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Drought frequently spreads across large spatial and time scales and is more complicated than other natural disasters that can
damage economic and other natural resources worldwide. However, improved drought monitoring and forecasting techniques
can help to minimize the vulnerability of society to drought and its consequent influences.(is emphasizes the need for improved
drought monitoring tools and assessment techniques that provide information more precisely about drought occurrences.
(erefore, this study developed a new method, Model-Based Clustering for Spatio-Temporal Categorical Sequences (MBCSTCS),
that uses state selection procedures through finite mixture modeling and model-based clustering. (e MBCSTCS uses the
functional structure of first-orderMarkovmodel components for modeling each data group. InMBCSTCS, the suitable orderK of
the components is selected by Bayesian information criterion (BIC). In MBCSTCS, the estimated mixing proportions and the
posterior probabilities are used to compute probability distribution associated with the future steps of transitions. Furthermore,
MBCSTCS predicts drought occurrences in future time using spatiotemporal categorical sequences of various drought classes.(e
MBCSTCS is applied to the six meteorological stations in the northern area of Pakistan. Moreover, it is found that MBCSTCS
provides expeditious information for the long-term spatiotemporal categorical sequences. (ese findings may be helpful to make
plans for early warning systems, water resource management, and drought mitigation policies to decrease the severe effects
of drought.

1. Introduction

Drought is relatively more volatile than other natural
disasters, and traditional valuations or forecast proce-
dures are failed to predict it. Its relatively unperceptive
onset and the multifaceted impacts cause the new as-
sessment methodologies [1–5]. Since last decades, it has
become more prominent to distress the environment and
economic sectors worldwide than other natural hazards
[6–8]. Moreover, determining the onset and end times of

the drought is still challenging for drought management.
Structurally, the effects of droughts slowly add over a
period, and they may linger for a long period [8–10].
However, it can be characterized by a precipitation de-
ficiency, which has substantial impacts on the agriculture,
hydrological systems, and on living standards of the
people [11, 12]. Despite perceptible effects of drought,
these effects acclimatize severity without appropriate
measures and are sustained for the long term even after
termination [9].
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(e advancements in drought assessing and monitoring
procedures can lead to better drought preparation and
decrease the susceptibility of society to drought and its
forgoing influences [8, 10, 13]. (erefore, it is essential to
find more suitable techniques and procedures to predict
drought occurrences more instantaneously. (e improved
method can be helpful to make plans for the early warning
system, drought mitigation policies, and water resource
management and decrease the severe effects of drought.
Furthermore, the occurrences and characteristics of drought
trigger the discussion about the various methodologies and
techniques. Generally based on the occurrences and char-
acteristics of the drought, authors have been categorizing the
drought into various groups, including “meteorological,
hydrological, agricultural, and socioeconomic” [14]. Chang
[15] and Eltahir [16] defined that meteorological drought
can be occurred due to the shortage of precipitation over a
region for some time. Several studies have considered
precipitation data to analyze meteorological droughts
[17, 18]. (e streamflow data have been frequently used for
analyzing hydrological drought [19–21]. Furthermore, the
reduction in soil moisture usually causes agricultural
drought. (e reduction in soil moisture can be affected by
meteorological and hydrological droughts. Socioeconomic
drought is linked to the shortfall in water resource systems,
and in this case, the water supply is unable to meet water
demands.

In the past few decades, numerous drought indices have
been proposed to assess the drought occurrences [22–26].
(e drought indices are frequently used to characterize the
drought. (e indices are based on various parameters that
describe the spatial and temporal extents. Obtaining accu-
rate and precise information about drought occurrences
using several drought indices is crucial for an early warning
policy; however, consistent and eminent drought informa-
tion plays a crucial part in preparing drought monitoring
and mitigating policies. Numerous drought indices with
their strengths and weaknesses exist in the literature and are
used by decision-makers who build action plans for drought
early warning systems and mitigation policies. For example,
Palmer [27] developed a drought index named the Palmer
Drought Severity Index (PDSI). (e PDSI worked well es-
pecially for subhumid and semiarid regions. (e PDSI
provided weekly information related to abnormal evapo-
transpiration deficit for the various regions. Information
obtained from PDSI can be helpful for the crops in the
region. (e moisture condition of the regions can be
assessed. Gommes and Petrassi [28] have proposed the
national rainfall index (NRI). (e NRI was used to provide
synthetic discussion in sub-Saharan countries in Africa.
(ey used NRI to determine the pattern recognition of
rainfall in various regions. (e Surface-Water Supply Index
(SWSI) was introduced by Shafer and Dezman [24]. (e
computation of the SWSI is based on two major sources of
irrigation water supply, namely, spring-summer streamflow
runoff and reservoir carryover. Both sources are accumu-
latively analyzed to determine the total availability of surface
water supply in season. Van Rooy [29] developed the
Rainfall Anomaly Index (RAI). (e RAI helped to find

geographical anomalies of the rainfall pattern in varying
regions. Weghorst [26] has introduced the Reclamation
Drought Index. Palmer [22] has introduced crop moisture
index (CMI). Bhalme and Mooley [23] has developed
Bhalme and Mooly drought index (BMDI). (e BMDI used
precipitation data and provided both negative and positive
values to measure drought intensities. McKee et al. [25]
developed the Standardized Precipitation Index (SPI). (e
SPI considered the time series of a long-term record of
precipitation in the climatic areas. (e dynamic charac-
teristic of SPI is that it can be studied for different time scales
and used to compare varying climatic areas.(erefore, SPI is
being used extensively for evaluating and recording drought
characteristics [30–35]. Furthermore, the drought indices
that are mentioned above have been used frequently for
drought monitoring in the different studies, although having
discrepancies among the indices, to gain consistent inter-
pretation across several regimes and spatial climates. (is
study utilized SPI, which is often employed to assess and
monitor meteorological drought and is recommended by the
World Meteorological Organization [36].

Furthermore, many clustering techniques are considered
in the literature [37–41]. (e clustering techniques focus on
grouping the data so that the data group with similar
characteristics would be selected within the cluster, while
distinct information can exist among other clusters. Various
clustering techniques have been frequently considered in
machine learning approaches, especially in statistics and
computer science, due to the variety of their applications
[41–45]. Among the various techniques, model-based
clustering groups data and presumes that each data cluster
can be perceived as a part of any probability distribution
[46, 47]. In various data groups, numerous distributions are
preferred, and finite mixture models are desired [48]. (e
performances of the model-based clustering are outstanding
in spectrometry data, text classification, social networks, and
distinct grouping objects. Model-based clustering is used for
time series [49] and regression time series analyses [50].
Several studies related to model-based clustering are
available in the literature; however, it has not yet received
greater attention in drought analysis. (erefore, this study
developed a new technique known as Model-Based Clus-
tering for Spatio-Temporal Categorical Sequences
(MBCSTCS) to precisely predict drought occurrences for
spatiotemporal categorical sequences. (e performance of
the proposed technique is assessed by using six meteoro-
logical stations in the northern area of Pakistan.

2. Methods

2.1. Standardized Precipitation Index (SPI). (e long-term
record of precipitation in the climatic area observed in
the time sequence can be used to compute SPI. (e vital
feature of SPI is that it can be considered for various time
scales and is being widely used to calculate and record
drought occurrences [34, 35, 51, 52]. (e analysis with
various time scales can provide varying information. For
example, the moisture conditions in different seasons can
be assessed using SPI at a three-month time scale. (e SPI
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can assess information related to the water deficiency at a
twelve-month time scale. Furthermore, the use of SPI
describes the best characteristics in forecasting and an-
alyzing risks as a probabilistic approach [31, 35, 53]. (e
SPI has been frequently used for drought monitoring in
several aspects, for example, spatiotemporal analysis,
forecasting, frequency analysis, and climatic studies
[33, 35, 51, 52]. As precipitation is only used to determine
the climatic condition for a particular area, it offers
spatially reliable interpretations across various climates
[32, 34, 35]. (erefore, it can be advantageous for the
areas where other parameters are available that are re-
quired to calculate other indices and of significantly great
concern to the various environmental and temporal
circumstances [54]. (is study focuses on the new
methodology developed for monitoring drought more
precisely and comprehensively in a specific area. (e SPI
at various time scales (1, 3, 6, 9, 12, and 24) is used for the
current analysis.

2.2. Model-Based Clustering for Spatio-Temporal Categorical
Sequences (MBCSTCS). Model-based clustering has been
used for time series [49] and regression time series an-
alyses [50]. Various studies associated with model-based
clustering are available in the literature; the technique has
significant importance for many applications; however, it
has not yet received greater attention in drought analysis.
Furthermore, in drought classification, categorical se-
quences are required for obtaining reliable results for the
drought characterization. In this perspective, this study
proposed MBCSTCS to analyze the categorical drought

sequences for various time scales and stations. (e
MBCSTCS provides more significant results by using a
categorical grouping of sequences than traditional ap-
proaches that have been used for the prediction. (e
MBCSTCS reflects the steering behavior of drought
classes on various time scales and stations. Moreover, the
selected drought classes (states) (“(Extremely Dry (ED),
Severely Dry (SD), Normal Dry (ND), Median dry (MD),
Median Wet (MW), Severely Wet (SW), and extremely
Wet (EW)”) are considered for the region [55].

Moreover, the first-order Markov model has a rationale
in statistical modeling. (e MBCSTCS considers the func-
tional shape of first-order Markov model components for
each data group. Furthermore, in the MBCSTCS the data
groups consist of various sequences of drought states. For
example, we let observation X � (x1, . . . , xm)T that specifies
for an ordered sequence, where each of its elements xJ

consists of a categorical value that is specified for varying
drought states and coded by natural integers. Furthermore, it
is assumed that the number of unique drought states equals
p, i.e., xJ ε {1, 2, . . . p} for j � 1, 2, . . . m. Moreover, using a
joint probability expression it can be written as
P(X � x) � P(X1 � x1, . . . , Xm � xm). In this format, the
first-order Markov model provides an interesting method to
describe the transitions between varying states. (e prob-
ability of transitions of drought states in the next step de-
pends only on the present state and has no connection to the
drought states that are observed in the past. (e joint
probability using the first-order Markov model is given in
the following equation:

P(X � x) � P X1 � x1, . . . , Xm � xm( 􏼁 � P X1 � x1( 􏼁 􏽙

m

J�2
P Xj � xj| Xj−1 � xj−1􏼐 􏼑. (1)

Furthermore, to simplify the notations, we use β to
denote initial state probability and c to represent the
transition probability. For example, β x1

shows the
probability that the initial state is x1 and transition
probability of xj−1 to xj is represented by cxj−1 xj

. So,
utilizing the given notations, we can write as there are p
states in the Markov model, and in this case, the initial
state probabilities can be represented as β � (β1, . . . βp)T

and the matrix of the transitions as Γ � (cjr)p×p.
P(X � x) � βx1

􏽑
m
j�1 cxj−1 xj

. Moreover, for the specific
component based on finite mixture modeling the β x1

and
cxj−1 xj

are replaced by the β kx1
and ckxj−1 xj

and the model
can be written as follows:

f(x; θ) � 􏽘
K

k�1
πkβ kx1

􏽙

m

j�1
c kxj−1 xj

. (2)

(e log-likelihood of equation (2) can be expressed as
follows:

log L θ; xi􏼈 􏼉
n

i�1( 􏼁 � 􏽘
n

i�1
log 􏽘

K

k�1
πk 􏽙

p

l�1
β kl( 􏼁

I �xi1�l( ) 􏽙

mi

j�1
c kxi(j−1)xij

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(3)

In equation (3), the I(.) is indicator function and mi in-
dicates the length of ith categorical sequence. Expectation-
maximization (EM) algorithm is employed to estimate the
parameters [56].
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2.3. Prediction of Future Drought Occurrences for Spatial-
Temporal Categorical Sequences. (e setting of transition
probability matrices can be represented by Γ1, Γ1, . . . , Γk
and a probability distribution π1, π2, . . . , πK connected
with mixture components, and the M-step transition
probability matrix can be created by

ΓM � 􏽘
K

k�1
αkΓ

M
k , (4)

where ΓMk indicates the matrix ΓM raised to the power M.
(e choice of the appropriate distribution π1, π2, . . . , πK is
linked with the application. However, the (􏽣α1 , 􏽣α2 , . . ., 􏽣αK )
and (i.e., 􏽣zi1 , 􏽣zi2 , . . ., 􏽣ziK ), which are the mixing proportion
estimated vector and the posterior probability estimated
vector, respectively, associated with a particular sequence,
can hold significant influence for the computation of
probability distribution for future drought occurrences.

3. Application

(e choice of the region is based on its structural impacts
and other climatic characteristics that affect the other
parts of the country. (e outcomes of the study are
obtained from the six selected stations with time-series
data from January 1971 to December 2017 of the northern
area of Pakistan (Figure 1) using SPI at various time
scales. (e selected stations have significant importance
for the selected region and other regions of the country.
For example, the reservoir system and agriculture sector
are highly associated with the selected region; therefore,
the climatic discrepancy of the region is significant for the
other parts of the country [57, 58]. Furthermore, the
fluctuation of the weather pattern in other regions within
the country also contributed to their impacts on socio-
economic and environmental sectors. Most of the parts of
the country have been facing the highest temperature,
and these parts are being highly influenced by global
warming [58, 59]. Undoubtedly, extreme climate events,
including high temperatures, rainstorms, and droughts,
are frequently associated with global climate warming.
Climate warming significantly affects the universe, which
usually causes a high temperature and water deficiency.
(ese issues are associated with drought occurrences that
damage the environment, natural resources, and lives of
the people distinctly more than any other natural hazard.
Furthermore, it produces convoluted consequences for
society and the economic sectors of the country.
(erefore, it is vital to recognize the drought occurrences
more instantly by emerging comprehensive and efficient
frameworks and techniques. In this regard, a new tech-
nique is applied to the selected stations that will influ-
entially expand the capability of detecting drought
occurrences and improve the competencies for drought
evaluation and its assessment.

3.1. Results. (e findings of this study are obtained by using
long time series data collected from six climatological sta-
tions in the northern area of Pakistan. (e selected stations

are observed to show homogenous results for the specific
indices when calculated for varying stations with a single
time scale [55]. However, on the varying time scales, the
observations of the indices may vary. Furthermore, the
inconsistency in their observations and varying generating
processes of the drought states causes for developing a new
method (i.e., MBCSTCS). (e MBCSTCS considers the
various time scales for a particular station as sequences with
inconsistency in their sizes and varying data generating
processes to analyze the spatiotemporal behavior of the
drought states. It means that the observations of the SPI at
scale-1 (SPI-1) for Astore station are considered as se-
quence-1, sequence-2 takes all observations of Astore station
in SPI at scale-3 (i.e., SPI-3), and these sequences are
continued to the last scale (SPI-24). Accordingly, these se-
quences can be assigned for other stations and time scales.
Furthermore, the observations of each sequence assume that
they come from the specific components that are selected
appropriately for the data. (e selected states are observed
corresponding to every calculated value of SPI. (ese se-
lected states are further distributed categorically for the
computation of this study.

Moreover, Niaz et al. [55] proposed a new technique for
monthly forecasting drought intensities using model-based
clustering of categorical drought state sequences. (e men-
tioned study is performed on various stations based on a single
time scale. However, in this study, the various time scales are
accumulatively considered for the monthly prediction of
drought severity in a region. (e outcomes of the current
analysis are more appropriate, especially for the selected sta-
tions, and help the policymakers to make better policies related
to various kinds of droughts including meteorological, hy-
drological, and socioeconomic. Furthermore, the current
analysis is performed by using the R package ClickClust [45]
that handles the case of coming observations from various
probability distributions (K-components). (e package is
based on finite mixtures with Markov model components and
is used to find the specific outcomes related to the specific
sequence.(e appropriate order K of the components (i.e., the
mixture model) is identified by minimizing the Bayesian in-
formation criterion (BIC) [60]. Moreover, for a specific se-
quence, the mixing proportions estimated vector and the
associated posterior probability estimated vector were used to
calculate probability distribution associated with future steps of
transitions from the last state of these sequences. Furthermore,
climatological statistics on the given data of various stations are
provided in Figure 2. To accomplish the analysis, the R package
named propagate is used to provide appropriate findings and
permit the specific analysis. In the mentioned package, various
distributions are considered; among the given distributions, the
appropriate choice of the distribution is based on the BIC
values. (is selection criterion is helpful to find the best fitting
for the time scale and stations specified for the analysis.

(e BIC values are given in Table 1 for the selected
probability distributions fitting appropriately to the several
time scales and stations. For example, at Astore station for
scasle−1, the BIC value (−1036.5) of three-parameter (3P)
Weibull distribution is found minimum among other dis-
tributions. (erefore, the (3P) Weibull distribution is

4 Complexity



considered as best fitted distribution for the Astore station at
a scale−1. Furthermore, in Astore station for scale−3, the
Gamma distribution is selected with theminimumBIC value
(−1279.1). Moreover, in scale−6 and scale−9, it is also found
that the Gamma distribution is best fitted in Astore station
with minimum BIC values −892.8 and −896.1, respectively.
Furthermore, Cosine and Skewed- normal distributions are
considered for scale−12 and scale−24, respectively, in the
Astore station. In Bunji station at scale−1, the (3P)Weibull is
showing the minimum value of BIC (i.e., 1,031.0) and
specified for the computation. At scale−3, scale−6, scale−9,
scale−12, and scale−24 at Bunji station, the Gamma,
Skewed-normal, Normal, Laplace, and Laplace are selected
with BIC values −824.9, −1162.2, −649.1, −688.1, and −843.7,
respectively. In Gupis station 4p beta has a minimum value
of BIC (−788.7) for scale−1. In other scales (3, 6, 9, 12, and
24), the gamma, Gumbel, Johnson SU, and scaled/shifted t
have minimum values of BIC −1264.9, −1305.4, 1519.0,
−937.6, and 1408.0, respectively.

Accordingly, various distributions are selected for var-
ious time scales for the other three stations (Chilas, Gilgit,
and Skardu) (1, 3, 6, 9, 12, and 24). After standardization
with a selected probability distribution, the next step is the
classification of the SPI for various drought states (Table 2).
In Figure 3, the temporal behavior of the SPI at scale-1 is
presented for various stations. However, the behavior of SPI

for other selected time scales can be presented accordingly.
After calculating values to quantify SPI at various time
scales, we first categorized SPI for its magnitude. (e be-
havior of several drought classes for SPI at a one-month time
scale in selected stations is provided in Table 3, where the
observations are taken as an example for various months of
the year 2017. Accordingly, the behavior of several drought
classes for other years for different time scales is calculated.
(ese observed drought classes are further used to find the
probability distribution associated with the three-step
transition from the last state in the various sequences. (e
posterior vector related to these sequences specifies the
parameter values (briefly described in Section 2.2). (e
obtained results show that the most likely state to visit in
three steps is ND, which means the probability associated
with ND is higher than the other selected states in varying
sequences (Table 4). For example, for the Astore station, in
sequence-1, the value indicates that the probability of ND
occurrence is 0.6668, which is higher than other selected
states.(is probability of occurrence for ND can be observed
from other sequences. Further in sequence-2, the probability
of ND occurrence after three months is 0.6729. Moreover,
the probabilities of ND in sequence-3, sequence-4, se-
quence-5, and sequence-6 are 0.6611, 0.6221, 0.6450, and
0.6729, respectively. It means that the policymakers should
make their plans accordingly for ND. Other information can

Skardu

Gupis

Chilas

Gilgit

Astore

Bunji

73°0′0″E 74°0′0″E 75°0′0″E 76°0′0″E 77°0′0″E

73°0′0″E 74°0′0″E 75°0′0″E 76°0′0″E 77°0′0″E

N

65°0′0″E

20
°0
′
0″

N
25

°0
′
0″

N
30

°0
′
0″

N
35

°0
′
0″

N
40

°0
′
0″

N

20
°0
′
0″

N
25

°0
′
0″

N
30

°0
′
0″

N
35

°0
′
0″

N
40

°0
′
0″

N

70°0′0″E 75°0′0″E

65°0′0″E 70°0′0″E 75°0′0″E
33

°0
′
0″

N
34

°0
′
0″

N
35

°0
′
0″

N
36

°0
′
0″

N
37

°0
′
0″

N
38

°0
′
0″

N

34
°0
′
0″

N
35

°0
′
0″

N
36

°0
′
0″

N
37

°0
′
0″

N
38

°0
′
0″

N

Selected stations
Astore
Bunji
Chilas
Gilgit
Gupis
Skardu

0 700 1,400 2,100 2,800350
Kilometers

0 40 80 120 16020
Kilometers

Pakistan

Selected Stations

N

S

W E

Figure 1: (e study area consisting of six required stations in the northern area of Pakistan is presented.
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be observed from the various sequences for different time
scales. However, the ND is prevailing in all time scales in the
selected region. So, the policymakers should work to miti-
gate negative impacts for this specific drought state (ND).

3.2. Discussion. (e time series data were collected from six
meteorological stations in the northern area of Pakistan.(e
drought index SPI is used for the analysis with various time
scales for selected stations. (e reliable and efficient out-
comes of the analysis provide strong indications about the
drought occurrences that can significantly help for an early
warning system [31, 53, 58, 59, 61]. (erefore, a new
MBCSTCS method is developed for the drought monitoring
and mitigation policies that explicitly envisage spatiotem-
poral information. (e proposed technique uses the long-
run behavior of drought states (categorical sequences) from
various time scales and stations in the selected region. If a
time scale changes, then the categorical sequence sizes are
affected.(erefore, in past studies, researchers have not been
studied various time scales accumulatively due to incon-
sistency in their sizes and the phenomenon that has

generated the observations for varying stations. However,
these issues are being resolved effectively by the current
technique. Furthermore, the outcomes associated with the
present technique help to accomplish the current objective
and provide more substantial outcomes for the selected
drought states based on varying time scales and stations.
MBCSTCS uses state selection procedures through finite
mixture modeling and model-based clustering. Niaz et al.
[55] developed a new model-based clustering technique that
predicts probabilities for various drought classes. (ey
computed categorical drought state (classes) sequences for
selected drought classes and predicted their probabilities for
the future. (e mentioned study used a single time scale on
various stations. However, in this study, the varying time
scales are accumulatively measured for the monthly pre-
diction of drought severity in selected stations. (erefore, it
is a novel method for predicting drought severity using
spatiotemporal categorical sequences. MBCSTCS is applied
to six meteorological stations in the northern area of
Pakistan. It is found that MBCSTCS provides expeditious
information for the long-term spatiotemporal categorical
sequences. (e present analysis results are more suitable,
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Figure 2: (e climatological characteristics of the precipitation to describe the period from January 1971 to December 2017 of specified
stations. (e (a) mean, (b) 1st-quartile, (c) median, (d) 3rd_quartile, (e) kurtosis, and (f) st_dev.
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Table 2: (e classification of the SPI for various drought states

SPI Observed drought states
SPI≤−2 Extremely dry (ED)
SPI>−2 and SPI≤−1.5 Severely dry (SD)
SPI>−1.5 and SPI≤−1 Median dry (MD)|
SPI>−1 and SPI≤ 1 Normal dry (ND)
SPI> 1 and SPI≤ 1.5 Median wet (MW)
SPI> 1.5 and SPI≤ 2 Severely wet (SW)
SPI> 2 Extremely wet (EW)
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Figure 3: (e temporal presentation of SPI at scale-1 for varying stations. (a) Astore, (b) Bunji, (c) Gupis, (d) Chilas, (e) Gilgit, and (f)
Skardu.

Table 3: (e behavior of various drought classes for SPI at scale-1 in selected stations.

Month
Astore Bunji Gupis Chilas Gilgit Skardu

SPI Class SPI Class SPI Class SPI Class SPI Class SPI Class
Jan −1.8044 SD −1.2152 MD −1.0805 MD −0.3254 ND −0.230 ND −0.4827 ND
Feb −1.8044 SD 0.2629 ND −1.0805 MD 0.8075 ND 0.201 ND −1.2581 ND
Mar −0.4745 ND −1.1059 MD −0.6655 ND −0.1535 ND −1.052 MD −0.3096 ND
Apr 1.8879 SW 0.9377 ND 1.2811 MW 2.2094 EW 1.828 SW 1.0615 EW
May 0.3314 ND 0.6975 ND 0.9813 ND 0.8297 ND 0.972 ND 0.0796 ND
Jun −0.3302 ND −0.6380 ND −0.2883 ND −0.0637 ND 0.931 ND −0.8574 ND
Jul −0.1857 ND 0.8192 ND 0.7872 ND 0.1366 ND 1.057 MW −0.2401 ND
Aug −0.1967 ND 0.7181 ND 1.1317 MW 0.2058 ND 0.386 ND 0.0086 ND
Sep −0.5938 ND 0.2824 ND 0.4029 ND 0.1937 ND 0.476 ND 0.0739 ND
Oct −1.7685 SD −1.1576 MD −0.2883 ND −1.0539 MD −0.957 ND −1.2581 MD
Nov −1.8044 SD −1.2806 MD −1.0805 MD −1.0995 MD −1.323 MD −1.2581 MD
Dec −1.2499 MD −1.2806 MD −0.0621 ND −1.0539 MD −1.240 MD −1.2168 MD
Note. (e observations are considered for varying months of the year 2017. (e specific year is selected as an example. Accordingly, the behavior of various
drought classes for other years for various time scales is calculated.
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especially for the selected region, and help the policymakers
make better policies related to various kinds of drought,
including meteorological, hydrological, and socioeconomic.
(e MBCSTCS may help to make plans for early warning
systems, water resource management, and drought miti-
gation policies to reduce the severe effects of drought.

4. Conclusions

(e outcomes of MBCSTCS provide the future proba-
bilities corresponding to each of the drought states in
varying stations and time scales. (e obtained outcomes
show that the most likely state to visit is ND, which means
the probability associated with ND is higher than the
other selected states in varying sequences. For instance, in
sequence-1, the value shows that the probability of ND is
0.6668, which is higher than other selected states. Further
in sequence-2, the probability of ND after three months is
0.6729. (is probability of ND also prevails in other
sequences. Furthermore, in sequence-6, the ND has a
higher probability (0.6729) of occurrence in the future.
(erefore, policymakers should work to reduce the
negative impacts of this drought state (ND). In conclu-
sion, this study suggests a more appropriate technique
that emphasizes evaluating drought occurrences more
instantaneously. (e MBCSTCS helps the policymakers
to make better policies related to various kinds of
drought, including meteorological, hydrological, and
socioeconomic. Furthermore, the analysis provides the
basis to bring more attention to early warning systems.
Moreover, the outcomes of the current analysis are only
capable of transmitting in the present circumstances of
the application site, as the circumstance of the selected
stations will change the influence of the outcome for the
extrapolations. Furthermore, the study can find some
propagations and compute several thresholds for dif-
ferent drought severities for the region. Moreover, other
drought indices can be incorporated to envisage the
drought occurrences effectively.
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