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'is paper aims to introduce a superior discrete statistical model for the coronavirus disease 2019 (COVID-19) mortality numbers
in Saudi Arabia and Latvia. We introduced an optimal and superior statistical model to provide optimal modeling for the death
numbers due to the COVID-19 infections. 'is new statistical model possesses three parameters. 'is model is formulated by
combining both the exponential distribution and extended odd Weibull family to formulate the discrete extended odd Weibull
exponential (DEOWE) distribution. We introduced some of statistical properties for the new distribution, such as linear
representation and quantile function. 'e maximum likelihood estimation (MLE) method is applied to estimate the unknown
parameters of the DEOWE distribution. Also, we have used three datasets as an application on the COVID-19 mortality data in
Saudi Arabia and Latvia. 'ese three real data examples were used for introducing the importance of our distribution for fitting
and modeling this kind of discrete data. Also, we provide a graphical plot for the data to ensure our results.

1. Introduction

Modeling pandemics is significant in our life as it makes it
easier for researchers to understand the behavior of the
spread of each virus and its effect on humanity. Nowadays, a
new virus has risen on the top of the scene, Severe Acute
Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which
causes COVID-19. 'is virus attracts the interest of many
researchers who tried many attempts to model daily deaths
in the entire world by the effect of COVID-19 infection. As
an example of these studies, Al-Babtain et al. [1] introduced a
natural discrete Lindley distribution and studied the

mortality numbers in Egypt from 8 March to 30 April 2020.
Also, Hasab et al. [2] make a study on the COVID-19
mortality numbers by using the susceptible infected re-
covered (SIR) epidemic dynamics of COVID-19 pandemic
to model COVID-19 infections in Egypt. Algarni et al. [3]
discussed type-I half-logistic Burr XG family with applica-
tion of COVID-19 data. Almetwally [4] discussed the odd
Weibull inverse Topp–Leone distribution with applications
to COVID-19 data. Almetwally et al. [5] discussed new
distribution with applications to the COVID-19 mortality
rate in two different countries. El-Morshedy et al. [6] studied
a new discrete distribution, called discrete generalized
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Lindley, to analyze the counts of the daily COVID-19 cases
in `Hong Kong and daily new deaths in Iran. Maleki et al. [7]
used an autoregressive time-series model regarding the two-
scale mixture normal distribution to predict the retrieved
and reported COVID-19 occurrences. Nesteruk [8] forecasts
the daily new COVID-19 occurrences in China by using the
mathematical model SIR. Batista [9] used a logistic growth
regression model to estimate the final size and its peak time
of the COVID-19 epidemic. Muse et al. [10] discussed
modeling the COVID-19 mortality rate with a new versatile
modification of the log-logistic distribution. Liu et al. [11]
presented a new statistical model called arcsine-modified
Weibull distribution for modeling COVID-19 patients’ data.

Afify and Mohamed [12] developed the extended odd
Weibull exponential (EOWE) distribution for data modeling
in many sciences such as architecture, medicine, and reli-
ability. 'e EOWE distribution is a flexible model offering
different density function forms such as left-skewed, sym-
metrical, right-skewed, and reversed-J; see, the work of
Alshenawy et al. [13]. Its hazard rate function (HRF) may
provide declining, constant, rising, upside-down bathtub
and J-shaped hazard rates, and bathtub and modified
bathtub hazard ratings are quite important in terms of
durability technologies. For more details, see the work of
Alshenawy et al. [13]. Generally speaking, most distributions
are used to model such data and can usually take four or five
parameters to achieve these hazard rates. DEOWE distri-
bution has three parameters only, and it can be used to
analyze censored data due to its easy, closed forms of its HRF
and cumulative distribution function (CDF).

'e CDF and probability mass function (PMF) of the
DEOWE distribution are given, respectively, by

F(x; α, β, λ) � 1 − 1 + β[exp(λx) − 1]
α

 
− 1/β

,

x> 0, α, β, λ> 0,
(1)

and

f(x; α, β, λ) � αλ exp(αλx)[1 − exp(− λx)]
α− 1

· 1 + β[exp(λx) − 1]
α

 
− 1/β− 1

, x> 0, α, β, λ> 0.

(2)

Why do we need discrete distributions is a question that
any researcher would ask. 'e reason is that most current
continuous distributions do not provide reliable findings for
modeling the COVID-19 scenarios.'e reason for all of this,
as we all know, is that death counts or regular new cases
display extreme dispersion.

Many authors have introduced discrete distributions to
overcome the deficiencies of the continuous distribution in
modeling mortality numbers, such as Para and Jan [14] have
introduced discrete Burr-type XII and discrete Lomax dis-
tributions. Discrete Lomax (DL) distribution is the discrete
distribution which exhibits heavy tails and can be helpful in
medical science and other fields, discrete Burr (DB), which is
presented by Krishna and Pundir [15], discrete Lindley (DL),
which is introduced by Gómez-Déniz and Caldeŕın-Ojeda
[16], discrete generalized exponential (DGEx), which is
presented by Nekoukhou et al. [17], natural discrete Lindley

(NDL), which is introduced by Al-Babtain et al. [1], and
discrete Gompertz Exponential (DGzEx), which is presented
by El-Morshedy et al. [6]. Gillariose et al. [18] introduced
discreteWeibull Marshall–Olkin family of distributions with
properties, characterizations, and applications. Discrete
Marshall–Olkin generalized exponential distribution has
been presented by Almetwally et al. [19]. Al-Babtain et al.
[20] discussed the estimation of the parameters of two
discrete models called discrete Poisson–Lindley and discrete
Lindley distributions, with some applications.

To convert a continuous distribution to a discrete one, a
variety of methods are possible. A survival discretization
approach is the most widely used technique for generating
discrete distributions. It necessitates the existence of CDF,
the existence of a continuous and nonnegative survival
function, and the division of period through unit intervals.
In Roy [21], the probability mass function (PMF) of a
discrete distribution is described as

P(X � x) � P(x≤X<x + 1) � S(x) − S(x + 1);

x � 0, 1, 2, . . . ,
(3)

where S(x) � P(X≥x) � 1 − F(x;Θ), where F(x;Θ) is a
CDF of continuous distribution and Θ is a vector of pa-
rameters. 'e random variable X is said to have the discrete
distribution if its CDF is given by P(X<x) � F(x + 1;Θ).
'e hazard rate is given by hr(x) � P(X � x)/(S(x)). 'e
reversed failure rate of discrete distribution is given as
rfr(x) � P(X � x)/(1 − S(x)).

'e novelty and the motivation to write this paper is to
find the best statistical model which can provide the fit for
COVID-19 mortality numbers in Saudi Arabia and Latvia by
introducing a new discrete model, namely, the DEOWE
distribution. 'e point estimation of the unknown pa-
rameters has been discussed by using theMLEmethod. Also,
we make an expectation for the mortality number in each
day.

'e remainder of this article is organized as follows. In
Section 2, we define DEOWE distribution. DEOWE linear
representation of its PMF is obtained in Section 3, along
with some of its statistical properties. 'e MLE method is
used for parameter estimation in Section 4. In Section 5, we
performed a simulation study to study the performance of
the distribution relative to the true values of the param-
eters; also, we evaluated the relative bias (Rbias) and mean
square error (MSE) of the estimation method. Two real
datasets were used as three real data applications on the
mortality numbers in Section 6. 'ese three applications
were used to prove that the proposed distribution provides
the efficiency of the DEOWE distribution with respect to
other distributions by evaluating the information criteria
and the P values and chi-square values for all distributions.
Finally, conclusions and the major findings are given in
Section 7.

2. DEOWE Distribution

In this section, we introduce the DEOWE distribution, the
PMF, and the CDF which are obtained. Some figures with
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different values of the parameters for the PMF and HRF of
the distribution are represented in Figures 1 and 2.

'e DEOWE distribution is obtained based on the
survival discretization method. Let S(x; ϑ) � 1 − F(x; ϑ)

denote the survival function (S) of a baseline model with
parameter vector ϑ, respectively, so the CDF of the DEOWE
distribution is given by

F(x; α, β, λ) � 1 − 1 + β e
λ(x+1)

− 1 
α

 
− 1/β

,

x � 0, 1, 2, . . .∞.α, β, λ> 0.
(4)

'e corresponding PMF of (4) is defined by

P(X � x; α, β, λ) � 1 + β e
λx

− 1 
α

 
− 1/β

− 1 + β e
λ(x+1)

− 1 
α

 
− 1/β

,

x � 0, 1, 2, . . .∞.α, β, λ> 0,

(5)

where α, β, and λ are positive parameters. 'e random
variable with PMF (5) is denoted by X ∼ DEOWE (α, β, λ) ;
the corresponding HRF of the DEOWE distribution is de-
fined by

h(X � x; α, β, λ) �
1 + β eλx − 1 

α

1 + β eλ(x+1) − 1 
α⎛⎝ ⎞⎠

− 1/β

− 1. (6)

3. Mathematical Properties

'is section of the paper introduces the linear representation
of the DEOWE distribution with its quantile function.

3.1. Linear Representation. In this section, we made a linear
representation for the PMF of the proposed distribution. We
used linear representation to derive different statistical
properties of the proposed model. Unfortunately, we reach a
result form which does not follow any statistical model, and
it is mathematically difficult to use to derive different sta-
tistical properties. In the case of the proposed distribution,
we have three different cases for this linear representation.

For |x|< 1, we have the following expansion:

(1 + x)
− n

� 
∞

k�0
(− 1)

k
n + k − 1

k
 x

k
. (7)

For |x|> 1, we have the following expansion:

(1 + x)
− n

� 
∞

k�0
(− 1)

k
n + k − 1

k
 x

− (k+n)
. (8)

Case 1. If β[eλx − 1]α < 1 and x≠ 0, then we have

1 + β e
λx

− 1 
α

 
− 1/β

� 
∞

k,m,w�0
(− 1)

k+m+w
1/β + k − 1

k

⎛⎝ ⎞⎠

·

αk

m

⎛⎝ ⎞⎠
βkλw

(m − αk)
w

w!
x

w
,

(9)

and if β[eλ(x+1) − 1]α < 1 and x≠ 0, then we have

1 + β e
λ(x+1)

− 1 
α

 
− 1/β

� 

∞

k,m,w�0
(− 1)

k+m+w

·

1/β + k − 1

k

⎛⎝ ⎞⎠

·

αk

m

⎛⎝ ⎞⎠
βkλw

(m − αk)
w

w!
e

− λ(m− αk)
x

w
.

(10)

From equations (7) and (8), we have a linear repre-
sentation of PMF (5) as the following:

P(X � x; α, β, λ) � 
∞

k,m,w�0
Φk,m,wx

w
, (11)

where Φk,m,w � (− 1)k+m+w 1/β + k − 1
k

 
αk

m
 βkλw

(m − αk)w/w![1 − e− λ(m− αk)].

Case 2. . If β[eλx − 1]α > 1, then we have

1 + β e
λx

− 1 
α

 
− 1/β

� 
∞

k,m,w�0
(− 1)

k+m+w

1
β

+ k − 1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

α k +
1
β

  + m − 1

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
β− (k+1/β)λw

[m + α(k + 1/β)]
w

w!
x

w
.

(12)

If β[eλ(x+1) − 1]α > 1, then we have
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1 + β e
λ(x+1)

− 1 
α

 
− 1/β

� 
∞

k,m,w�0
(− 1)

k+m+w

1
β

+ k − 1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

α k +
1
β

  + m − 1

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
β− (k+1/β)λw

[m + α(k + 1/β)]
w

w!

· e
− λ[m+α(k+1/β)]

x
w

.

(13)

From equations (9) and (10), we have a linear repre-
sentation of PMF (5) as the following:

P(X � x; α, β, λ) � 
∞

k,m,w�0
Ψk,m,wx

w
, (14)

where Ψk,m,w � (− 1)k+m+w 1/β + k − 1
k

 

α(k + 1/β) + m − 1
m

 β− (k+1/β)λw[m + α(k + 1/β)]w/w!

1 − e(− λ[m+α(k+1/β)]) .

Case 3. If β[eλx − 1]α < 1 and β[eλ(x+1) − 1]α > 1, then, from
equations (7) and (10), we have a linear representation of
PMF (5) as the following:
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Figure 1: Different shapes’ PMF of DEOWE distribution by using different values of the parameters. 'ese figures show that the PMF can
behave in different shapes.
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Figure 2: Different shapes’ HRF of DEOWE distribution by using different values of the parameters. 'ese figures show that the HRF can
behave in different shapes.
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P(X � x; α, β, λ) � 
∞

k,m,w�0
(− 1)

k+m+w

1
β

+ k − 1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

αk

m

⎛⎝ ⎞⎠ βkλw
(m − αk)

w

w!
x

w

− 
∞

k,m,w�0
(− 1)

k+m+w

1
β

+ k − 1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α k +
1
β

  + m − 1

m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
β− (k+1/β)λw

[m + α(k + 1/β)]
w

w!
e

(− λ[m+α(k+1/β)])
x

w
.

(15)

3.2. Quantile Function. 'e quantile function (QF) of the
DEOWE distribution is the inverse function of the CDF, and
it is given as follows:

xu �
log (1 − p)

− β
− 1/β 

1/α
+ 1 

λ
− 1.

(16)

'e three quarterlies (Q) of the DEOWE distribution can
be obtained by setting u � 0.25, 0.5, and 0.75 in equation
(11).

Bowley’s skewness (BS) and Moor’s kurtosis (MK) can
be calculated by the QF, respectively, as follows:

BS �
Q(1/4) + Q(3/4) − 2Q(1/2)

Q(3/4) − Q(1/4)
(17)

and

MK �
Q(7/8) − Q(5/8) + Q(3/8) − Q(1/8)

Q(6/8) − Q(2/8)
. (18)

Table 1 shows the numerical mean, variance, BS, andMK
for the distribution using different parameters. 'ese dif-
ferent values are coherent with the plots in Figure 1

4. Parameter Estimation

In this section, we use the MLE method to estimate the
unknown parameters of the DEOWE distribution. Assume
that x1, . . . , xn represents a random count discrete sample
that follows the DEOWE distribution having the parameters,
α, β, and λ. So, the log-likelihood function will have the
following form:

ℓ(Ω) � 
m

i�1
ln 1 + β e

λx
− 1 

α
 

− 1/β


− 1 + β e
λ(x+1)

− 1 
α

 
− 1/β

,

(19)

where Ω � (α, β, λ) is a vector of the DEOWE parameters.
'e MLEs are obtained by solving the following normal
equations:

Table 1: Numerical values of mean, variance, BS, and MK of DEOWE distribution.

α β λ Mean Variance BS MK
0.25 0.5 0.75 2.4448 13.68952 0.7331407 1.41471
0.5 0.75 1.5 0.8347 1.406517 0.4518331 1.297248
0.5 2.5 0.75 4.6491 41.72894 0.4530885 1.265127
2.5 0.5 0.25 2.7052 1.297823 0.04143768 1.251105
1.5 3 2 0.7423 0.9247832 0.3490083 1.446349
2 1.5 0.5 1.7974 1.720525 0.1950339 1.366696
3 0.25 1.5 0.3023 0.2109358 − 0.01123612 1.235523
0.75 2 3 0.6083 0.8625574 0.400 8665 1.350532
0.03 0.05 3 2.6457 21.2683 0.999 9985 2.105148
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zℓ(Ω)

zα
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n

i�1

ln e
λ xi+1( ) − 1  e

λ xi+1( ) − 1 

α

1 + β e
λ xi+1( ) − 1 

α⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

− 1/β− 1

1 + β e
λxi − 1 

α⎧⎪⎨

⎪⎩

⎫⎪⎬
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− 1/β

− 1 + β e
λ xi+1( ) − 1 
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⎪⎩

⎫⎪⎬

⎪⎭

− 1/β

−
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λxi − 1 
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λxi − 1 

α⎧⎪⎨

⎪⎩
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− 1/β− 1
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λxi − 1 
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⎪⎩

⎫⎪⎬
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xi + 1( e
λ xi+1( ) 1 + β e

λ xi+1( ) − 1 

α⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

− 1/β− 1

− xie
λxi 1 + β e

λxi − 1 

α⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

− 1/β− 1

1 + β e
λxi − 1 

α⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

− 1/β

− 1 + β e
λ xi+1( ) − 1 

α⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

− 1/β
� 0. (21)

'ese equations cannot be solved explicitly. Hence, a
nonlinear optimization algorithm as the Newton–Raphson
method is used.

5. Simulation Studies

'is part of the paper is devoted to make the Monte Carlo
simulation procedure. 'is simulation study is performed
for the classical estimation method: MLE for estimating
parameters of DEOWE distribution in a lifetime by R
language. Monte Carlo experiments are carried out based on
data generated from 10 000 random samples from DEOWE
distribution, where X has DEOWE lifetime for different

actual values of parameters and different sample sizes n: (20,
40, 70, and 100).

We evaluate in every table Rbias and MSE of
estimators.Tables 2–4 summarize the simulation results of
the point estimation method in this paper. We consider the
Rbias and theMSE values to perform the needed comparison
between different parameters’ values and their effect on
point estimation values.

In every table, we fix the β value and increase the values
of both λ and α, and then, we study the effect of increasing
and decreasing the values. Concluding remarks are provided
at the end of this section to illustrate the impact of the
increment and decrements of the parameter’s values.
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Table 2: Rbias and MSE for parameter of DEOWE distribution by using MLE when β � 0.5.

β � 0.5 λ 0.01 0.05 0.15
α N Rbias MSE Rbias MSE Rbias MSE

0.5

20
α 0.049 4 0.006 33 0.165 8 0.025 4 0.305 3 0.077 3
β − 0.0091 0.000 72 0.002 8 0.089 6 0.061 3 0.485 2
λ 0.057 8 0.000 012 0.016 2 0.001 2 − 0.026 6 0.008 0

40
α 0.028 8 0.002 63 0.147 6 0.014 4 0.265 6 0.049 2
β 0.003 6 0.002 98 0.028 5 0.076 5 0.132 2 0.384 3
λ 0.034 3 0.000 005 − 0.051 3 0.000 2 − 0.0471 0.006 3

70
α 0.037 0 0.002 01 0.141 7 0.010 2 0.250 7 0.029 9
β − 0.0021 0.000 29 0.072 6 0.076 0 0.132 4 0.260 4
λ 0.004 5 0.000 002 − 0.041 3 0.0002 − 0.112 9 0.002 3

100
α 0.040 0 0.001 915 0.131 7 0.007 7 0.269 6 0.025 3
β − 0.003 0 0.000 031 0.053 6 0.0601 0.107 3 0.173 4
λ − 0.012 7 0.000 002 − 0.061 9 0.0001 − 0.080 8 0.002 0

1.5

20
α 0.002 0 0.002 674 0.048 2 0.045 5 0.155 6 0.150 5
β − 0.005 4 0.001 886 − 0.0321 0.056 7 − 0.151 2 0.168 6
λ 0.010 6 0.000 002 − 0.022 2 0.000 053 − 0.100 8 0.000 8

40
α − 0.000 9 0.001 018 0.010 7 0.004 8 0.136 3 0.084 6
β 0.001 0 0.000 389 − 0.007 9 0.004 5 − 0.022 4 0.077 4
λ 0.007 7 0.000 001 − 0.018 2 0.000 025 − 0.103 0 0.000 5

70
α 0.000 3 0.000 052 0.042 5 0.016 5 0.150 8 0.080 0
β − 0.000 3 0.000 008 − 0.0231 0.014 5 0.0191 0.039 5
λ 0.004 3 0.000 001 − 0.031 4 0.000 018 − 0.102 8 0.000 4

100
α 0.000 0 0.000 002 0.0241 0.007 0 0.102 2 0.037 7
β 0.000 0 0.000 002 0.006 5 0.011 0 − 0.084 9 0.018 9
λ − 0.000 7 0.000 000 4 − 0.0271 0.000 014 − 0.102 6 0.000 3

5

20
α − 1.18E− 06 1.63E− 08 − 0.000 7 0.024 3 0.002 6 0.004 7
β 4.19E− 05 1.64E− 07 0.007 9 0.009 4 − 0.034 9 0.007 6
λ − 0.00513 1.87E− 07 − 0.031 11 6.91E− 06 − 0.095 7 0.000 2

40
α 2.48E− 09 1.41E− 13 0.0031 0.033 6 0.000 949 7.01E− 05
β 5.77E− 08 1.21E− 12 − 0.071 1 0.020 4 − 0.018 0 0.000 5
λ − 0.004 35 1.01E− 07 − 0.036 06 6.71E− 06 − 0.092 7 0.000 2

70
α 1.90E− 05 5.52E− 06 0.003 5 0.013 6 0.0261 0.119 6
β − 0.000 6 6.23E− 05 − 0.068 2 0.009 5 − 0.186 7 0.037 2
λ − 0.004 8 5.80E− 08 − 0.035 98 4.63E− 06 − 0.101 9 0.000 2

100
α − 3.22E− 09 8.23E− 13 0.0021 0.009 0 0.002 4 0.000 5
β 2.12E− 07 3.87E− 12 − 0.013 7 0.004 6 − 0.046 8 0.0021
λ − 0.005 96 4.22E− 08 − 0.032 87 3.62E− 06 − 0.096 5 0.000 2

Table 3: Rbias and MSE for parameter of DEOWE distribution by using MLE when β � 1.5.

β � 1.5 λ 0.05 0.15 0.5
α n Rbias MSE Rbias MSE Rbias MSE

0.5

20
α 0.150 7 0.026 7 0.255 4 0.060 2 0.410 2 0.120 0
β − 0.003 2 0.118 2 − 0.007 8 0.365 7 − 0.086 2 0.656 7
λ 0.0451 0.003 4 − 0.021 3 0.012 9 − 0.212 8 0.080 8

40
α 0.143 9 0.0161 0.2391 0.0351 0.428 8 0.101 8
β − 0.003 7 0.022 8 − 0.000 5 0.265 4 − 0.018 4 0.530 6
λ − 0.051 3 0.000 2 − 0.112 8 0.004 7 − 0.2441 0.056 8

70
α 0.142 6 0.010 7 0.236 0 0.0241 0.415 6 0.066 9
β − 0.001 9 0.022 9 0.004 2 0.108 7 − 0.016 2 0.215 7
λ − 0.082 5 0.0001 − 0.149 5 0.001 4 − 0.271 6 0.032 2

100
α 0.136 5 0.008 6 0.231 8 0.021 3 0.422 0 0.069 6
β 0.002 7 0.0261 0.0051 0.101 9 − 0.030 6 0.431 6
λ − 0.091 2 0.0001 − 0.162 4 0.001 2 − 0.305 6 0.039 7
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Table 3: Continued.

β � 1.5 λ 0.05 0.15 0.5
α n Rbias MSE Rbias MSE Rbias MSE

1.5

20
α 0.050 7 0.053 7 0.188 3 0.213 2 0.510 6 1.600 6
β 0.011 9 0.206 2 0.028 4 0.687 5 0.080 0 1.738 6
λ − 0.015 4 0.00010 − 0.087 8 0.001 2 − 0.2821 0.023 8

40
α 0.0451 0.027 0 0.191 2 0.164 4 0.496 8 1.014 6
β − 0.002 3 0.051 6 0.050 5 0.3261 0.079 7 1.076 8
λ − 0.0301 0.000 05 − 0.090 9 0.000 7 − 0.276 7 0.022 2

70
α 0.024 9 0.007 3 0.173 5 0.1041 0.495 8 0.835 9
β − 0.002 4 0.006 6 0.041 7 0.133 7 0.110 7 0.787 2
λ − 0.021 0 0.000 024 − 0.093 6 0.000 5 − 0.2701 0.020 2

100
α 0.023 3 0.006 6 0.131 9 0.051 4 0.442 3 0.567 4
β 0.000 8 0.0141 0.009 5 0.057 6 0.066 9 0.397 7
λ − 0.028 6 0.000 021 − 0.101 4 0.000 4 − 0.275 5 0.020 6

5

20
α 0.014 0 0.119 5 0.018 6 0.128 6 0.076 2 0.600 5
β − 0.048 2 0.079 0 − 0.022 9 0.085 8 − 0.198 8 0.461 0
λ − 0.040 085 6 1.08E− 05 − 0.1001 0.000 3 − 0.267 6 0.018 6

40
α − 0.000 6 0.024 2 0.0131 0.0461 0.052 7 0.128 7
β − 0.015 5 0.031 2 − 0.0531 0.041 8 − 0.249 8 0.284 4
λ − 0.033 310 9 7.45E− 06 − 0.099 5 0.000 3 − 0.269 0 0.018 5

70
α 0.008 4 0.009 9 0.002 5 0.000 7 0.051 2 0.124 7
β − 0.041 0 0.021 1 − 0.010 5 0.001 2 − 0.224 6 0.187 6
λ − 0.036 834 2 6.23E− 06 − 0.096 8 0.000 2 − 0.269 7 0.018 4

100
α 0.000 6 0.003 0 0.004 2 0.007 2 0.052 2 0.577 8
β − 0.003 4 0.006 2 − 0.014 5 0.005 4 − 0.160 6 0.173 5
λ − 0.034 2271 4.87E− 06 − 0.097 6 0.000 23 − 0.266 0 0.017 8

Table 4: Rbias and MSE for parameter of DEOWE distribution by using MLE when β � 5.

β � 5 λ 0.15 0.5 1.5
α n Rbias MSE Rbias MSE Rbias MSE

0.5

20
α 0.252 2 0.0831 0.418 6 0.189 2 0.950 4 0.588 5
β 0.0051 1.021 8 0.0171 1.796 8 0.080 2 4.372 6
λ 0.189 8 0.043 4 0.073 0 0.179 2 − 0.197 0 0.723 0

40
α 0.2331 0.048 5 0.379 3 0.1051 0.878 9 0.405 9
β 0.011 6 0.756 3 0.009 0 1.020 9 0.091 9 2.799 3
λ − 0.023 8 0.010 7 − 0.097 0 0.080 2 − 0.247 7 0.644 4

70
α 0.234 5 0.031 8 0.399 8 0.080 9 0.874 5 0.3321
β 0.0021 0.600 4 0.017 4 0.690 8 0.091 3 2.181 8
λ − 0.108 8 0.004 7 − 0.177 6 0.048 3 − 0.301 7 0.5171

100
α 0.233 7 0.026 0 0.392 9 0.067 6 0.883 6 0.297 9
β 0.004 7 0.238 6 0.013 0 0.609 8 0.118 2 1.928 7
λ − 0.141 4 0.0021 − 0.202 3 0.037 8 − 0.342 3 0.463 8

1.5

20
α 0.242 5 0.274 5 0.521 3 1.015 6 0.833 8 2.409 0
β 0.042 0 1.460 5 0.072 5 3.340 7 − 0.013 7 1.945 9
λ − 0.090 8 0.001 6 − 0.259 6 0.031 7 − 0.427 0 0.669 7

40
α 0.183 0 0.137 5 0.484 2 0.7601 0.852 9 2.258 9
β 0.011 1 0.2801 0.072 0 2.463 6 − 0.035 7 1.429 4
λ − 0.102 3 0.001 0 − 0.278 3 0.025 4 − 0.470 2 0.662 9

70
α 0.179 4 0.125 3 0.468 9 0.701 4 0.847 4 1.938 5
β 0.013 6 0.275 8 0.047 4 2.127 6 − 0.0281 1.145 3
λ − 0.103 9 0.000 7 − 0.274 2 0.021 4 − 0.508 4 0.5991

100
α 0.180 4 0.103 9 0.456 9 0.632 3 0.840 4 1.773 8
β 0.012 5 0.257 0 0.019 0 0.7491 − 0.031 4 0.696 5
λ − 0.112 0 0.000 7 − 0.277 8 0.020 2 − 0.514 8 0.607 5
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5.1. Concluding Remarks on Simulation Results. In this
section of the paper, we introduce the major findings de-
duced from the simulation tables; we introduced the effect of
increasing the sample sizes and the effect of increasing the
true values of the parameters used in the simulation study.
Also, we will discuss the effect of fixing the value of every two

parameters and increasing the value of the third one. 'e
following points can be noted from Tables 2–4:

(1) As we can see from the results from Tables 2–4, by
increasing the sample size, we can see that the
consistent property of MLEs comes true, and the

Table 4: Continued.

β � 5 λ 0.15 0.5 1.5
α n Rbias MSE Rbias MSE Rbias MSE

5

20
α 0.0401 0.277 5 0.126 0 0.679 0 0.272 7 2.233 7
β − 0.016 6 0.3161 − 0.083 4 0.526 4 − 0.300 3 2.873 7
λ − 0.106 2 0.000 4 − 0.265 6 0.0191 − 0.525 3 0.626 5

40
α 0.0081 0.021 4 0.156 3 0.887 5 0.257 8 1.898 9
β − 0.004 9 0.014 4 − 0.091 3 0.628 0 − 0.272 0 2.189 7
λ − 0.100 4 0.000 3 − 0.271 8 0.0191 − 0.5251 0.6231

70
α 0.060 8 0.334 8 0.116 8 0.532 6 0.246 9 1.819 5
β − 0.009 6 0.346 3 − 0.070 7 0.236 6 − 0.2301 2.075 9
λ − 0.101 6 0.000 3 − 0.264 8 0.017 9 − 0.452 9 0.613 0

100
α 0.031 6 0.114 0 0.106 3 0.581 5 0.238 8 1.514 2
β − 0.009 9 0.073 0 − 0.067 4 0.444 7 − 0.229 9 1.8351
λ − 0.102 0 0.000 3 − 0.2631 0.017 7 − 0.415 3 0.563 6

Table 5: Descriptive statistics for first data.

n Min Q1 Median Mean Q3 Max Skewness Kurtosis
54 2.000 4.000 4.000 5.222 6.000 11.000 0.930 2.855

Table 6: MLE and standard error SE for models and goodness-of-fit criteria for each model.

Number of death/day Death counts Binom Pois DMOGE DAPL EDW DEOWE Nbinom Skellam
0 0 0.369 4 0.291 3 0.0001 0.003 5 0.000 0 0.000 2 0.2991 0.291 4
1 0 1.758 8 1.521 5 0.087 3 0.460 2 0.040 6 0.050 7 1.546 3 1.521 8
2 2 4.2651 3.972 8 2.169 7 3.362 7 2.226 9 1.3951 4.004 8 3.973 4
3 8 7.020 5 6.915 5 9.195 0 8.060 9 9.317 5 9.909 7 6.928 3 6.916 3
4 19 8.821 9 9.028 6 13.532 0 10.883 5 12.813 2 15.3291 9.006 8 9.029 2
5 7 9.024 0 9.429 9 11.045 5 10.410 0 10.787 3 10.280 7 9.3851 9.430 0
6 5 7.824 9 8.207 5 7.085 3 7.987 8 7.342 9 6.049 7 8.165 0 8.207 2
7 3 5.914 4 6.1231 4.259 0 5.3191 4.568 6 3.673 9 6.100 4 6.122 5
8 2 3.976 8 3.997 0 2.551 3 3.240 4 2.745 9 2.324 3 3.995 8 3.996 4
9 5 2.415 8 2.319 2 1.546 5 1.872 5 1.635 6 1.520 5 2.330 9 2.318 8
10 2 1.3421 1.211 2 0.949 3 1.052 2 0.976 9 1.021 0 1.226 0 1.210 9
11 1 0.688 6 0.575 0 0.588 5 0.584 7 0.588 2 0.699 9 0.587 4 0.574 8

α 0.256 8 5.222 2 14.969 9 0.0001 0.676 8 6.974 6 517.031 5 5.222 0
SE 0.911 8 0.311 0 5.449 3 0.235 6 0.068 8 2.129 4 3.655 8 3.654 2
β 0.632 5 1.650 9 85.871 0 3.884 2 0.990 0 0.000 2
SE 0.091 9 0.000 2 1.673 4 0.155 5 0.009 9
θ 0.294 8 0.000 2 0.206 6 0.156 8
SE 0.318 4 0.037 0 0.011 0
χ2 22.085 6 22.200 0 13.935 5 16.908 9 14.065 4 11.544 6 22.164 0 22.200 3

P value 0.023 7 0.022 9 0.236 6 0.110 6 0.229 4 0.398 8 0.0231 0.022 9
AIC 236.283 2 235.785 5 230.480 2 234.140 0 230.824 3 229.686 6 237.816 7 237.785 5
CAIC 236.3601 235.862 4 230.960 2 234.620 0 231.304 3 230.166 6 238.052 0 238.020 8
BIC 238.272 2 237.774 5 236.447 2 240.106 9 236.791 3 235.653 6 241.794 6 241.763 5
HQIC 237.050 3 236.552 6 232.781 4 236.441 2 233.125 5 231.987 9 239.350 8 239.319 7
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Rbias value and MSE values of the three parameters
decrease

(2) Referring to Table 2, by making the value of β � 0.5
and for a fixed value of α � 0.5, 1.5, 5 and increasing
λ from 0.01 to 0.15, we deduce that the MSE and
Rbias of the parameters increase in most cases

(3) Referring to Table 3 by fixing the value of β � 1.5 and
for a fixed value of α � 0.5, 1.5, 5 and increasing λ
from 0.05 to 0.5, we deduce that the MSE and Rbias
of the parameters increase in most cases

(4) By increasing the value of β from 1.5 to be five as in
Table 4 and making the sample size fixed for both

models with one parameter
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Figure 3: Graphical plots for the expected frequencies and the data using the PMF of different one parameter distributions, where the x-axis
represents the number of deaths per day and the y-axis represents the frequency for this number.
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Figure 4: Graphical plots for the expected frequencies and the data using the PMF of different two-parameter distributions, where the x-axis
represents the number of deaths per day and the y-axis represents the frequency for this number.
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values of beta, we deduced that the MSE and Rbias of
the parameters increase in most cases

6. Applications to COVID-19 Data

In this section of the paper, we introduce two real data
applications on the COVID-19 mortality numbers in Saudi
Arabia, and the third data are outside Saudi Arabia; this
third data were for Latvia mortality rate. 'e first data were
an expressed sample on the first wave, while the second
sample was an expressed sample on the second wave. 'e

first application depends on the period from 26 December to
17 February 2021 for the infections in Saudi Arabia. We used
this period because recording the infection numbers in this
period was accurate as it was the peak of the second wave in
Saudi Arabia. As in the earlier months of infection, re-
cording the number of deaths was not accurate, so we choose
this period specifically. 'e second dataset was taken for a
period from 30 May 2020 to 20 August 2020. We choose this
period because this period was the starting of the outbreak of
COVID-19 in Saudi Arabia, and the mortality numbers start
to increase also. 'is period is considered as the peak of the

models with three parameters
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Figure 5: Graphical plots for the expected frequencies and the data using the PMF of different three-parameter distributions, where the x-
axis represents the number of deaths per day and the y-axis represents the frequency for this number.
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Figure 6: Graphical plots of the data and the CDF, as we can see in the plot, is distribution with the random variable with value x, where x is
the number of deaths per day.
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first wave in Saudi Arabia, which is very important to be
modeled. We also evaluated the information criteria to
introduce the importance of the proposed distribution
compared with other competitors.

6.1. Application 1. In this section, we introduce a very
important real data application for the DEOWE distribu-
tion, which the number of deaths due to COVID-19

infection in Saudi Arabia of 54 days of infection. Table 5
contains some information and descriptive statistics for this
data, which are recorded from 26 December to 17 February
2021. 'e data used in this application are as below: 9, 8, 9,
11, 8, 10, 9, 7, 9, 7, 10, 9, 7, 6, 4, 4, 5, 4, 5, 4, 6, 3, 5, 5, 6, 6, 3, 4,
4, 4, 2, 3, 4, 4, 3, 2, 4, 3, 4, 4, 3, 3, 4, 4, 5, 4, 4, 5, 5, 4, 4, 4,
6, 3. 'is data were collected from the world health
organization, and these numbers represent the number of
deaths per day. For more information, see the following

2

Q−Q plot for DEOWE
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Figure 7: Graphical plots of the data and the quantile function as a function of (x), where x is the number of deaths per day.
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Figure 8: Graphical plots of the data and the PMF of the DEOWE distributions, where x is the number of deaths per day and p(x) is the
probability for each x.

Table 7: Descriptive statistics for the second data.

n Min Q1 Median Mean Q3 Max Skewness Kurtosis
83 17.00 32.00 37.00 36.93 41.00 58.00 0.093 3.029
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link: https://covid19.who.int/. 'is data were used as a real
data example for the proposed distribution and its com-
petitor distributions. We compare the fitting results of the
binomial (bionm), negative binomial(Nbionm), Poisson
(Pois) distributions, see the work of Johnson et al. [22],
discrete generalized exponential (DGE) distribution, see the
work of Nekoukhou et al. [17], the discrete alpha power
inverse Lomax (DAPIL) distribution is introduced by
Almetwally and Ibrahim [23], the discrete Marshall–Olkin

Generalized exponential (DMOGE) distribution is intro-
duced by Almetwally et al. [19], and Skellam [24] introduced
the Skellam distribution, and the results of these fitting are
tabulated in Table 6.

To make the comparison between many distributions,
we must make this comparison based on some criteria; one
of these analytical measures is called the Akaike information
criterion (AIC), see [25]; there are another criteria called
Bayesian information criterion (BIC), see [26], for more

Table 8: 'e dataset used in this application associated with the frequency of each death number and the probability of this number.

Number of deaths/day Death counts for each number DGE DMOGE EDW DEOWE
17 1 0.058 5 0.178 8 0.196 5 0.225 8
18 0 0.122 0 0.225 4 0.273 3 0.293 7
19 0 0.228 5 0.283 3 0.370 9 0.377 2
20 1 0.389 4 0.355 2 0.492 0 0.478 8
21 1 0.611 7 0.444 2 0.638 6 0.600 9
22 2 0.895 6 0.553 9 0.812 2 0.746 0
23 1 1.232 9 0.688 4 1.0131 0.916 2
24 2 1.608 7 0.852 0 1.240 2 1.113 4
25 0 2.003 0 1.049 5 1.491 3 1.338 3
26 1 2.393 8 1.285 0 1.762 5 1.590 9
27 2 2.760 0 1.562 0 2.0481 1.869 4
28 1 3.083 5 1.8821 2.341 4 2.170 0
29 1 3.351 0 2.243 9 2.634 2 2.486 9
30 4 3.554 2 2.641 8 2.917 5 2.811 4
31 3 3.6901 3.064 6 3.1821 3.132 8
32 3 3.759 8 3.494 6 3.418 6 3.437 9
33 0 3.768 0 3.907 9 3.618 4 3.712 2
34 7 3.721 4 4.275 8 3.774 3 3.940 9
35 3 3.628 4 4.5681 3.880 3 4.110 4
36 6 3.497 9 4.757 8 3.932 9 4.209 7
37 8 3.338 5 4.825 8 3.930 4 4.231 6
38 2 3.158 3 4.7651 3.873 5 4.1741
39 6 2.964 7 4.582 0 3.765 4 4.040 6
40 5 2.763 8 4.294 9 3.610 9 3.839 5
41 4 2.560 9 3.930 6 3.416 5 3.583 2
42 3 2.360 3 3.5191 3.189 9 3.286 6
43 0 2.165 0 3.089 4 2.939 5 2.965 4
44 1 1.977 6 2.665 7 2.673 8 2.634 9
45 2 1.799 8 2.266 0 2.401 1 2.308 2
46 2 1.632 5 1.901 9 2.128 9 1.9961
47 0 1.476 6 1.579 4 1.864 0 1.7061
48 2 1.3321 1.300 0 1.611 8 1.443 2
49 2 1.1991 1.062 2 1.376 5 1.209 6
50 2 1.0771 0.862 8 1.161 2 1.005 8
51 1 0.965 9 0.697 4 0.967 6 0.830 6
52 1 0.864 8 0.561 5 0.796 5 0.681 8
53 0 0.773 2 0.450 6 0.647 7 0.557 0
54 1 0.690 5 0.360 8 0.520 3 0.4531
55 0 0.615 9 0.288 2 0.412 9 0.367 3
56 1 0.548 9 0.229 9 0.323 7 0.297 0
57 0 0.488 8 0.1831 0.250 6 0.239 6
58 1 0.434 9 0.145 7 0.191 6 0.193 0

Table 9: Descriptive statistics for the data of COVID-19 mortality numbers in Latvia.

n Min Q1 Median Mean Q3 Max Skewness Kurtosis
33 0 5 8 9 11 18 − 0.509 94 0.189 237
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information, and we can also refer to Hannan–Quinn for
more information criterion (HQIC), see [27], for more
information, and last criteria are called the consistent Akaike
information criterion (CAIC), see [28], for more details; all
these criteria were used to compare the goodness of fit of the
proposed model with other competing distributions. 'ese
measures are as follows.

'e AIC is given by

AIC � 2k − 2ℓ. (22)

'e CAIC is

CAIC �
2nk

n − k − 1
− 2ℓ. (23)

'e BIC is calculated as follows:

BIC � k log(n) − 2ℓ. (24)

'e HQIC is

HQIC � 2k log(log(n)) − 2ℓ. (25)

where k is the number of model parameters, n is the sample
size, and ℓ refers to the log-likelihood function evaluated at
the MLEs. Table 6 provides values of AIC, BIC, CAIC, HQIC
and, chi square (χ2) with a degree of freedom, and its P value
for all models is fitted based on the real dataset of Saudi
Arabia. Figure 3 indicates a comparison between these
distributions to get the best distribution; also, Figures 3–5
indicate the graphical plots of the data and the PMF of
DEOWE distributions, with the corresponding competitive
distributions with various numbers of parameters. As we can
see that the plot in Figure 6 is the CDF of the distributions
with the random variable X, while the third graph in Figure 7
is for the quantile function as a function of x, where x is the
number of deaths per day; Figure 8 shows graphical plots of
the data and the PMF of the DEOWE distributions.

6.2. Application 2. In this section, the DEOWE distribution
is fitted to another set of data of COVID-19 mortality
numbers in Saudi Arabia of 83 days of infection, which is
recorded from 30 May 2020 to 20 August 2020. Table 7

Table 10: 'e dataset used in this application associated with the frequency of each death number and the probability of this number.

Value Count DGE DMOGE EDW DEOWE
0 1 0.316 4 1.036 6 0.838 9 0.8941
1 1 1.316 7 1.112 9 1.4161 1.427 3
2 2 2.221 1 1.402 2 1.763 8 1.759 3
3 3 2.7851 1.750 8 2.029 3 2.018 3
4 1 3.025 3 2.1251 2.2401 2.224 0
5 4 3.023 4 2.481 1 2.4031 2.380 2
6 2 2.8641 2.7641 2.516 9 2.485 7
7 0 2.615 7 2.921 2 2.576 8 2.537 4
8 2 2.327 2 2.919 3 2.576 5 2.532 3
9 3 2.031 0 2.758 5 2.510 9 2.468 0
10 4 1.746 9 2.471 9 2.377 3 2.344 2
11 3 1.486 0 2.111 8 2.178 3 2.163 6
12 3 1.253 2 1.731 9 1.922 2 1.932 0
13 1 1.049 7 1.373 2 1.624 3 1.659 8
14 1 0.874 6 1.0601 1.305 6 1.361 4
15 0 0.725 6 0.801 5 0.990 7 1.055 0
16 0 0.600 0 0.596 6 0.703 6 0.761 0
17 1 0.494 8 0.438 9 0.463 3 0.500 3
18 1 0.4071 0.3201 0.2801 0.2901

Table 11: MLE and SE for models’ parameters and goodness-of-fit criteria for each model.

DGE DMOGE EDW DEOWE
α 2.752 7 0.6721 3.625 2 1.338 7
SE 0.768 5 1.524 8 0.598 7 0.305 4
β 0.8151 0.713 0 0.393 6 0.169 8
SE 0.029 817 0.047 5 0.498 6 0.318 0
θ 23.4651 0.999 9 0.065 9
SE 3.396 5 0.185 6 0.010 7
χ2 15.249 3 11.719 0 11.700 8 11.700 5
P value 0.644 8 0.861 4 0.862 3 0.8631
AIC 199.460 7 196.707 7 195.341 1 195.325 5
CACI 199.860 7 197.535 3 196.168 7 196.1531
BIC 202.453 7 201.197 2 199.830 6 199.815 0
HQIC 200.467 8 198.218 3 196.851 7 196.8361
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contains some information and descriptive statistics for this
data, while Table 8 contains the dataset used in this appli-
cation associated with the frequency of each death number
and the probability of this number; the data are as follows:
17, 22, 23, 22, 24, 30, 32, 31, 34, 36, 34, 37, 36, 38, 36, 39, 40,
39, 41, 39, 48, 45, 46, 37, 40, 39, 41, 41, 46, 37, 40, 48, 50, 49,
54, 50, 56, 58, 52, 49, 42, 41, 51, 30, 42, 20, 40, 42, 45, 37, 40,
39, 37, 34, 44, 34, 37, 31, 30, 27, 29, 27, 26, 24, 21, 30, 32, 35,
36, 35, 38, 37, 37, 32, 34, 36, 34, 35, 31, 39, 28, 34, 36. 'ese

data were collected from theWorld Health Organization and
these numbers represents the number of deaths per day, for
more information see the following link: https://covid19.
who.int/. We compare the fitting results of the discrete
generalized exponential (DGE) distribution, see the work of
Nekoukhou et al. [17], the discrete Marshall–Olkin gener-
alized exponential (DMOGE) distribution is introduced by
Almetwally et al. [19], and exponentiated discrete Weibull
(EDW) distribution is introduced by Nekoukhou et al. [29].
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Figure 9: Graphical plots for the expected frequencies and the data using the PMF of different parameters distributions, where the x-axis
represents the number of deaths per day and the y-axis represents the frequency for this number.
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Figure 10: Graphical plots of the data and the CDF, as we can see in the plot, the distributions with the random variable with value x, where x
is the number of deaths per day.

Complexity 15

https://covid19.who.int/
https://covid19.who.int/


6.3. Application 3. In this section, the DEOWE distribution
is fitted to another set of data of COVID-19 mortality
numbers in Latvia of 33 days of infection, which is recorded
from 12 May 2021 to 13 April 2021. We choose this period
specifically because it was the peak of the second wave of the
COVID-19 infection in Latvia. Table 9 contains some in-
formation and descriptive statistics for this data, while Ta-
ble 10 contains the dataset used in this application associated
with the frequency of each death number and the probability
of this number, and Table 11 contains the MLE of the pa-
rameters and the P values and chi-square values for the
distributions, also the information criteria for each distri-
bution. 'e data are as follows: 11, 9, 11, 10, 2, 8, 12, 12, 10,
10, 5, 2, 12, 11, 13, 3, 5, 6, 5, 10, 6, 14, 9, 1, 8, 3, 3, 9, 17, 18, 5,
0, 4. 'ese data were collected from the world health

organization, and these numbers represent the number of
deaths per day. For more information, see the following link:
https://covid19.who.int/. We compare the fitting results of
the discrete generalized exponential (DGE) distribution, see
the work of Nekoukhou et al. [17], the discrete Marshal-
l–Olkin generalized exponential (DMOGE) distribution is
introduced by Almetwally et al. [19], and exponentiated
discrete Weibull (EDW) distribution is introduced by
Nekoukhou et al. [29].

6.4. Concluding Remarks on the Real Data

(1) By referring to the goodness-of-fit measurements’
values in Tables 6 and 12, we deduce that the
DEOWE distribution has the lowest chi square, AIC,

20
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Figure 11: Graphical plots of the data and the quantile function as a function of (x), where x is the number of deaths per day.
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Figure 12: Graphical plots of the data and the PMF of the DEOWE distributions, as we can see in the plot is the PMF of the distributions
with the random variable with value (x), where x is the number of deaths per day and P(x) is the probability for x.
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and CAIC values among all distributions for the
three applications.

(2) By referring to the values of the goodness of fit
measurements in Tables 6 and 12, we deduce that the
DEOWE distribution has the highest P value among
all of its competitors for the three applications.

(3) For application one and by referring to Figures 3 and
4, we can see that the one- and two-parameter
distributions provide poor fitting for the data. In
contrast, the three-parameter DEOWE distribution

in Figure 5 provides better fitting for the data among
all its competitors.

(4) For application two and by referring to Figure 9, we
can see that the three-parameter DEOWE distri-
bution in Figure 9 provides better fitting for the data
among all its competitors.

(5) For application two, we can see that the plot in
Figure 10 is the CDF of the distributions with the
random variableX, while the graph in Figure 11 is for
the quantile function as a function of x, where x is the
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Figure 14: Graphical plots of the data and the CDF, as we can see in the plot, is the distributions with the random variable with value x,
where x is the number of deaths per day.
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number of deaths per day. Figure 12 shows graphical
plots of the data and the PMF of the DEOWE
distributions

(6) For application three and by referring to Figure 13,
we can see that the three-parameter DEOWE dis-
tribution in Figure 13 provides better fitting for the
data among all its competitors for more information
about the PMF of the other distributions, see the
Appendix.

(7) For application three, we can see that the plot in
Figure 14 is the CDF of the distributions with the
random variableX, while the graph in Figure 15 is for
the quantile function as a function of x, where x is the
number of deaths per day. Figure 16 shows graphical
plots of the data and the PMF of the DEOWE
distributions

7. Conclusion

In this paper, we introduced a new distribution, which is
called DEOWE distribution the aim to do this work was the
lack of flexibility in other distributions. We studied its
statistical properties and obtained a linear representation for
its PMF and the associated quantile function. We used the
MLEmethod for estimating the distribution parameters α, β,
and λ. Also, a real dataset of the mortality numbers in the
Kingdom of Saudi Arabia (KSA) was considered to assess the
performance of the DEOWE. 'e distribution fitting for the
real dataset was compared with its competitors, and by
referring to the values of the goodness of fit measurements,
we deduce that the DEOWE distribution has the lowest chi
square, AIC, and CAIC for the first dataset, and for the
second dataset, we deduce that the DEOWE distribution has
the lowest chi square, AIC, CAIC, BIC, and HQIC and the
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Figure 15: Graphical plots of the data and the quantile function as a function of x, where x is the number of deaths per day.
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highest P value among all of its competitors. 'is result
indicates that the DEOWE distribution provides a superior
model for fitting the mortality number compared with other
competitive distributions. Also, we make a graphical plot for
the data using the DEOWE with other competitive distri-
butions, and the plots come in our favor and assure the
results of the goodness-of-fit measurements.

Appendix

'e PMF of the compared models is given as the following.

(i) Binomial distribution: P(X � x) � px n

x
 

(1 − p)n− x, x� 0, 1, 2, 3, . . ., n.
(ii) Poisson distribution: P(X � x) � e− λλx/

x!, x � 0, 1, 2, 3, . . ..
(iii) Negative binomial distribution: P(X � x) � pn

(1 − p)x n + x − 1
n − 1 , x � 0, 1, 2, 3, . . .

(iv) Skellam distribution: P(X � x) � e− μ1− μ2

(μ1/μ2)
x/2Ik(2 ����μ1μ2

√
), x � . . . , − 3, − 2, − 1, 0, 1, 2,

3, . . .

(v) Discrete alpha power inverse Lomax: P(X � x) �

(αρIn(1+(δ/x+1))

− αρIn(1+(δ/x+1)) /α − 1), x � 0, 1, 2, 3, . . .

(vi) Discrete generalized exponential distribution:
P(X � x) � (1 − θx+1)α − (1 − θx)α, x � 0, 1, 2,

3, . . .

(vii) Discrete Marshall–Olkin generalized exponential
distribution:
P(X � x) � (λ(1 − (1 − ρx)α)/λ + (1 − λ)

(1 − ρx)α) − (λ(1 − (1 − ρx+1)α)/λ + (1 − λ)

(1 − ρx+1)asα), x � . . . , − 3, − 2, − 1, 0, 1, 2, 3, . . .

(viii) Exponentiated discrete Weibull:
P(X � x) � (1 − ρ(x+1)α)β − (1 − ρxα

)β, x �

. . . , − 3, − 2, − 1, 0, 1, 2, 3, . . .

For more information about the code used in the paper,
see Function ”maxLik” of ”maxLik” package in the R pro-
gram which has been used by Pho, K. H., andNguyen, V. T.
(2018) in Comparison of Newton–Raphson algorithm and
Maxlik function, Journal of Advanced Engineering and
Computation, 2(4), 281–292, and Henningsen, A., and

Toomet, O. (2011), maxLik: A package for maximum like-
lihood estimation in R. Computational Statistics, 26(3),
443–458.
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