denotes the greatest common
divisor of the l × l minor of F(z, w), h(z) ∈ K[z] is irre-
ducible, and q, r are positive integers. When is F(z, w)

equivalent to its Smith form?

2. Preliminaries

In the following, K is an arbitrary field, K[z] is the univariate
polynomial ring in variable z with coefficients in K, K[z, w]

is the bivariate polynomial ring in variables z, w whose
coefficients are in K, K is the algebraic closed field of K, 0m,n

is the m × n zero matrix, and Im is the m × m identity matrix.
For F(z, w) ∈ Kl×m[z, w], di(F) will be the greatest common
divisor (g.c.d) of the i × i minors of F(z, w), i � 1, . . . , l. Set
F(z, w) � (fij) ∈ Kl×m[z, w], where fij ∈ K[z, w], h(z)

∈ K [z] is irreducible, and F(z, w) � (fij) ∈ Kl×m [z, w],
where fij denotes fijmodh(z). For convenience, the ar-
gument (z, w) is omitted whenever its omission does not
cause confusion throughout this paper.

Definition 1 (see [16]). Let F(z, w) ∈ Kl×m[z, w] (l≤m)

with rank r and Φi be a polynomial defined as follows:

Φi �

di(F)

di− 1(F)
, 1≤ i≤ r,

0, r< i≤ l,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where d0(F) ≡ 1, di(F) is the g.c.d of the i × i minors of
F(z, w), and Φi satisfies

Φ1|Φ2| · · · |Φr. (4)

+en, the Smith form of F(z, w) is given by

S �
diag Φi  0r,m− r

0l− r,r 0l− r,m− r

⎛⎝ ⎞⎠. (5)

Definition 2 (see [16]). Let F(z, w) ∈ Kl×m[z, w] with full
row rank; F(z, w) is said to be zero left prime if the l × l

minors of F(z, w) have no common zero in K
2.

Definition 3. Let U(z, w) ∈ Kl×l[z, w]; then, we say U(z, w)

to be a unimodular matrix if the determinant of U(z, w) is a
unit of K.

Definition 4 Let F1(z, w), F2(z, w) ∈ Kl×m[z, w]; F1(z, w) is
said to be equivalent to F2(z, w) if there are unimodular
matrices U(z, w) ∈ Kl×l[z, w] and V(z, w) ∈ Km×m[z, w]

such that

F1(z, w) � U(z, w)F2(z, w)V(z, w). (6)

Lemma 1 (see [16]). Suppose F(z, w), Q(z, w) ∈ Kl×l[z, w];
if F(z, w) is equivalent to Q(z, w), then
di(F(z, w)) � di(Q(z, w)), for i � 1, . . . , l.

Lemma 2 (see [16]). Let F(z, w), F1(z, w), F2(z, w) ∈
Kl×l[z, w], and F(z, w) � F1(z, w)F2(z, w). If the (l − r) ×

(l − r) (r≤ l) minors of F(z, w) have no common zero in K
2,

then the (l − r) × (l − r) minors of Fi have no common zero in
K

2 for i � 1, 2.

3. Main Results

In this section, we investigate the three problems presented
in Section 1 and give the main results of this paper.

In the following, for f(z, w) ∈ K[z, w], we consider it as
an element in K[z][w], written as f(z, w) � 

n
i�0 αiw

i,
where αi � αi(z) ∈ K[z]. If h(z) ∈ K[z] is irreducible, then
f(z, w) denotes f(z, w)mod h(z) and f(z, w) ≡ 

n1
i�0 βi

wi(mod h(z)) or 0, where βi � βi(z) ∈ K[z], deg βi(z)

< deg h(z). Hence, βn1
(z) and h(z) are relatively prime in

K[z]; by Euclidean algorithm, there are x(z), y(z) ∈ K[z]

such that x(z) · βn1
(z) � 1 − y(z) · h(z), i.e., x(z)·

βn1
(z) ≡ 1(mod h(z)). +en, x(z) · f(z, w) ≡ f∗(z, w)

(mod h(z)), where f∗(z, w) is monic. In other words,
x(z)f(z, w) can be reduced to a monic polynomial f∗(z, w)

by h(z).
Denote

P(z) �

Il− r

h(z)

⋱

h(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

First, we investigate Problem 1.
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Theorem 1. Let F(z, w) ∈ Kl×l[z, w] with
detF(z, w) � hr(z), where h(z) ∈ K[z] is irreducible. If
h(z)|dl− r+1(F(z, w)), then F(z, w) is equivalent to the Smith
form P(z).

Proof. If r rows of F(z, w) are zero vectors mod h(z), that is,
r rows of F(z, w) are zero vectors, we obtain that

F(z, w) � U(z, w)

Il− r

h(z)

⋱

h(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q(z, w), (8)

and then F(z, w) � U(z, w)P(z)Q(z, w), where U(z, w) is
unimodular; by computing, detQ(z, w) � 1, so Q(z, w) is
unimodular. Hence, F(z, w) is equivalent to the Smith form
P(z).

If F(z, w) has no r rows which are the zero vectors mod
h(z), then F(z, w) has r1 rows of zero vectors mod h(z); in
other words, F(z, w) has r1 rows of zero vectors,
0≤ r1 ≤ r − 1. We premultiply and postmultiply F(z, w) by
unimodular matrices U11 and V11 such that

U11F(z, w)V11 �

f(z, w)

f2(z, w)

⋮

fl− r1
(z, w)

X

0r1,1 0r1 ,l− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where f(z, w)≠ 0, degwf(z, w)≤ degwfj(z, w), or
fj(z, w) � 0, j � 2, . . . , l − r1. Let f(z, w) � α0
+α1w + · · · + αnwn, where degzαi < degzh(z), i � 0, . . . , n,
and αn ≠ 0. Note that αn and h(z) are relatively prime, so we
can find x(z), y(z) ∈ K[z] such that
x(z) · αn + y(z) · h(z) � 1; then, x(z) · αn � 1 − y(z) · h(z).
We have x(z) · f(z, w) ≡ f′(z, w)(mod h(z)), where
f′(z, w) is monic. +ere are qj(z, w), rj(z, w) ∈ K[z, w]

such that fj(z, w) � qj(z, w) · f′(z, w) + rj(z, w), where
degwrj(z, w)< degwf′(z, w) or rj(z, w) � 0, j �

2, . . . , l − r1. +erefore,

fj(z, w) ≡ qj(z, w) · x(z) · f(z, w) + rj(z, w)(mod h(z)),

(10)

where degwrj(z, w)< degwf(z, w) or
rj(z, w) � 0, j � 2, . . . , l − r1.

Let

U12 �

1 01,l− 1

− x(z)q2(z, w)

⋮

− x(z)ql− r1
(z, w)

0r1 ,l− r1

Il− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

+en,

U12U11F(z, w)V11 �

f(z, w)

r2(z, w)

⋮

rl− r1
(z, w)

X

0r1 ,1 0r1 ,l− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

modh(z),

(12)

where degwrj(z, w)< degwf(z, w) or rj(z, w) � 0,

j � 2, . . . , l − r1. If some of rj(z, w) are not 0,
j � 2, . . . , l − r1, do some row transformations to the matrix
U12U11F(z, w)V11 such that the nonzero polynomial of the
least degree in w among its first column is at position (1, 1).
Repeating the previous steps, we obtain that

U1F(z, w)V11 �
d11 X

0l− 1,1 F1(z, w)
⎛⎝ ⎞⎠mod h(z), (13)

where U1 � U1t · · · U12U11 is a unimodular matrix, the last r1
rows of F1(z, w) are zero vectors, and d11 ≠ 0.

If r rows of F1(z, w) are zero vectors mod h(z), we can
find two (l − 1) × (l − 1) unimodular matrices U20′ , V20′ such
that

U20′ F1(z, w)V20′ �
B(z, w)

0r,l− 1
 mod h(z), (14)

where B(z, w) ∈ K(l− r− 1)×(l− 1)[z, w].

Let U20 �
1

U20′
  and V20 �

1
V20′

 ; we have that

U20U1F(z, w)V11V20 �

Il− r

h(z)

⋱

h(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q1, (15)

where Q1 ∈ Kl×l[z, w] and detQ1 � 1. +en, F(z, w)

� UP(z)V, where U � U− 1
1 U− 1

20 and V � Q1V
− 1
20V− 1

11 are
unimodular matrices, so F(z, w) is equivalent to the Smith
form P(z).

If F1(z, w) has no r rows of zero vectors mod h(z), then
F1(z, w) has r2 rows of zero vectors, r1 ≤ r2 ≤ r − 2. Imitating
the previous procedure to F(z, w), there are two (l − 2) ×

(l − 2) unimodular matrices U21′ , V21′ such that

U21′ F1(z, w)V21′ �
d22 X

0l− 2,1 F2(z, w)
⎛⎝ ⎞⎠mod h(z), (16)

where d22 ≠ 0 and the last r2 rows of F1(z, w) are zero
vectors.

Let U21 �
1

U21′
  and V21 �

1
V21′

 ; then,

U21U1F(z, w)V11V21 �

d11 ∗

d22

X

0l− 2,2 F2(z, w)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠mod h(z).

(17)
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Repeating the procedure above successively, we obtain a
series of Fi(z, w), i � 3, . . . , l − r − 1. If there is some
Fi(z, w) which contains r rows of zero vectors mod h(z),
then the conclusion is straightforward. Otherwise, Fi(z, w)

has no r rows of zero vectors mod h(z).
+en, we consider the case that Fi(z, w) has no r rows of

zero vectors mod h(z), i � 3, . . . , l − r − 1. In this case,
Fl− r− 1(z, w) ∈ K(r+1)×(r+1)[z, w], and it has no r rows of zero
vectors mod h(z); there are (r + 1) × (r + 1) unimodular
matrices Ul− r,1′ , Vl− r,1′ such that

Ul− r,1′ Fl− r− 1(z, w)Vl− r,1′ �
dl− r,l− r X

0r,l− r Fl− r(z, w)

⎛⎝ ⎞⎠mod h(z),

(18)

where dl− r,l− r ≠ 0.
Let Ul− r,1 �

Il− r− 1
Ul− r,1′

  and

Vl− r,1 �
Il− r− 1

Vl− r,1′
 ; then,

Ul− r,1Ul− r− 1,1 · · · U21U1F(z, w)V11V21 · · · Vl− r− 1,1Vl− r,1 �

d11 ∗ · · ·

d22 ∗ · · ·

⋱

dl− r,l− r

X

0r,l− r Fl− r(z, w)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

mod h(z).

(19)

Let

A(z, w) �

d11 ∗ . . .

d22 ∗ . . .

⋱

dl− r,l− r

X

0r,l− r Fl− r(z, w)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Fl− r(z, w) �

a11 a12 . . . a1r

a21 a22 . . . a2r

⋮ ⋮ ⋱ ⋮

ar1 ar2 . . . arr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(20)

combined with h(z)|dl− r+1(F(z, w)); we have that
dl− r+1(F(z, w)) ≡ 0modh(z) and dl− r+1(A(z, w)) ≡
0modh(z). Considering the (l − r + 1) × (l − r + 1) minors
of A(z, w), we see that d11d22 · · · dl− r,l− r · ak,j ≡ 0modh(z)

for all k, j � 1, . . . , r. Since di,i ≠ 0, i � 1, . . . , l − r,
ak,j ≡ 0modh(z), k, j � 1, . . . , r. Hence,
Fl− r(z, w) ≡ 0r,rmodh(z). Hence,

Ul− r,1Ul− r− 1,1 · · · U21U1F(z, w)V11V21 · · · Vl− r− 1,1Vl− r,1

� A(z, w) �

Il− r

h(z)

⋱

h(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q2,

(21)

where Q2 ∈ Kl×l[z, w]. Note that detF(z, w) � hr(z) and
U1, Ui1, Vi1 are unimodular matrices, i � 1, 2, . . . , l − r; then,
we obtain that detQ2 � 1 and Q2 is a unimodular matrix. Let
U � Ul− r,1Ul− r− 1,1 · · · U1 and V � V11V21 · · · Vl− r,1Q

− 1
2 ; then,

F(z, w) � U− 1P(z)V− 1 with U− 1, V− 1 being unimodular
matrices. +erefore, F(z, w) is equivalent to the Smith form
P(z). □

Remark 1. +eorem 1 provides a positive answer to
Problem 1.

Corollary 1. Let F(z, w) ∈ Kl×l[z, w] and h(z) ∈ K[z] be
an irreducible polynomial. If h(z)|dl− r+1(F(z, w)) and
hr(z)|detF(z, w), then F(z, w) can be factorized as
T(z, w)P(z)Q(z, w), where T(z, w), Q(z, w) ∈ Kl×l[z, w]

and T(z, w) is unimodular.

Theorem 2. Let F(z, w) ∈ Kl×l[z, w] and h(z) ∈ K[z] be an
irreducible polynomial. Suppose detF(z, w) � hq·r(z), r and q

are positive integers. If hq(z)|dl− r+1(F(z, w)), then F(z, w)

can be factorized as

T1(z, w)P(z)T2(z, w)P(z) · · · Tq(z, w)P(z)T(z, w),

(22)

where P(z) is defined as above and T(z, w), Ti(z, w) are
unimodular matrices, i � 1, 2, . . . , q.

Proof. When q � 1, by +eorem 1,
F(z, w) � T1(z, w)P(z)T(z, w), where T(z, w), T1(z, w)

are unimodular matrices, so the conclusion is true.
When q≥ 2, since hr(z) is a factor of detF(z, w),

according to Corollary 1, we see that F(z, w) can be fac-
torized as T1(z, w)P(z)F1(z, w), where T1(z, w) is a
unimodular matrix.

+en, we consider F1(z, w). For
det(F1(z, w)) � h(q− 1)·r(z), according to Lemma 1, we
obtain

di(F(z, w)) � di P(z)F1(z, w)( , i � 1, . . . , l. (23)

So,

dl− r+1(F(z, w)) � dl− r+1 P(z)F1(z, w)( 

� dl− r+1(P(z))dl− r+1 F1(z, w)(  � h(z)dl− r+1 F1(z, w)( .

(24)
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Note that hq(z)|dl− r+1(F(z, w)); then,
hq− 1(z)|dl− r+1(F1(z, w)). According to Corollary 1, F1(z, w)

can be factorized as T2(z, w)P(z)F2(z, w). +en,

F(z, w) � T1(z, w)P(z)T2(z, w)P(z)F2(z, w). (25)

Imitating the procedure above successively, we can
obtain that

F(z, w) � T1(z, w)P(z)T2(z, w)P(z) · · · Tq(z, w)P(z)T(z, w), (26)

where T(z, w), Ti(z, w) are unimodular matrices,
i � 1, 2, . . . , q. □

Lemma 3. Let P(z) be defined as above and
T(z, w) ∈ Kl×l[z, w] be unimodular. Suppose
F(z, w) � Ps1(z)T(z, w)Ps2(z). If the (l − r) × (l − r) mi-
nors of F(z, w) have no common zero in K

2, then F(z, w) is
equivalent to Ps1+s2(z).

Proof. Let

T(z, w) �
T11 T12

T21 T22
 , (27)

where T11 ∈ K(l− r)×(l− r)[z, w], T12 ∈ K(l− r)×r[z, w],
T21 ∈ Kr×(l− r)[z, w], and T22 ∈ Kr×r[z, w].

Note that

P(z) �
Il− r

h(z)Ir

 . (28)

+en,

F(z, w) � P
s1(z)T(z, w)P

s2(z) �
T11 T12h

s2(z)

T21h
s1(z) T22h

s1+s2(z)
 .

(29)

By computing, dl− r+1(F(z, w)) � hs1+s2(z)

dl− r+1(T(z, w)). Because T(z, w) is unimodular and the (l −

r) × (l − r) minors of F(z, w) have no common zero,

d1(F(z, w)) � d2(F(z, w)) � · · · � dl− r(F(z, w)) � 1,

dl− r+k(F(z, w)) � h
k s1+s2( )(z), 1≤ k≤ r.

(30)

Since (T11, T12) is ZLP, the (l − r) × (l − r) minors of
(T11, T12) have no common zero. Set the (l − r) × (l − r)

minors of (T11, T12) to be e1, e2, . . . , et, where e1 � det(T11).
+en, the (l − r) × (l − r) minors of (T11, T12h

s2(z)) are
e1, e2h

m2(z), . . . , eth
mt (z), where s2 ≤mi ≤ r · s2, i � 2, . . . , t.

We prove that (T11, T12h
s2(z)) is ZLP.

Suppose the (l − r) × (l − r) minors of (T11, T12h
s2(z))

have a common zero a0; then, a0 is a common zero of e1 and
h(z). Note that

F(z, w) �
T11 T12h

s2(z)

T21h
s1(z) T22h

s1+s2(z)
 . (31)

+en, the (l − r) × (l − r) minors of F(z, w) have
common zero a0. +is is a contradiction. So, the (l − r) ×

(l − r) minors of (T11, T12h
s2(z)) have no common zero.

Hence, (T11, T12h
s2(z)) is ZLP. By the Quillen–Suslin the-

orem, we can find a unimodular matrix
M1 ∈ K(l− r)×(l− r)[z, w] that satisfies

T11, T12h(z)( M1 � Il− r 0l− r,r( . (32)

+en,

F(z, w)M1 �
Il− r 0l− r,r

N1 N2
 , (33)

where N1 ∈ Kr×(l− r)[z, w] and N2 ∈ Kr×r[z, w]. Let

M2 �
Il− r 0l− r,r

− N1 Ir

  (34)

such that

M2F(z, w)M1 �
Il− r 0l− r,r

0r,l− r N2
 . (35)

Let

M3 �
Il− r 0l− r,r

0r,l− r N2
 . (36)

We know M3 is equivalent to F(z, w).
According to Lemma 1,

di(M3) � di(F(z, w)), i � 1, . . . , l. Hence,

d1 M3(  � d2 M3(  � · · · � dl− r M3(  � 1,

dl− r+k M3(  � h
k s1+s2( )(z), 1≤ k≤ r.

(37)

Notice that

M3 �
Il− r 0l− r,r

0r,l− r N2
 

�

Il− r

bl− r+1,l− r+1 bl− r+1,l− r+2 · · · bl− r+1,l

bl− r+2,l− r+1 bl− r+2,l− r+2 · · · bl− r+2,l

⋮ ⋮ ⋱ ⋮

bl,l− r+1 bl,l− r+1 · · · bl,l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)

We have that h(z) divides every element of N2, so
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M3 �

Il− r

h
s1+s2(z)

⋱

h
s1+s2(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
M4. (39)

Hence, M3 � Ps1+s2(z) · M4, and detM4 � 1. Note that
M2 · F(z, w) · M1 � M3, so M2 · F(z, w) · M1 � Ps1+s2(z)·

M4; then, F(z, w) � M− 1
2 Ps1+s2(z) · M4M

− 1
1 , where M− 1

2 and
M4M

− 1
1 are unimodular matrices. +us, F(z, w) is equiva-

lent to Ps1+s2(z). □

Theorem 3. Let F(z, w) ∈ Kl×l[z, w] and h(z) ∈ K[z] be an
irreducible polynomial. If detF(z, w) � hq·r(z) and

hq(z)|dl− r+1(F(z, w)), where q and r are positive integers,
then F(z, w) is equivalent to the Smith form

P
q
(z) �

Il− r

h
q
(z)

⋱

h
q
(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (40)

if and only if the (l − r) × (l − r) minors of F(z, w) have no
common zero in K

2.

Proof. Sufficiency: by +eorem 2, we have that

F(z, w) � T1(z, w)P(z)T2(z, w)P(z) · · · Tq(z, w)P(z)T(z, w), (41)

where

P(z) �

Il− r

h(z)

⋱

h(z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

T(z, w), Ti(z, w) are unimodular matrices,
i � 1, 2, . . . , q.

We first prove that P(z)T2(z, w)P(z) is equivalent to
P2(z). From the (l − r) × (l − r) minors of F(z, w) which
have no common zero in K

2, we know that the (l − r) ×

(l − r) minors of P(z)T2(z, w)P(z) have no common zero
in K

2 by combining with Lemma 2. +en, according to
Lemma 3, P(z)T2(z, w)P(z) is equivalent to P2(z).

Repeating the procedure above, we obtain that
P(z)T2(z, w)P(z) · · · Tq(z, w)P(z) is equivalent to the
matrix Pq(z), so there exist U1(z, w), V1(z, w) such that

P(z)T2(z, w)P(z) · · · Tq(z, w)P(z) � U1(z, w)P
q
(z)V1(z, w), (43)

where U1(z, w), V1(z, w) are unimodular matrices. Hence,
we have that

F(z, w) � U(z, w)P
q
(z)V(z, w), (44)

where U(z, w) � T1(z, w)U1(z, w) and
V(z, w) � V1(z, w)T(z, w) are unimodular matrices.
+erefore, F(z, w) is equivalent to the Smith form Pq(z).

Necessity: since F(z, w) is equivalent to Pq(z), there
exist unimodular matrices U(z, w) and V(z, w) such that
F(z, w) � U(z, w)Pq(z)V(z, w). For the (l − r) × (l − r)

minors of Pq(z) which have no common zero in K
2, the

(l − r) × (l − r) minors of F(z, w) have no common zero in
K

2 by Lemma 2. □

Remark 2. According to +eorem 3, Problem 2 is solved,
and a criterion for discriminating this class of bivariate
polynomial matrices to be equivalent to the Smith form is
also presented.

Theorem 4. Let F(z, w) ∈ Kl×m[z, w] (l≤m) be of full row
rank and h(z) ∈ K[z] be irreducible. Suppose dl(F) � hq·r(z)

and hq(z)|dl− r+1(F), where q and r are positive integers.
2en, F(z, w) is equivalent to the Smith form

Q(z) � P
q
(z) 0l×(m− l) , (45)

if and only if the (l − r) × (l − r) minors of F(z, w) have no
common zero in K

2.

Proof. Sufficiency: by +eorem 3.3 in [17], there are
H(z, w) ∈ Kl×l[z, w] and F1(z, w) ∈ Kl×m[z, w] satisfying
F(z, w) � H(z, w)F1(z, w), where detH(z, w) � d(F) and
F1(z, w) is ZLP. +en, the (l − r) × (l − r) minors of
H(z, w) have no common zero by using Lemma 2. Com-
bined with hq(z)|dl− r+1(H) and +eorem 2, there are
unimodular matrices U11(z, w), U12(z, w) ∈ Kl×l[z, w] such
that H(z, w) � U11(z, w)Pq(z)U12(z, w). +en,

F(z, w) � U11(z, w)P
q
(z)U12(z, w)F1(z, w). (46)

We know that U12(z, w)F1(z, w) is also ZLP (U12(z, w)

is unimodular). According to the Quillen-Suslin theorem,
there exists an m × m unimodular matrix U(z, w) which
satisfies that U12(z, w)F1(z, w)U(z, w) � Il 0l,m− l( . +en,
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F(z, w) � U11(z, w) P
q
(z) 0l,m− l( U(z, w) � U1(z, w)Q(z)U(z, w). (47)

According to the (l − r) × (l − r) minors of F(z, w)

which have no common zero and hq(z)|dl− r+1(F), we see
that Q(z) is the Smith form of F(z, w). Note that U1(z, w)

and U(z, w) are invertible matrices, so F(z, w) is equivalent
to the Smith form Q(z).

Necessity: since F(z, w) is equivalent to the Smith form
Q(z), it is easy to see that the (l − r) × (l − r) minors of Q(z)

have no common zero in K
2. By Lemma 2, we have that the

(l − r) × (l − r) minors of F(z) have no common zero in
K

2. □

Remark 3. A positive answer to Problem 3 is presented in
+eorem 4. And the equivalence of a rectangle matrix
F(z, w) and its Smith form is considered, which makes the
result more general.

4. An Example

In this section, we use an example to illustrate our results
and methods.

Example 1. Consider a 3 × 3 2D polynomial matrix of
R3×3[z, w]:

F(z, w) �

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (48)

where

a11 � z + 1 − w
2

 (1 − 2w) − 2z
2

+ 2zw + 2  z
2

+ z + 1 
2
,

a12 � z + 1 − w
2

 (z − w) +[(zw + 1 − z)(w + z) + w − 1] z
2

+ z + 1 
2
,

a13 � w z + 1 − w
2

  + zw + z
2

+ 1  z
2

+ z + 1 
2
,

a21 � − w(1 − 2w) − 2z z
2

+ z + 1 
2
,

a22 � − w(z − w) +(zw + 1 − z) z
2

+ z + 1 
2
,

a23 � − w
2

+ z z
2

+ z + 1 
2
,

a31 � z(1 − 2w) − 2z
2

+ 2  z
2

+ z + 1 
2
,

a32 � z(z − w) +[z(zw + 1 − z) + w − 1] z
2

+ z + 1 
2
,

a33 � zw + z
2

+ 1  z
2

+ z + 1 
2
.

(49)

By computing, d1(F(z, w)) � 1,
d2(F(z, w)) � (z2 + z + 1)2, d3(F(z, w)) � (z2 + z + 1)4,
and detF(z, w) � (z2 + z + 1)4. We know that the 1 × 1
minors of F(z, w) have no common zero in C2. Combining
z2 + z + 1 ∈ K[z] is irreducible and
(z2 + z + 1)2|d2(F(z, w)); by +eorem 3, we have that
F(z, w) is equivalent to the Smith form

P
2
(z) �

1

z
2

+ z + 1 
2

z
2

+ z + 1 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (50)

Let F(z, w) � (fij) denote F(z, w) � (fij) mod
(z2 + z + 1); then,

F(z, w) �

z + 1 − w
2

 (1 − 2w) z + 1 − w
2

 (z − w) w z + 1 − w
2

 

2w
2

− w w
2

− zw − w
2

− 2zw + z − zw − z − 1 zw

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (51)
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and no row of F(z, w) is zero vector mod (z2 + z + 1). Note
that the nonzero polynomial of the least degree in w among
the first column is − 2zw + z, so we postmultiply F(z, w) by a

unimodular matrix U11 �

0 0 1
0 1 0
1 0 0

⎛⎜⎝ ⎞⎟⎠ such that − 2zw + z

can be changed to the position (1, 1). +en,

U11F(z, w) �

− 2zw + z − zw − z − 1 zw

2w
2

− w w
2

− zw − w
2

z + 1 − w
2

 (1 − 2w) z + 1 − w
2

 (z − w) w z + 1 − w
2

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (52)

We consider the element − 2zw + z; − 2z is the leading
coefficient of − 2zw + z. We know that − 2z and z2 + z + 1 are
relatively prime in R[z], so we can find x1(z) �

(1/2)(z + 1), y1(z) � 1 such that x1(z) · (− 2z) + y1(z)·

(z2 + z + 1) � 1 ((1/2)(z + 1) · (− 2z) + (z2 + z + 1) � 1);
then, (1/2)(z+1) ·(− 2z) �1 − (z2 +z+1)≡1mod(z2 +z+1).
So, x1(z) · (− 2zw + z) � (1/2)(z + 1) · (− 2zw + z) ≡ (w −

(1/2)) mod(z2 + z + 1); that is, − 2zw + z can be reduced to a
monic polynomial (w − (1/2)) by mod (z2 + z + 1).

+en, we reduce other elements in the first column.
For the element 2w2 − w, we can find q1(z, w) � 2w and

r1(z, w) � 0 such that 2w2 − w � (w − (1/2)) · q1(z, w) + r1
(z, w) ≡ (1/2)(z + 1) · (− 2zw + z) · 2w + 0mod(z2 +z + 1).
In reality, 2w2 − w � (1/2)(z + 1) · (− 2zw + z) ·2w − (z2 +

z + 1)(w − 2w2).
And for the element (z + 1 − w2)(1 − 2w), we can find

q2(z, w) � 2w2 − 2z − 2 and r2(z, w) � 0 such that

z + 1 − w
2

 (1 − 2w) � w −
1
2

  · q2(z, w) + r2(z, w) � w −
1
2

  · 2w
2

− 2z − 2  +

0 ≡
1
2

(z + 1) · (− 2zw + z) · 2w
2

− 2z − 2  + 0mod z
2

+ z + 1 .

(53)

Actually, (z+1 − w2)(1 − 2w) � (1/2)(z+1) ·(− 2zw+z)·

(2w2 − 2z − 2) − (z2 +z+1)(w2 − z − 1)(1 − 2w).
Let

U12 �

1 0 0

−
1
2

(z + 1)2w 1 0

−
1
2

(z + 1) 2w
2

− 2z − 2  0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (54)

We have

U12U11 · F(z, w) �

− 2zw + z − zw − z − 1 zw

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠mod z

2
+ z + 1 , (55)

so
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U12U11 · F(z, w) �

1

z
2

+ z + 1

z
2

+ z + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠F1(z, w), (56)

where

F1(z, w) �

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

b11 � z(1 − 2w) − 2z
2

+ 2  z
2

+ z + 1 
2
,

b12 � z(z − w) +[z(zw + 1 − z) + w − 1] z
2

+ z + 1 
2
,

b13 � zw + z
2

+ 1  z
2

+ z + 1 
2
,

b21 � 2w
2

− w + − 2z +(zw + w) 2z
2

+ 2   z
2

+ z + 1 ,

b22 � w
2

− zw  − (zw + w)[z(zw + 1 − z) + w − 1] z
2

+ z + 1  +(zw + 1 − z) z
2

+ z + 1 ,

b23 � − w
2

+ z − w(z + 1) z
2

+ 1   z
2

+ z + 1 ,

b31 � (1 − 2w) − w
2

+ 1 + z  + − 2z
2

− 2zw − 2 +(z + 1) − w
2

+ 1 + z  − 2z
2

− 2   z
2

+ z + 1 ,

b32 � − w
2

+ 1 + z (z − w) +[(zw + 1 − z)(w + z) + w − 1] z
2

+ z + 1  +(z + 1) − w
2

+ 1 + z 

[z(zw + 1 − z) + w − 1] z
2

+ z + 1 ,

b33 � − w
2

+ 1 + z w + z
2

+ zw + 1  z
2

+ z + 1  +(z + 1) − w
2

+ z + 1  z
2

+ 1  z
2

+ z + 1 .

(57)

Let U1 � U12U11; then,

F(z, w) � U
− 1
1

1

z
2

+ z + 1

z
2

+ z + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠F1(z, w),

F1(z, w) �

− 2zw + z − zw − z − 1 zw

2w
2

− w w
2

− zw − w
2

(1 − 2w) − w
2

+ 1 + z  − w
2

+ z + 1 (z − w) w − w
2

+ z + 1 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(58)

Now, consider F1(z, w), for none of its rows are zero
vectors mod (z2 + z + 1); repeating the steps above, we can
obtain that

U13 · F1(z, w) �

− 2zw + z − zw − z − 1 zw

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠mod z

2
+ z + 1 , (59)

where
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U13 �

1 0 0

−
1
2

(z + 1)2w 1 0

−
1
2

(z + 1) 2w
2

− 2z − 2  0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)

Hence,

U13F1(z, w) �

1

z
2

+ z + 1

z
2

+ z + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠F2(z, w),

(61)

where

F2(z, w) �

c11 c12 c13

c21 c22 c23

c31 c32 c33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

c11 � z(1 − 2w) − 2z
2

+ 2  z
2

+ z + 1 
2
,

c12 � z(z − w) +[z(zw + 1 − z) + w − 1] z
2

+ z + 1 
2
,

c13 � zw + z
2

+ 1  z
2

+ z + 1 
2
,

c21 � 2w
2

− w − 2z +(zw + w) 2z
2

+ 2  z
2

+ z + 2 ,

c22 � w
2

+ 1 − z  − (zw + w) z
2
w + z − z

2
  z

2
+ z + 2  − w

2
− w (z + 1) z

2
+ z + 2 ,

c23 � z − w
2

− w(z + 1) z
2

+ 1  z
2

+ z + 2 ,

c31 � (1 − 2w) − w
2

+ 1 + z  − 2z
2

+ 2zw + 2  +(z + 1) − w
2

+ 1 + z  − 2z
2

− 2  z
2

+ z + 2 ,

c32 � − w
2

+ 1 + z (z − w) +(zw + 1 − z)(w + z) + w − 1 + z
2

+ z + 2 (z + 1) − w
2

+ 1 + z 

(w − 1) + z
2

+ z  − w
2

+ 1 + z (zw + 1 − z) z
2

+ z + 2 ,

c33 � − w
2

+ 1 + z w + z
2

+ zw + 1  + z
2

+ z + 2 (z + 1) − w
2

+ z + 1  z
2

+ 1 .

(62)

So,

F1(z, w) � U
− 1
13

1

z
2

+ z + 1

z
2

+ z + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠F2(z, w).

(63)

Combining

F(z, w) � U
− 1
1 P(z)F1(z, w), (64)

we have that

F(z, w) � U
− 1
1 P(z)U

− 1
13P(z)F2(z, w). (65)

Consider P(z)U− 1
13P(z); combined with Lemma 3, we

obtain

P(z)U
− 1
13P(z) �

1 0 0

(wz + w) z
2

+ z + 1  z
2

+ z + 1 
2

0

− (z + 1) − w
2

+ 1 + z  z
2

+ z + 1  0 z
2

+ z + 1 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (66)

Let
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U14 �

1 0 0

(wz + w) z
2

+ z + 1  1 0

− (z + 1) − w
2

+ 1 + z  z
2

+ z + 1  0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (67)

+en,

P(z)U
− 1
13P(z) � U14P

2
(z). (68)

So,

F(z, w) � U
− 1
1 U14

1

z
2

+ z + 1 
2

z
2

+ z + 1 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
F2(z, w),

(69)

and by computing, U− 1
1 U14 and F2(z, w) are unimodular

matrices. +erefore, F(z, w) is equivalent to P2(z).

5. Conclusions

In this paper, we have investigated the reduction of several
kinds of bivariate polynomial matrices in K[z, w], where K

is an arbitrary field. Some new results on these matrices to be
reduced to their Smith forms are presented. Furthermore,
the conditions of these results are easily verified. An example
is given to illustrate our method in the end of the article. All
of these are useful for reducing 2D systems.
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