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Further results on the robustness of the global exponential stability of recurrent neural network with piecewise constant ar-
guments and neutral terms (NPRNN) subject to uncertain connection weights are presented in this paper. Estimating the upper
bounds of the two categories of interference factors and establishing a measuring mechanism for uncertain dual connection
weights are the core tasks and challenges. Hence, on the one hand, the new sufficient criteria for the upper bounds of neutral terms
and piecewise arguments to guarantee the global exponential stability of NPRNN are provided. On the other hand, the allowed
enclosed region of dual connection weights is characterized by a four-variable transcendental equation based on the preceding
stable NPRNN. In this way, two interference factors and dual uncertain connection weights are mutually restricted in the model of
parameter-uncertainty NPRNN, which leads to a dynamic evolution relationship. Finally, the numerical simulation comparisons
with stable and unstable cases are provided to verify the effectiveness of the deduced results.

1. Introduction

Since recurrent neural networks (RNNs) have the ability of
parallel processing, distributed information storage, and
associative deep learning, a series of neural networks such
as Hopfield neural network, Cohen–Grossberg neural
network, cellular neural network, BAM neural network,
high-order cellular neural network, and shunt inhibition
neural network, which are the typical representatives of
RNNs, have attracted extensive attention over the years.
Accordingly, with the in-depth study of RNNs, it can be
seen that the stability is a forerunner condition for the
multifarious practical applications. Hence, the research on
the stability of the system is becoming more and more
abundant [1–14], such as asymptotic stability [1], expo-
nential stability [2–4], multistability [5], synchronization
[6], dissipativity [3, 7, 8], region stability [9], memristor-
based dynamic behavior stability [10], and exponential
Lagrange stability [11, 12]. Additionally, in terms of the
widespread application fields such as the visual optimi-
zation, image processing, language recognition, associative
memory, and other fields, the stability of RNNs has become

an indispensable dynamical behavior characteristic which
must be further considered.

Exponential stability and robustness, as for the classical
dynamic behaviors of neural networks, have been studied
extensively in the past few years [2, 3, 13–22]. On the one
hand, global exponential stability reveals the superiority that
it guarantees the system can be fleetly stable at the equi-
librium point with an exponential decay rate, which de-
servedly leads to a rapid stabilization and dramatically saves
the response time. Furthermore, the decay rate value can be
intuitively captured [14]. On the other hand, due to the
tunable flexibility and broad applicability, the robustness is
always endowed with different meanings in disparate
practical scenarios. Taking [13] as an example, a natural
question is raised and deeply explored: how much the in-
terference intensity can a disturbed system bear to realize the
stability again on the basis of its original stability, which
implies the exact connotation of the robustness studied in
this paper. In addition, the emerging literatures [1–23] have
also indirectly confirmed that various generalized stability
behaviors of the neural networks are inevitably and im-
mensely subject to the category and quantity of disturbances,
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for instance, time delays [1–8], stochastic disturbances
[8, 13, 15], parameter disturbances [9], piecewise constant
arguments [14], neutral terms [22], and Markov switching
[12, 23]. Hence, the subsequent perturbations will be at-
tached to RNNs to further examine and guarantee the ro-
bustness of global exponential stability (RoGES) of RNNs.

Neutral-type RNNs refer to RNNs with the neutral terms
appeared in the derivative part, which makes the nonlinear
perturbations affect not only the current states but also the
states of derivative part. At present, neural networks with
neutral terms have been applied in practice, for instance, the
electrical interconnect and the electromagnetic interference
design in digital computers are used as the specific physical
application background for delayed neutral-type differential
equations [24]. In combination with the statements men-
tioned above and some existing literatures, two species of
exogenous interferences that diffusely appear in the modern
engineering should be taken into consideration for neutral-
type RNNs. On the one hand, due to the pervasive re-
strictions of the switching speed of each node of the neural
networks, time delay is such a kind of inevitable interference
element that it has been widely applied to various neural
networks. And, piecewise constant argument studied here is
another form of time delay, which unifies the hysteresis and
advance. .e investigation of RNNs subject to piecewise
arguments is a breakthrough in literature [14], and the
sufficient conditions for the exponential stability of a class of
RNNs with piecewise arguments are given by constructing
Lyapunov functions. At present, there are also some liter-
atures further exploring the properties of the systems
equipped with piecewise arguments [15, 25, 26]. On the
other hand, it can be found that the parameter-intensity of
the connection weight matrix is a crucial index affecting the
stability of the systems [16–21, 27, 28]. Firstly, since para-
metric uncertainty was introduced in [16, 17, 27, 28], diverse
forms of uncertain connection weights were applied to
neural networks. Later, Zhu and Shen [18] visually depicted
the boundary of the uncertain connection weights by the
enclosed curve graph method and provided the sufficient
conditions for RNNs disturbed by uncertain parameters to
achieve the global exponential stability. Furthermore, time
delays and random perturbations are additionally attached
on RNNs in [19–21]. At present, uncertain connection
weights have been applied to various fields, such as medi-
cine, information transmission, and operations’ research
and planning [29–32]. It follows that the intensity of the
connection weights is a highly mutable but immensely
critical indicator.

By virtue of the existing literatures in the past decades,
the stability of neutral-type RNNs with piecewise argu-
ments or other time delays is explored by [22, 33–37] and
some relatively mature methods have been widely used,
such as the Euler–Maclaurin method, one-leg method,
block boundary value method, and multidomain Legendre
spectral collocation method. In addition, the investigations
of RNNs instead of neutral-type RNNs with uncertain
connection weights also have been carried out in
[16–21, 27, 28]. However, there is hardly any studies aiming
for the RoGES of the recurrent neural network with neutral

terms and piecewise constant arguments (NPRNN) with
uncertain connection weights. Hence, it is a notable
problem that how much the parameter intensity of dual
connection weights can a disturbed NPRNN endure to
remain stable again on the basis of the original stable
NPRNN.

Motivated by the above statements, here we investigate
the RoGES of the NPRNN with uncertain connection
weights. Naturally, the ultimate goal herein is to quantify
the boundary values of the connection weight matrices on
the basis of stable NPRNN. Hence, the main contributions
are as follows. (1) .e upper bounds of piecewise argu-
ments and neutral terms that NPRNN can maintain sta-
bility are established. We solve the tricky neutral terms
newly appeared in the derivative part of RNN by con-
structing a Lipschitz condition, and then, we obtain the
upper bound of the neutral terms by solving a univariate
transcendental equation. Afterwards, by fixing an appro-
priate value of neutral terms, the upper bound of piecewise
arguments is settled by solving several different binary
transcendental equations. (2) An enclosed curve about dual
connection weights (σ and λ) is acquired by solving the
newly established four-element (two disturbances and two
uncertain connection weights) transcendental equation on
the basis of the preceding stable NPRNN, which is the core
significant results of this paper (more details can be seen in
Remarks 2 and 3). (3) By virtue of the above two upper
bounds of the interference factors and the characterized
enclosed curve about the dual-parameter intensity, the
simulation results indicate that, as long as one of the in-
terference values exceeds the derived bounds, the preceding
stable NPRNN will be unstable, which also intuitively
confirmed the validity of deduced results. Based on what
has been established above, these four interference ele-
ments are mutually restricted and the relationship among
these factors established by a four-element transcendental
equation is dynamic.

.e rest of the paper is as follows. .e preliminaries and
the model descriptions are included in Section 2. .en, the
feasible threshold values of the piecewise arguments, the
neutral terms, and the uncertain connection weights to
achieve the RoGES of the parameter-uncertainty NPRNN
are discussed in Section 3. Accordingly, the simulation
comparisons to verify the validity of the deduced results are
shown in Section 4. Finally, a brief conclusion and some
feasible prospects for future work are given in Section 5.

2. Problem Formulation

Based on this paper, denote N as the natural number set
and R as the real number set. And, for any constant n,
denote n � 1, 2, . . . , n{ }. Z+ is the positive integer set. Rn,
Rn×m, and R+ stand for n-dimensional Euclidean space,
n × m real matrix space, and positive real space, respec-
tively. Let ‖ · ‖ be the Euclidean norm, and the operator
norm of matrix A is defined as ‖A‖ � sup ‖Ax‖: ‖x‖ � 1{ }.
Denote two piecewise constant argument real-value se-
quences θi  and ηi , such that θi < ηi < θi+1, θi⟶∞
when i⟶∞ and i ∈ N.
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Consider a NPRNN as

d[v(t) − G(v(t))] � [− Av(t) + Bf(v(t)) + Cg(v(c(t)))]dt,

v t0(  � v0 ∈ R
n
,



(1)

where v(t) � (v1(t), . . . , vn(t)) ∈ Rn represents the state
vector of the neurons, G(v(t)): Rn⟶ Rn is the neutral-
type function of v(t) ∈ Rn, A � diag a1, . . . , an  is a self-
feedback connection weight matrix, B � (bij)n×n and C �

(cij)n×n are the connection weight matrices of f(v(t)) and
g(v(c(t))), respectively, where A, B, C ∈ Rn×n, f(v(t)) and
g(v(c(t))) are continuous vector-value activation functions,
and v(t) and v(c(t)) are the current state and piecewise
argument state, respectively.

For the case that G(v(t)) � 0 and c(t) � t, NPRNN (1)
becomes the following RNN model:

_r(t) � − Ar(t) + Bf(r(t)) + Cg(r(t)),

r t0(  � r0 ∈ R
n
.

 (2)

Definition 1. For any t0 ∈ R+ and r0 ∈ Rn, if there are
α, β> 0, such that ‖r(t, t0, r0)‖≤ α‖r0‖exp − β(t − t0)  holds,
and the state r(t, t0, r0) of (2) can achieve globally expo-
nential stability.

Definition 2. For any t0 ∈ R+ and v0 ∈ Rn, if there are
α, β> 0, such that ‖v(t, t0, v0)‖≤ α‖v0‖exp − β(t − t0)  holds,
and the state v(t, t0, v0) of (1) can achieve globally expo-
nential stability.

To deduce the main results, some needed assumptions
throughout the paper are given:

(H1) .e activation functions f(·), g(·) ∈ Rn, and
there are Lipschitz constants l1 and l2 > 0 such that

‖f(ς) − f(ϱ)‖≤ l1‖ς − ϱ‖,

‖g(ς) − g(ϱ)‖≤ l2‖ς − ϱ‖,
(3)

hold for any ς, ϱ ∈ Rn, wheref(·) and g(·) are endowed
with the initial values f(0) � 0 and g(0) � 0.
(H2) Assume that neutral-type function G(·) satisfies a
Lipschitz condition:

‖G(ς) − G(ϱ)‖≤L‖ς − ϱ‖, (4)

where ς, ϱ ∈ Rn.
(H3) For a real-value sequence θk, there is a θ> 0, which
makes θk+1 − θk ≤ θ true for any k ∈ N.
(H4) Assume that

L + l2θ‖C‖(  + θ ‖A‖ + l1‖B‖ 
1 + L + l2θ‖C‖

1 − L


× exp
θ ‖A‖ + l1‖B‖( 

1 − L
 < 1.

(5)

(H5) Assume that

α exp − β(T − θ)  +
Lα exp(− βθ) + L

1 − L
+

2αl2‖C‖

β(1 − L)
2 

× exp
2T ‖A‖ + l1‖B‖( 

(1 − L)
+
2T (3 − L)l2‖C‖ 

(1 − L)
2 < 1.

(6)

Remark 1. For the sake of convenience, some symbol de-
scriptions are listed as follows:

ϖ1 �
1 + L + l2θ‖C‖

1 − L
,

ϖ2 �
(1 +|σ|)‖A‖ +(1 +|λ|)l1‖B‖ 

1 − L
,

ϖ3 �
l2‖C‖(1 + Γ) +|σ|‖A‖ +|λ|l1‖B‖ α/β

1 − L
+

Lα exp(− βθ) + L

1 − L
,

ϖ4 �
(1 +|σ|)‖A‖ + l1(1 +|λ|)‖B‖ + l2‖C‖(2 + Γ) 

1 − L
,

ξ � L + l2θ‖C‖(  + (1 +|σ|)‖A‖ +(1 +|λ|)l1‖B‖  × θ ϖ1 exp ϖ2θ(  ,

Γ �
1 + L

1 − ξ
, ξ < 1,

T> ln
α
β
> 0.

(7)
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3. Main Results

On the basis of NPRNN (1), in this paper, we mainly explore
NPRNN with uncertain connection weights (called pa-
rameter-uncertainty NPRNN throughout the text):

d[u(t) − G(u(t))] � [− (1 + σ)Au(t) +(1 + λ)Bf(u(t)) + Cg(u(c(t)))]dt,

u t0(  � u0 ∈ R
n
,

 (8)

where σ and λ ∈ R are the extra interference intensity of
connection weight matrices A and B, corresponding to the
state u(t) and activation function f(u(t)).

.en, the following auxiliary Lemma 1 aims to clarify the
relationship between piecewise argument state u(c(t)) and
current state u(t).

Lemma 1. Denote that u(t) � (u1(t), . . . , un(t))T is a so-
lution of (2), and (H1)-(H4) hold; then, the following
inequality,

‖u(c(t))‖≤ Γ‖u(t)‖, (9)

holds, where

ϖ1 �
1 + L + l2θ‖C‖

1 − L
,

ϖ2 �
(1 +|σ|)‖A‖ +(1 +|λ|)l1‖B‖ 

1 − L
,

Γ �
1 + L

1 − ξ
, ξ < 1,

ξ � L + l2θ‖C‖(  + (1 +|σ|)‖A‖ +(1 +|λ|)l1‖B‖  × θ ϖ1 exp ϖ2θ(  .

(10)

Proof. Fix k ∈ N, and for c(t) � ηk and t ∈ [θk, θk+1),
t ∈ R+, we have

u(t) − G(u(t)) − u ηk(  − G u ηk( (  

� 
t

ηk

− (1 + σ)Au(s) +(1 + λ)Bf(u(s)) + Cg u ηk( (  ds.

(11)

Applying the norm inequality on both sides of (11) and
in accordance with (H1), we obtain

u(t) − u ηk( 
����

���� − G u ηk( (  − G(u(t))
����

����

≤ (1 + |σ|)‖A‖ 
t

ηk

‖u(s)‖ds + (1 + |λ|)‖B‖

× 
t

ηk

‖f(u(s))‖ds + ‖C‖ 
t

ηk

g u ηk( ( 
����

����ds

≤ (1 + |σ|)‖A‖ 
t

ηk

‖u(s)‖ds + (1 + |λ|)‖B‖

× 
t

ηk

l1‖u(s)‖ds + ‖C‖ 
t

ηk

l2 u ηk( 
����

����ds

≤ (1 + |σ|)‖A‖ 
t

ηk

‖u(s)‖ds + (1 + |λ|)l1‖B‖ 

× 
t

ηk

‖u(s)‖ds + l2‖C‖ 
t

ηk

u ηk( 
����

����ds.

(12)

In terms of (H2) and the norm inequality, we derive
‖u(t)‖≤ u ηk( 

����
���� + L u ηk( 

����
���� + L‖u(t)‖

+ (1 + |σ|)‖A‖ + (1 + |λ|)l1‖B‖  
t

ηk

‖u(s)‖ds

+ l2‖C‖ 
t

ηk

u ηk( 
����

����ds

≤L‖u(t)‖ + 1 + L + l2θ‖C‖(  u ηk( 
����

����

+ (1 + |σ|)‖A‖ + (1 + |λ|)|l1‖B‖  
t

ηk

‖u(s)‖ds.

(13)
Directly, for L ∈ (0, 1), we have

‖u(t)‖≤
1 + L + l2θ‖C‖

1 − L
u ηk( 

����
����

+
(1 +|σ|)‖A‖ +(1 +|λ|)l1‖B‖ 

1 − L


t

ηk

‖u(s)‖ds

≤ϖ1 u ηk( 
����

���� + ϖ2 
t

ηk

‖u(s)‖ds,

(14)
where
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ϖ1 �
1 + L + l2θ‖C‖

1 − L
,

ϖ2 �
(1 + |σ|)‖A‖ + (1 + |λ|)l1‖B‖ 

1 − L
.

(15)

According to Gronwall–Bellman lemma, it follows that

‖u(t)‖≤ϖ1 exp ϖ2θ  u ηk( 
����

����. (16)

Moreover, for t ∈ [θk, θk+1), we obtain

G u ηk( (  − G(u(t))

� u ηk(  − u(t) + 
t

ηk

− (1 + σ)Au(s) +(1 + λ)Bf(u(s)) + Cg u ηk( (  ds.
(17)

In combination with (H1)–(H3) and (16), similarly, we
obtain

u ηk( 
����

����≤ ‖u(t)‖ + L u ηk( 
����

���� + L‖u(t)‖ + [(1 + |σ|)‖A‖

+ (1 + |λ|)l1‖B‖ 
t

ηk

‖u(s)‖ds

+ l2‖C‖ 
t

ηk

u ηk( 
����

����ds

≤ (1 + L)‖u(t)‖ + L u ηk( 
����

���� + [(1 + |σ|)‖A‖

+ (1 + |λ|)l1‖B‖θ ϖ1 exp ϖ2θ   u ηk( 
����

����

+ l2‖C‖ 
t

ηk

u ηk( 
����

����ds

≤ (1 + L)‖u(t)‖ + L + l2θ‖C‖(  + [(1 + |σ|)‖A‖

+ (1 + |λ|)l1‖B‖θ ϖ1 exp ϖ2θ(   u ηk( 
����

����

≤ (1 + L)‖u(t)‖ + ξ u ηk( 
����

����,

(18)

where

ξ � L + l2θ‖C‖(  + (1 + |σ|)‖A‖ + (1 + |λ|)l1‖B‖ 

× θ ϖ1 exp ϖ2θ(  .
(19)

.erefore, by (18) and (H4), for ηk � c(t) and k ∈ N, we
can obtain

‖u(c(t))‖≤
1 + L

1 − ξ
‖u(t)‖

≕Γ‖u(t)‖,

(20)

where

Γ �
1 + L

1 − ξ
, ξ < 1. (21)

□

Theorem 1. If (H1)–(H5) hold, (2) achieves globally
exponential stability. 8en, the conditions for achieving the
RoGES of NPRNN can be given by the following (a) and (b):

(a) Let L be the upper bound of neutral term compress-
ibility coefficient; then, L<L and L∈ (0, 1), and L is
given by the following transcendental equation:

α exp(− βT) +
(Lα + L)(1 − L)β + 2αl2‖C‖

β(1 − L)
2

× exp
2T (1 − L) ‖A‖ + l1‖B‖(  +(3 − L)l2‖C‖ 

(1 − L)
2 < 1.

(22)

(b) Let θ3 be the upper bound of piecewise constant ar-
guments, where θ3 is given by

θ< θ3 � min
T

2
, θ1, θ2 , (23)

where θ1 and θ2 are the upper bounds satisfying (H4)
and (H5), respectively, T> (ln α)/β> 0.

Furthermore, if the real selected values L<L and θ< θ3
hold by (22) and (23), then the allowed intensity of (σ, λ) to
achieve the RoGES of parameter-uncertainty NPRNN (8)
should be in the inner of the following enclosed curve:

α exp(− β(T − θ)) + ϖ3 exp 2Tϖ4  � 1, (24)

where

ϖ3 �
Lα exp(− βθ) + L

1 − L

+
l2‖C‖(1 + Γ) + |σ|‖A‖ + |λ|l1‖B‖ α/β

1 − L
,

ϖ4 �
(1 + |σ|)‖A‖ + l1(1 + |λ|)‖B‖ + l2‖C‖(2 + Γ) 

1 − L
,

(25)

and the other parameters are the same as Lemma 1. Besides,
the boundary value of |σ| is expressed as |σ|sup, and |λ| is
expressed as |λ|sup hereinbelow.

Proof. From (2) and (8), for t≥ t0, we obtain
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u(t) − r(t) � G(u(t)) − G u t0( ( 

+ 
t

t0

− A[u(s) − r(s)] + B[f(u(s)) − f(r(s))]

+C[g(u(c(s))) − g(u(s)) + g(u(s)) − g(r(s))]

− σA[u(s) − r(s) + r(s)]

+λB[f(u(s)) − f(r(s)) + f(r(s))]}ds. (26)

Taking the absolute value of (26) for t≤ t0 + 2T, we
obtain

‖u(t) − r(t)‖≤ G(u(t)) − G u t0( ( 
����

���� + ‖A‖ + l1‖B‖ + l2‖C‖

+|σ|‖A‖ + |λ|l1‖B‖ 
t

t0

‖u(s) − r(s)‖ds

+ ‖C‖ 
t

t0

‖g(u(c(s))) − g(u(s))‖ds

+ |σ|‖A‖ + |λ|l1‖B‖(  
t

t0

‖r(s)‖ds

≤ L‖u(t)‖ + L u t0( 
����

���� + (1 + |σ|)‖A‖ + l1(1 + |λ|)‖B‖

+l2‖C‖ 
t

t0

‖u(s) − r(s)‖ds

+ ‖C‖l2 
t

t0

(‖u(c(s))‖ + ‖u(s)‖)ds

+ |σ|‖A‖ + |λ|l1‖B‖(  
t

t0

‖r(s)‖ds

≤ L‖u(t) − r(t)‖ + L‖r(t)‖ + L u t0( 
����

���� + (1 + |σ|)‖A‖ + l1(1 + |λ|)‖B‖

+l2‖C‖ 
t

t0

‖u(s) − r(s)‖ds

+ ‖C‖l2(1 + Γ) 
t

t0

[‖u(s) − r(s)‖ + ‖r(s)‖]ds

+ |σ|‖A‖ + |λ|l1‖B‖(  
t

t0

‖r(s)‖ds.

(27)

In accordance with Definition 1 and the exponential
stability of (2), L ∈ (0, 1), when t ∈ [t0 − θ, t0 + θ], further
we derive
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‖u(t) − r(t)‖≤
L

1 − L
α u0

����
����exp(− βθ) +

L

1 − L
u0

����
����

+
(1 + |σ|)‖A‖ + l1(1 + |λ|)‖B‖ + l2‖C‖(2 + Γ) 

1 − L

× 
t

t0

‖u(s) − r(s)‖ds

+
l2‖C‖(1 + Γ) + |σ|‖A‖ + |λ|l1‖B‖

1 − L

× 
t

t0

α r0
����

����exp − β s − t0( ( ds

≤
Lα exp(− βθ) + L

1 − L


+
l2‖C‖(1 + Γ) + |σ|‖A‖ + |λ|l1‖B‖ α/β

1 − L
 u0

����
����

+
(1 + |σ|)‖A‖ + l1(1 + |λ|)‖B‖ + l2‖C‖(2 + Γ) 

1 − L

× 
t

t0

‖u(s) − r(s)‖ds

≤ϖ3 u0
����

���� + ϖ4 
t

t0

‖u(s) − r(s)‖ds,

(28)

where

ϖ3 �
Lα exp(− βθ) + L

1 − L
+

l2‖C‖(1 + Γ) + |σ|‖A‖ + |λ|l1‖B‖ α/β
1 − L

,

ϖ4 �
(1 + |σ|)‖A‖ + l1(1 + |λ|)‖B‖ + l2‖C‖(2 + Γ) 

1 − L
.

(29)

By virtue of Gronwall inequality, for t0 + θ≤ t≤ t0 + 2T,
we have

‖u(t) − r(t)‖≤ϖ3 u0
����

����exp ϖ4 t − t0(  

≤ϖ3 exp 2Tϖ4  sup
t∈ t0− θ,t0+θ[ ]

‖u(t)‖. (30)

Note that θ < (T/2), when t0 − θ + T≤ t0 − θ + 2T, by the
exponential stability of (2), we further obtain

‖u(t)‖≤ ‖r(t)‖ + ‖u(t) − r(t)‖

≤ α exp(− β(T − θ)) + ϖ3 exp 2Tϖ4  

× sup
t0− θ≤ t0 − θ+T

‖u(t)‖

≕C sup
t0 − θ≤ t0 − θ+T

‖u(t)‖,

(31)

where C � α exp(− β(T − θ)) + ϖ3 exp 2Tϖ4 . .en, if we
define

F(Γ(θ), L) � α exp − β(T − θ)  + ϖ3 exp 2Tϖ4 , (32)

obviously, there is

F(Γ(θ), L)≤ 1. (33)

Firstly, by (H4), denote θ1 as the unique maximal
positive solution satisfying ξ(θ)|σ,λ�0 < 1, that is,

L + l2θ‖C‖(  + θ ‖A‖ + l1‖B‖ 
1 + L + l2θ‖C‖

1 − L


exp
θ ‖A‖ + l1‖B‖( 

1 − L
 < 1,

(34)

so

Γ(θ) �
1 + L

1 − ξ(θ)
∈

1 + L

1 − L
,∞ , L ∈ (0, 1), (35)

holds for any θ ∈ (0, θ1). According to (32) and (H5), it
derives

F
1 + L

1 − L
, L |λ,σ�0 � α exp − β(T − θ)  +

Lα exp(− βθ) + L

1 − L
+

2αl2‖C‖

β(1 − L)
2 

× exp
2T ‖A‖ + l1‖B‖( 

(1 − L)
+
2T (3 − L)l2‖C‖ 

(1 − L)
2 < 1,

(36)

F(∞, L)> 1. (37)

.us, by the monotonicity of F(Γ(θ), L), there exists
some Γ(θ) ∈ (((1 + l)/(1 − L)),∞), which makes F(Γ(θ),

L)|λ,σ�0 � 1 true. .en, if we denote θ2 as the upper bound
satisfying (36) and select

θ3 � min
T

2
, θ1, θ2 , (38)

hence, the upper bound of the piecewise arguments unaf-
fected by the intensity of uncertain parameters is given.
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Besides, since z(Γ(θ))/zθ > 0 and z(F(Γ(θ)), L)/zθ> 0,
the upper bound of neutral terms can be given by

F
1 + L

1 − L
, L |θ,λ,σ�0 � α exp(− βT) +

(Lα + L)(1 − L)β + 2αl2‖C‖

β(1 − L)
2

× exp
2T (1 − L) ‖A‖ + l1‖B‖(  +(3 − L)l2‖C‖ 

(1 − L)
2 < 1.

(39)

Finally, if we select the exact L and θ which stabilize
NPRNN (1), the intensity boundary of dual parameters σ
and λ to stabilize the new parameter-uncertainty NPRNN
(8) will be obtained by the following transcendental equation
in accordance with the above L and θ:

α exp(− β(T − θ)) + ϖ3 exp 2Tϖ4  � 1, (40)

and some corresponding symbolic descriptions of (40) are
shown in Remark 1.

Accordingly, selecting Λ � − ln C/T, where Λ≥ 0, and
from (31), we can obtain

sup
t0− θ+T≤ t≤ t0− θ+2T

u t, t0, u0( 
����

����

≤ exp(− ΛT) sup
t0− θ≤ t≤ t0− θ+T

u t, t0, u0( 
����

����.
(41)

Subsequently, for any positive integer q ∈ n, when
t≥ t0 − θ + (q − 1)T, by the continuity of the solutions of the
system [13], invoking (41), further we have

sup
t0− θ+qT≤ t≤ t0− θ+(q+1)T

u t; t0, u0( 
����

����

� sup
t0− θ+(q− 1)T+T≤ t≤ t0− θ+qT+T

u t; t0 − θ +(q − 1)T,(
����

u t0 − θ +(q − 1)T; t0, u0( 
����

≤ exp(− ΛT) sup
t0− θ+(q− 1)T≤ t≤ t0− θ+qT

u t; t0, u0( 
����

����

≤ exp(− ΛqT) sup
t0− θ≤ t≤ t0− θ+T

u t; t0, u0( 
����

����

� C exp(− ΛqT),

(42)

where C � supt0− θ≤ t≤ t0− θ+T‖u(t, t0, u0)‖. Hence, when
t0 − θ + qT≤ t≤ t0 − θ + (q + 1)T, for any integer q ∈ n, we
have

‖u(t)‖≤C exp(− ΛqT)

≤C exp Λ − t − t0(  +(T − θ)  

≤C exp(ΛT)exp − Λ t − t0( ( .

(43)

In this way, (8) achieves globally exponential
stability. □

Corollary 1. Obviously, the allowed intensity of (σ, λ) to
achieve the RoGES of parameter-uncertainty NPRNN (8) is
derived in 8eorem 1. In fact, 8eorem 1 is also applicable for
the following models (44) and (45):

d[u(t) − G(u(t))] � [− (1 + σ)Au(t) + Bf(u(t)) + Cg(u(c(t)))]dt,

u t0(  � u0 ∈ R
n
,

 (44)

d[u(t) − G(u(t))] � [− Au(t) +(1 + λ)Bf(u(t)) + Cg(y(c(t)))]dt,

u t0(  � u0 ∈ R
n
,

 (45)

corresponding to the cases λ � 0 and σ � 0 for parameter-
uncertainty NPRNN (8), respectively.

Proof. Similarly, if we set λ � 0 and σ � 0 for .eorem 1,
respectively, the sufficient conditions to ensure the globally
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exponential stability of (44) and (45) can be given
promptly. □

Remark 2. It is not easy to directly handle (24) (i.e., (40)), a
transcendental equation with four variables in .eorem 1.
Hence, we adopt a special method: fix θ and L which can
maintain the globally exponential stability of NPRNN (1),
and then, in combination with some known parameters α, β,
l1, l2, and T, (24) becomes an implicit transcendental
equation with only two variables |σ| and |λ|. Transcendental
equation (24) is a key step to obtain the enclosed curve such
as the one in Figure 1, which is also the core work of this
paper.

Remark 3. .e order of the calculation in this paper is as
follows. At first, some parameters α, β, l1, l2, and T are given
in advance, and the upper bound of the neutral terms (L) can
be derived by (22). Next, we fix an exact L< L which can
ensure the exponential stability of NPRNN (1), and then, the
supremum of the piecewise arguments (θ3) is obtained by
(23). Furthermore, in accordance with the appropriately
selected values of L and θ (i.e., L< L and θ< θ3) and equation
(24), we can obtain the bounds of σ and λ which can
guarantee the RoGES of parameter-uncertainty NPRNN (8)
by MATLAB. .e robustness of the system means that if the

original NPRNN (1) is stable, the perturbed parameter-
uncertainty NPRNN (8) can still remain stable as long as the
selected values of σ and λ are included inside the closed
curve given by equation (24).

4. Illustrative Example

Example 1. For a two-state RNN,

_r1(t)

_r2(t)

⎛⎝ ⎞⎠ � −

1 0

0 1
⎛⎝ ⎞⎠

r1(t)

r2(t)

⎛⎝ ⎞⎠ +

0.09 0

0 0.09
⎛⎝ ⎞⎠

tanh r1(t)( 

tanh r2(t)( 

⎛⎝ ⎞⎠

+

0.1 0.1

0.1 0.1
⎛⎝ ⎞⎠

sin
r1(t)

2
 

sin
r2(t)

2
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(46)

Equation (46) can achieve globally exponential stability
with α � 1 and β � 0.6. According to .eorem 1, let
T � 0.5> ln 1/0.6 � 0. From (H1), let l1 � 1 and l2 � 0.5.
Besides, other parameters ‖A‖ � 1, ‖B‖ � 0.09, and ‖C‖ �

0.02 can also be listed; then, the stable state trajectory can be
seen in Figure 2.

When the neutral terms and piecewise arguments are
attached to RNN (46), (46) can be written as NPRNN (47):

d
dt

v1(t) + L sin v1(t)( 

v2(t) + L sin v2(t)( 

⎛⎝ ⎞⎠ � −

1 0

0 1
⎛⎝ ⎞⎠

v1(t)

v2(t)

⎛⎝ ⎞⎠ +

0.09 0

0 0.09
⎛⎝ ⎞⎠

tanh v1(t)( 

tanh v2(t)( 

⎛⎝ ⎞⎠

+
0.1 0.1

0.1 0.1
⎛⎝ ⎞⎠

sin
v1(c(t))

2
 

sin
v2(c(t))

2
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(47)

σ

λ

−8 −6 −4 −2 0 2 4 6 8
×10−3

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08
0.1

σ:0.0071809
λ:0

σ:0
λ:−0.0797873

Figure 1: Stable enclosed curve of σ and λ in system (48).
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where θk  � k/10{ } and ηk  � 2k + 1/20{ }, k ∈ N. .e
piecewise constant argument function c(t) � ηk when
t ∈ [θk, θk+1), k ∈ N.

Lastly, if we consider additional dual-parameter per-
turbations for (47), then parameter-uncertainty NPRNN
(48) is formulated as

d
dt

u1(t) + L sin u1(t)( 

u2(t) + L sin u2(t)( 

⎛⎝ ⎞⎠ � − (1 + σ)
1 0

0 1
⎛⎝ ⎞⎠

u1(t)

u2(t)

⎛⎝ ⎞⎠ +(1 + λ)
0.09 0

0 0.09
⎛⎝ ⎞⎠

×
tanh u1(t)( 

tanh u2(t)( 

⎛⎝ ⎞⎠ +
0.1 0.1

0.1 0.1
⎛⎝ ⎞⎠

sin
u1(c(t))

2
 

sin
u2(c(t))

2
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(48)

In order to make the process clearer, the following ex-
planations will be divided into two parts to illustrate the
RoGES of system (48). On the one hand, we will explain how
much the interference intensity of neutral terms and

piecewise arguments the system (47) can tolerate to be stable
again based on the stable RNN (46) depicted in Figure 2.

Firstly, calculating the following equation by MATLAB,

exp(− 0.3) +
2L(1 − L) × 0.6 + 0.02

0.6 ×(1 − L)
2 × exp

1.09 ×(1 − L) + 0.01 ×(3 − L)

(1 − L)
2  � 1, (49)

then the upper bound of L is obtained: L � 0.0231.
Next, if we select L � 0.01<L � 0.0231 and substitute L,

α, β, l1, l2, and T into (H4) and (H5), we get θ1 � 0.5053 and
θ2 � 0.2004, respectively. So, the upper bound of θ is given
by the following θ3:

θ< θ3 � min
T

2
, θ1, θ2 

� min 0.25, 0.5053, 0.2004{ }

� 0.2004.

(50)

According to .eorem 1, the states v1(t) and v2(t) of
(47) will be stable with L � 0.01 and θ � 0.1, which is shown
in Figure 3.

On the other hand, we will explain the intensity of
connection weights σ and λ that parameter-uncertainty
NPRNN (48) can tolerate based on the stable NPRNN (47)
shown in Figure 3.

.erefore, we fix parameters L � 0.01 and θ � 0.1 so as to
satisfy the stable conditions in .eorem 1 and be consistent
with the parameter setting in Figure 3. Subsequently, the
stable region with (σ, λ) can be solved by a transcendental
equation by MATLAB:

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

r(
t)

r1(t)
r2(t)

Figure 2: Stable state trajectories of r1(t) and r2(t) in (46).
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exp(− 0.24) +
0.01 × exp(− 0.06) + 0.01

0.99

+
[0.01 ×(1 +(1.01/(1 − ξ))) +|σ| + 0.09|λ|] ×(1/0.6)

0.99

× exp
(1 +|σ|) + 0.09(1 +|λ|) + 0.01 ×(2 +(1.01/(1 − ξ)))

0.99
  � 1,

(51)

where

ξ � 0.011 +[(1 +|σ|) + 0.09(1 +|λ|)] × 0.1

×
1.011
0.99

exp
0.1 ×[(1 +|σ|) + 0.09(1 +|λ|)]

0.99
  .

(52)

According to the above implicit transcendental equation, the
stable region of σ and λ is depicted in Figure 1, that is, if the
intensity range of (σ, λ) is in the inner of the enclosed curve in
Figure 1, then parameter-uncertainty NPRNN (48) will be stable
again based on the stable NPRNN (47). .erefore, some stable
and unstable cases are given to verify the RoGES of system (48),
such as the stable case (i) and unstable cases (ii)-(v).

(i) If (σ, λ) � (0.001, 0.01), where |σ| � 0.001< |σ|sup �

0.0071809 and |λ| � 0.01< |λ|sup � 0.0797873,
according to Figure 1, the stable state trajectories of
u1(t) and u2(t) are shown in Figure 4.

Otherwise, some unstable cases should be provided to
illustrate. If the connection weight σ exceeds the
boundary value |σ|sup or λ exceeds the boundary value
|λ|sup in Figure 1, parameter-uncertainty NPRNN (48)
will be unstable even based on stable NPRNN (47),
which can be illustrated in the following:

(ii) If(σ, λ) � (0, 18), where |λ| � 18> |λ|sup � 0.0797873,
the unstable state trajectories are shown in Figure 5.

(iii) If (σ, λ) � (− 1.6, 0), where |σ| � 1.6> |σ|sup �

0.0071809, the unstable state trajectories are shown
in Figure 6.

(iv) If (σ, λ) � (0.5, 20), where |σ| � 0.5> |σ|sup �

0.0071809 and |λ| � 20> |λ|sup � 0.0797873, the
unstable state trajectories are shown in Figure 7.

(v) If (σ, λ) � (− 0.5, 20), similarly, the unstable state
trajectories are shown in Figure 8.

Remark 4. Figure 1 is an enclosed curve about σ and λ with
the boundary value |σ|sup and |λ|sup. Figure 1 is depicted by
(24); more details of the calculation process of (24) can be
seen in Remark 2. According to Remark 2, we transform (24)
from a four-variable equation to a two-variable equation
only related to |σ| and |λ|. By virtue of computer software
MATLAB, an enclosed region of σ and λ, and the boundary
values |σ|sup � 0.0071809 and |λ|sup � 0.0797873 are all di-
rectly exhibited in Figure 1 to demonstrate the RoGES of
parameter-uncertainty NPRNN (48). If we select |σ|< |σ|sup
and |λ|< |λ|sup, system (48) will be stable again based on
stable Figure 3. Or else, if |σ|> |σ|sup or |λ|> |λ|sup holds,
system (48) will lose its stability even on the basis of stable
Figure 3.

Remark 5. Figures 1–8 systematically and intuitively prove
the robustness of the system (48). From .eorem 1, the
supremum of neutral terms L is derived by (22), and the
supremum of piecewise arguments θ3 is derived by (23),
and the boundary of uncertain-parameter intensity is
characterized by (24). Figures 1–8 are obtained as follows.
(1) Fix some necessary parameters α, β, l1, l2, and T; an
initial globally exponentially stable RNN (46) is given by
Figure 2. (2) According to L and θ3 settled by (22) and (23),
here we select L � 0.01<L � 0.0231 and

0 1 2 3 4 5 6 7 8
−10

−8

−6

−4

−2

0

2

4

6

8

10

time t

v(
t)

be stable

Figure 3: Stability of v1(t) and v2(t) in (47) with L � 0.01 and θ � 0.1.
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t)

0 2 4 6 8 10 12
t
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Figure 4: Stability of u1(t) and u2(t) in (48) with (σ, λ) � (0.001, 0.01).
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0.5

1

1.5

2

2.5

u(
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Figure 5: Instability of u1(t) and u2(t) in (48) with (σ, λ) � (0, 18).
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Figure 6: Instability of u1(t) and u2(t) in (48) with (σ, λ) � (− 1.6, 0).
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θ � 0.1< θ3 � 0.2004; then, the NPRNN (47) can achieve
exponential stability and the stable trajectories are shown
in Figure 3. (3) Figure 1 is an stable enclosed curve about σ
and λ depicted by (24) (more details for Figure 1 is shown
in Remark 4). (4) If connection weights
|σ| � 0.001< |σ|sup � 0.0071809 and |λ| � 0.01< |λ|sup �

0.0797873, the parameter-uncertainty NPRNN (48) will be
stable again, and the stable trajectories are shown in

Figure 4. (5) However, as long as either |σ|> |σ|sup or
|λ|> |λ|sup is true, system (48) will be unstable, that is, the
final-time state value does not converge to the same
equilibrium point, which can be seen in Figures 5–8. More
importantly, Figures 5–8 are essential and favourable
reference frames for demonstrating the robustness of the
parameter-uncertainty NPRNN. Furthermore, a brief cal-
culation flowchart of Figures 1–8 is provided in Figure 9.

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

u(
t)

0 2 4 6 8 10 12
t

u1(t)
u2(t)

Figure 7: Instability of u1(t) and u2(t) in (48) with (σ, λ) � (0.5, 20).
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Figure 8: Instability of u1(t) and u2(t) in (48) with (σ, λ) � (− 0.5, 20).
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5. Conclusion

.is paper further explored the robustness of global expo-
nential stability of NPRNN with uncertain dual connection
weight matrices. Firstly, a foundational lemma is given. .e
relationship between the piecewise argument state and the
current state is obtained by virtue of Gronwall inequality and
the Lipchitz conditions. In addition, a main theorem is
given. .e upper bounds of the two interference factors and
the coupling restrictions of uncertain dual connection
weights are deduced by solving a four-element transcen-
dental equation based on stable NPRNN. Finally, the stable
and unstable cases of parameter-uncertainty NPRNN are
analyzed by a systematic comparison of several numerical
simulations, and it is also visually explained that if the two
categories of interferences (L and θ) and dual uncertain
connection weights (σ and λ) are lower than the deduced
values (L, θ3, |σ|sup, and |λ|sup) in .eorem 1, respectively,
the disturbed parameter-uncertainty NPRNN based on
stable NPRNN can be stabilized again.

Additionally, there is a prospect for future work. On the
one hand, future work may focus on the other diverse
dynamical stability analysis of NPRNN with connection
weight matrices, such as passivity and dissipativity [3, 8],
multistability [5], and asynchronous analysis [6, 23]. On the
other hand, we may also pay attention to attaching more
exogenous interferences on the system established in this
paper, such as mixed time-varying delays [3], stochastic
disturbances [8], and Markov switching [23]. Furthermore,
the uncertain-parameter NPRNN can be extended to more
multidimensional spaces, such as fractional-order systems
[1] and high-order systems [4].
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