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0is study presents the effectiveness of dynamic coupling as a synchronization strategy for fractional chaotic systems. Using an
auxiliary system as a link between the oscillators, we investigate the onset of synchronization in the coupled systems and we
analytically determine the regions where both systems achieve complete synchronization. In the analysis, the integration order is
considered as a key parameter affecting the onset of full synchronization, considering the stability conditions for fractional
systems. 0e local stability of the synchronous solution is studied using the linearized error dynamics. Moreover, some statistical
metrics such as the average synchronization error and Pearson’s correlation are used to numerically identify the synchronous
behavior. Two particular examples are considered, namely, the fractional-order Rössler and Chua systems. By using bifurcation
diagrams, it is also shown that the integration order has a strong influence not only on the onset of full synchronization but also on
the individual dynamic behavior of the uncoupled systems.

1. Introduction

Synchronization is an emergent physical phenomenon
caused by the interaction of two or more dynamic entities
that pervade the natural world [1–4]. In the case of oscil-
lating units, the synchronization phenomenon can be de-
fined as the adjustment of temporal evolution to a common
rhythm.

For the case of integer-order systems, there exists a vast and
mature literature where we can find different interconnection
schemes for synchronizing dynamic systems, like, for example,
master-slave synchronization scheme, adaptive synchroniza-
tion, and synchronization based on state observers, to name a
few [5–10]. Although each of these strategies is effective, there
are limitations in their applications, e.g., there are cases where
these schemes havemarginal ranges for which the synchronous

response is achieved or have poor robustness to maintain a
stable synchronous state under the influence of external dis-
turbances. 0is is one of the reasons why dynamic intercon-
nections have emerged as an alternative to the classical static
schemes. In this case, the interaction between agents is indi-
rectly achieved through a suitably designed dynamic coupling
[11–13].0is type of synchronization strategy has shown better
performance than static couplings. In particular, dynamic
coupling increases the intervals of coupling strength values for
which it is possible to achieve synchronized behavior, and it
may also be possible to synchronize systems that cannot be
synchronized with static coupling [11].

On the other hand, the use of fractional calculus has been
extensively studied in nonlinear systems (see, e.g., [14–18])
and also, there exist notable contributions related to the
study of synchronization in fractional-order systems (see,
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e.g., [16, 19–23]). For example, there is work based on
applying sliding modes to fractional-order models to achieve
synchronization [24–29]. 0e modeling and analytical study
of fractional-order systems is also a fruitful field, e.g., the use
of the Razumikhin approximation for fractional-order
systems with delay [30, 31], the extrapolation of Lyapunov
theory to fractional systems [32, 33], and the existence and
uniqueness of equilibrium points of the Mittag–Leffler
criteria [34, 35]. However, the use of dynamic couplings in
the context of fractional-order systems seems to be unex-
plored so far.

Consequently, in this study we present a synchronization
scheme of fractional order based on dynamic coupling. In
particular, a master-slave interconnection is considered, in
which the systems have an indirect interaction via a frac-
tional-order linear system. In the analysis, the Rössler
equation [36] and the Chua double-scroll oscillator [37] are
considered. Among the questions to be addressed is whether
a dynamic coupling designed for integer-order systems is
also effective in its fractional-order version? If so, how does
the derivative order influence the occurrence of synchro-
nization in the coupled systems? 0e local stability of the
synchronous solution in the coupled systems is investigated
by analyzing the error dynamics, and furthermore, the onset
of synchronization is also numerically investigated by
computing some statistical metrics like Pearson’s correlation
between time series. Additionally, using bifurcation dia-
grams, we have investigated the dynamic behavior of the
uncoupled systems. 0e obtained results show that the in-
tegration order has a strong influence on the stability of the
synchronous solution, and interestingly, it also produces a
period-doubling cascade route to chaos in the uncoupled
systems.

0e rest of the study is organized as follows: Section 2
describes the basics of fractional calculus and gives a brief
introduction to fractional-order systems. 0en, Section 3
describes the proposed synchronization scheme and the
local stability of the synchronous solution in the coupled
systems is discussed. Subsequently, in Section 4, the per-
formance of the dynamic coupling is investigated using the
Rössler and Chua systems as application examples. Finally,
Sections 6 and 7 are dedicated to the discussion and con-
clusions, respectively.

2. Preliminaries

0is section presents a brief overview of some basic concepts
about fractional-order systems. In particular, the Caputo
derivative, the general representation of a fractional-order
system, and the stability of linear time-invariant fractional-
order systems are revisited.

2.1. Fractional Caputo Derivative. In the literature, there are
various definitions of fractional-order derivatives, the most
common being the Riemann–Liouville and Caputo opera-
tors [38, 39]. 0e fractional Caputo derivative for a time-
invariant system described by the vector field f(x) is
defined as

aD
q
0f(x) �

1
Γ(n − q)


x

a

f
(n)

(t)

(x − t)
q−n+1dt, (1)

with n � q for the integration order 0< q< 1, being Γ the
gamma function defined as follows:

Γ(z) � 
∞

0
t
z− 1

e
− tdt. (2)

2.2. Fractional-Order Dynamic System. A commensurate
fractional-order time-invariant system can be described, in
general, as follows:

D
nk

0 x(t) � f t, x(t), D
n1
0 x(t), D

n2
0 x(t), . . . , D

nk−1
0 x(t)( ,

(3)

subject to initial conditions

x
(j)

(0) � x
(j)
0 , with j � 0, 1, . . . , ⌈nk⌉ − 1, (4)

where n1, n2, . . . , nk are rational numbers, such that
nk > nk−1 > · · · > n1 > 0, nj − nj−1 ≤ 1 for all j � 2, 3, . . . , k,
and 0< n1 ≤ 1. 0e least common multiple of the denomi-
nator of n1, n2, . . . , nk is defined by M and set q � 1/M and
N � Mnk. 0en, equation (3) can be expressed as follows
[38]:

D
q
0x0(t) � x1(t),

D
q
0x1(t) � x2(t),

⋮

D
q
0xN−2(t) � xN−1(t),

D
q
0xN−1(t) � f t, x0(t), xn1/q(t), . . . , xnk−1/q(t) .

(5)

2.3. Stability of Time-Invariant Fractional-Order System.
A linear time-invariant fractional-order system is described
by

dq
x(t)

dt
q � Ax, (6)

where x ∈ Rn is the state vector, A ∈ Rn×n is a constant
matrix, and 0< q< 1 is the fractional commensurate de-
rivative order. 0en, the stability of the system described by
equation (6) is determined as follows [38]:

(i) System (6) is stable, if and only if
|argλj|≥ qπ/2, ∀j � 1, 2, . . . , n

(ii) System (6) is asymptotically stable, if and only if
|argλj|> qπ/2, ∀j � 1, 2, . . . , n

(iii) System (6) is unstable, if and only if |argλj|< qπ/2,
for at least one λj, j � 1, 2, . . . , n

From these conditions, it is clear that the local stability of
fractional-order systems depends on the integration order q,
so that the stability of an equilibrium point can be modified
by the fractional order, and therefore, the stability region at
the complex plane is as in Figure 1 [40].
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3. Proposed Synchronization Scheme Based on
Dynamic Coupling

0e dynamic interconnection considered in this study has
been presented in [11] for integer-order systems and is
adapted here to the fractional-order case.0e scheme, where
the interaction between the systems is indirect via a dy-
namical system (Figure 2) is described by the following set of
equations:

D
q
xm � F xm( ,

D
q
xs � F xs(  − B1h,

D
q
h � Gh − kB2 xm − xs( ,

(7)

where xm, xs ∈ Rn represents the state vectors of both the
master and slave systems and h � (h1, h2)

T for hi ∈ R, i �

1, 2 is the state variables of the dynamic coupling. It is as-
sumed that the vector field F is smooth enough, which can be
either linear or nonlinear, and the coupling force between
the systems is denoted by k.

On the other hand, the design of a dynamic coupling
involves two coupling matrices, denoted B1 ∈ Rn×2 and
B2 ∈ R2×n. 0ese matrices are generated under the premise
that only one of the elements of each of these matrices is
equal to 1, and the other entries are zero, which means that
the coupling is applied only in one state variable of the slave
system and that the coupling considers only one measured
variable.

Finally, the matrix G from equation (7) is given by

G �
−αc 1

−c1 −c2
 , (8)

where c1, c2, and αc are design parameters of the dynamic
coupling. 0e construction of the coupling system, for the
integer-order case, is inspired by the so-called Huygen’s
coupling [11, 41], which in its simplest form can be inter-
preted as a damped oscillator.

Since in this study the focus is on synchronization, it is
necessary to give the following definition.

Definition 1. 0e coupled systems, equation (7), are said to
be asymptotically synchronized if

limt⟶∞ xm − xs


 � 0, limt⟶∞h � 0. (9)

3.1. Local Stability Analysis. In order to investigate the
stability of the synchronous solution defined in equation (9),
we proceed as follows. First, it is assumed that function F in
equation (7) can be written as the sum of linear and non-
linear components, i.e., it is assumed that

F xi(  � Pxi + E xi( , (10)

where P ∈ Rn×n is a constant matrix and E(xi) ∈ Rn is a
vector containing nonlinear terms.

Next, the synchronization error is defined as
ep :� (xm − xs, h)T. Note that in the definition of the error,
we have included the state h of the dynamic coupling. 0e
reason is because the parameters in the dynamic coupling
should be chosen such that, when the systems synchronize,
the coupling vanishes.0en, by replacing equations (10) into
(7), and computing the corresponding synchronization error
dynamics, we obtain

D
q
ep � Aep + gp t, ep , (11)

where

A �
P B1

−KB2 G
 ,

gp t, ep  �
f xm(  − f xs( 

O
 ,

(12)

where O � (0, 0)T. Furthermore, note that the term gp(t, ep)

is a vanishing perturbation [42] because gp(t, 0) � 0. 0en,
the stability properties of system equation (11) are fully
determined by the eigenvalues of the matrix A. In particular,
following the results presented in Section 2.3, we have that
the synchronization error dynamics (equation (11)) is locally
asymptotically stable if

argλj



>
qπ
2

,∀j � 1, 2, . . . , n. (13)

Stable
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Stable

Stable
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Figure 1: Stability region in a fractional-order linear time-in-
variant system for 0< q< 1.

Dqxm =
F (xm)

xm
xs

h
Dqh = Gh –
k (xm – xs)

Dqxs =
F (xs, h)

Figure 2: Schematic representation of unidirectionally coupled
fractional-order systems interacting via fractional-order dynamic
coupling.
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0us, if it is possible to find values of k, c1, c2, and αc

such that the above condition is satisfied, then the coupled
systems described by equation (7) will achieve complete
synchronization, according to Definition 1.

3.2. Statistical Metrics Used for Detecting Complete
Synchronization. In this study, the onset of synchronization
in the coupled systems (equation (7)) is also numerically
studied by computing the following synchronization index.

S � 
n

i�1
ei


 + 

n

i�1
Ci

⎡⎣ ⎤⎦, (14)

where n is the dimension of the systems to be synchronized,
|ei| is the absolute value of the synchronization error be-
tween the i-th state variable of the master and slave systems,
i.e.,

〈ei〉 � xmi − xsi


, (15)

and Ci is the Pearson correlation [43], computed from the
i-th state variable of the master and slave systems described
by

Ci �
σNmiNsi

σNmi
σNsi

, (16)

where σNmiNsi
is the covariance between the data obtained

from the time series of the state variables of the master and
slave systems, and σNmi

σNsi
is the standard deviation ob-

tained from the i-th state variable of the master (slave)
oscillator. Finally, when S � n, the systems are synchronized.

In the next section, the onset of synchronization with
dynamical coupling is studied for two particular fractional-
order chaotic systems, namely the Rössler and the Chua
oscillators.

4. Application Example 1: Rössler System

0e fractional-order version of the well-known Rössler
system [44] is given by

D
q
x1 � −x2 − x3,

D
q
x2 � x1 + ax2,

D
q
x3 � b + x1x3 − cx3,

(17)

where xi, i � 1, 2, 3 denotes the state variables and a, b, c are
constants.

It has been reported that every system has a limit of
integration order for which it is possible to use a fractional-
order derivative without stabilizing its dynamics [16, 17, 45].
0is could be interpreted to mean that the dynamics de-
scribed in equation (17) are restricted to have at least one
eigenvalue in the unstable region, and this being true only if
|arg(λ)|< qπ/2 for at least one of its eigenvalues (λ). With
a � 0.2, b � 0.2, c � 5.7, the eigenvalues obtained by the
Jacobian matrix evaluated at the equilibrium point E1 �

(0.007, −0.0351, 0.0351) are λ � [0.0970 ± 0.9952i; −

5.6870]. Since |min(arg(λ))| � 1.4736, the critical order of
integration is defined as qc � |min(arg(λ))|(2/π) (Section

2), and by substitution it is obtained as qc � 0.9381. 0is
result is confirmed by the bifurcation diagram as shown in
Figure 3, where the local maxima in x1 are plotted as a
function of the variation of the integration order. Note that
the derivative order is the same for all state variables of the
system.0e inset shows the attractors and the corresponding
integration order considered for the developed analysis.

It is worth noting that the bifurcation diagram shown in
Figure 3 was numerically calculated using the
Adams–Bashforth–Moulton (ABM) method [46] and fol-
lowing the guides for plotting a proper bifurcation diagram
[47].

4.1. Dynamically Coupled Fractional-Order Rössler Systems.
Now, we consider a pair of identical Rössler systems [44]
described by

master system

D
qm x1m � −x2m − x3m,

D
qm x2m � x1m + ax2m,

D
qm x3m � b + x1mx3m − cx3m,

⎧⎪⎪⎨

⎪⎪⎩
(18)

slave system
D

qs x1s � −x2s − x3s − h2,

D
qs x2s � x1s + ax2s,

D
qs x3s � b + x1sx3s − cx3s,

⎧⎪⎪⎨

⎪⎪⎩
(19)

dynamic coupling
D

qd h1 � −αch1 + h2,

D
qd h2 � −c1h1 − c2h2 − k x2m − x2s( ,



(20)

where xm,s denotes the state variables of the master and slave
systems, respectively, h1,2 denotes the states of the dynamic
coupling, k indicates the coupling force between the oscil-
lators, a, b, c are constants of the Rössler model, and qj, j �

m, s, d denotes the integration order of the master, slave, and
dynamic coupling, respectively.

Here, we consider the case in which all orders of inte-
gration are equal, i.e., qm � qs � qd. 0en, the dynamic
behavior of system equations (18)–(20) is numerically
studied as a function of the coupling strength k and the
integration order q. For this purpose, equations (18)–(20) are
numerically integrated with the following parameter values
cf. [11]: αc � a, c1 � k, c2 � k, a � 0, 2, b � 0, 2, c � 5, 7
and initial conditions [xim, xis, hi] � [0.1, 0.1, 0.1, −0.2,

−0.1, −0.1, 0, 0]. On the other hand, the coupling strength is
varied in the interval 0≤ k≤ 20 with a test size Δk � 0.2 and
the integration order is varied in the interval 0.96≤ q≤ 1 at
Δq � 2e− 4.

0e obtained results are shown in Figure 4(a), where the
colors indicate the value of the synchronization index S (see
equation (14)). Synchronous behavior is indicated by the
dark blue color (S � 3), while the remaining colors indicate
unsynchronized dynamics.

Moreover, it is evident from Figure 4(a) that there are
regions where, for a fixed coupling strength, the limit be-
havior is completely determined by the integration order.
For example, for a fixed coupling strength of k � 10, the
synchronization index S abruptly changes when the
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integration order q is within the interval 0.988< q< 0.995, as
can be seen in Figure 4(b), but if the coupling strength is
increased up to k � 15, the systems always achieve complete
synchronization.

To validate the synchronization regions obtained by the
time series analysis, we conduct a stability analysis following
the results presented in Section 3.1. First, let the following
synchronization errors be defined as follows: ej � xjm − xjs,
for j � 1, 2, 3, and e4 � h1, e5 � h2. 0en, the resulting error
dynamics are given by

D
q
e1 � −e2 − e3 + e5,

D
q
e2 � e1 + ae2,

D
q
e3 � x1mx3m − x1sx3s − ce3,

D
q
e4 � −αce4 + e5,

D
q
e5 � −c1e4 − c2e5 − ke2.

(21)

Note that the error dynamics in equation (21) can be
written in the form of equation (11) with

0
0.93 0.94 0.95 0.96

q = 0.98

q = 1

Integration order q (a.u.)

X 1
(m

ax
) (

a.u
.)

0.97 0.98 0.99 1

2

4

6

8

10

12

Figure 3: Bifurcation diagram of the Rössler system by modifying the integration order, equation (16). 0e abscissa axis indicates that the
three oscillator state variables have the same integration order.
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(b)

Figure 4: Numerical results for equations (18)–(20). (a) Limit behavior of the system as a function of coupling strength k and integration
order q. (b) Synchronization index equation (14) as a function of integration order, for a fixed k � 10 and k � 15. A value of S � 3 indicates
complete synchronization.
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A �

0 −1 −1 0 1

1 a 0 0 0

0 0 −c 0 0

0 0 0 −αc 1

0 −k 0 −c1 −c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

gp t, ep  �

0

0

x1mx3m − x1sx3s

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

Note that the term gp(t, ep) in equation (21) is indeed a
vanishing perturbation since when the systems synchronize
it follows that x1m � x1s, x2m � x2s, and x3m � x3s and
therefore gp(t, 0) � 0. Consequently, the local stability of the
synchronous solution in the coupled systems described by
equations (18)–(20) can be determined from the condition in
equation (13). In particular, we compute condition equation
(13) as a function of the integration order q and the coupling
strength k. 0e obtained results are shown in Figure 5(a),
where the blue region corresponds to values of k and q for
which condition (13) is not satisfied and thus the syn-
chronous solution is unstable, whereas on the white region,
condition (13) is satisfied and then the synchronous solution
is expected to be stable. For the sake of comparison,
Figure 5(b) shows the overlap of Figure 4 with Figure 5(a). It
can be seen that there is a good agreement between the
numerical and the analytical results.

Remark 1. In the previous analysis, we have considered the
case where the integration order of the systems and the
dynamic coupling are the same. However, we also have
conducted a numerical study in which the integration orders
are different. In particular, we have numerically integrated
equations (18)–(20) using the parameter values considered
before, as a function of the integration orders of the master
and slave systems, while the integration order of the dynamic
coupling remains fixed. 0e integration orders qm, qs are
varied in the interval 0.98≤ qj < 1, j � m, s, and considering
the integration order qd � 0.985. 0e obtained results are
shown in Figure 6(a) where the blue areas correspond to
synchronization (S � 3). From the obtained results, it is clear
to see that the integration order of the master and slave
systems should be almost the same to observe a synchro-
nized behavior and that larger differences are tolerated as
long as the integration order of both systems approaches to
one.

On the other hand, Figure 6(b) shows the obtained
results for the case that only the integration order of the
dynamic coupling is varied, while the oscillators are assumed
to have integer order, i.e., qm � qs � 1. In this case, equations
(18)–(20) are numerically integrated by varying the inte-
gration order qd of the dynamic coupling in the interval
0.8< qd < 1 and the corresponding synchronization index,
given by equation (14), is calculated.0e obtained results are

shown in Figure 6(b) for two different coupling forces, where
the choice of these k values corresponds to those reported in
[11] and those obtained in Figure 4(b).

5. Application Example 2: Chua System

If the Chua system described in [37] is modeled with de-
rivatives of fractional order, then the system described in
equation (23) is analyzed.

D
q
x1 � σ x2 − x1 − ϕ x1( ( ,

D
q
x2 � x1 − x2 + x3,

D
q
x3 � −βx2,

(23)

where Dq is the fractional-order derivative by Caputo’s
definition, xi, i � 1, 2, 3 denotes the system state variables,
σ, β are constants of the Chua circuit, and ϕ(x1) is a
nonlinear function defined in equation (24), with constant
values a, b.

ϕ x1(  � bx1 +
1
2

(a − b) x1 + 1


 − x1 − 1


 . (24)

In the same way as for the Rössler fractional-order
model, the system described in (23) is analyzed to identify
the minimum fractional order that can be modeled without
stabilizing the dynamics, namely, qc � 0.9541, since
σ � 10, β � 14.87, a � −1.27, b � 0.68. 0is result is con-
firmed by the bifurcation diagram as shown in Figure 7,
where the local maxima in x1 are plotted as a function of the
integration order variation. 0e inset shows the attractors
and the corresponding integration order.

5.1. Dynamically Coupled Fractional-Order Chua Systems.
In the same way as for the Rössler system described above, a
pair of Chua oscillators [48] coupled by dynamical con-
nections and defined by the system of equations (25)–(27) is
considered.

master system

D
qm x1m � σ x2m − x1m − ϕ x1m( ( ,

D
qm x2m � x1m − x2m + x3m,

D
qm x3m � −βx2m,

⎧⎪⎪⎨

⎪⎪⎩
(25)

slave system
D

qs x1s � σ x2s − x1s − ϕ x1s( ( ,

D
qs x2s � x1s − x2s + x3s,

D
qs x3s � −βx2s − h1,

⎧⎪⎪⎨

⎪⎪⎩
(26)

dynamic coupling
D

qd h1 � −αch1 + h2,

D
qd h2 � −c1h1 − c2h2 − k x3m − x3s( ,



(27)

where xm,s denotes the state variables of the master and slave
systems, respectively, h1,2 is the states of the dynamic
coupling, ϕ(x1m,s) is the nonlinear function defined in
equation (28), and k is the coupling force between the
systems.
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ϕ x1i(  � bx1i +
1
2

(a − b) x1i + 1


 − x1i − 1


 , for i � m, s.

(28)

As reported in [11], the following values are used in this
study for all analyzes developed; σ � 10, β � 14.87, a �

−1.27, b � −0.68 for αc � 1, c1 � k, c2 � k/5, and initial
conditions [xim, xis, hi] � [0.1, 0.1, 0.1, −0.2, −0.1, −0.1, 0, 0].
On the other hand, the coupling strength is varied in the
interval 0≤ k≤ 60 with Δk � 0.5941 and the integration
order is varied in the interval 0.965≤ q≤ 1 for step size.

To identify synchronization regions in the coupled Chua
systems of fractional order, an analysis of the coupling force
as a function of the integration order is developed. 0e
obtained results are shown in Figure 8. Note that the color
map represents the value of the metric S and that the darkest
shade of blue represents S � 3, which means that the systems
have reached full synchronization.

Analogous to the stability analysis performed for the
coupled Rössler system, the dynamic error model of the
coupled pair of Chua oscillators described in equations
(25)–(27) is described by
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Figure 5: (a) Stability analysis from linear error dynamics for the coupled Rössler system shown in equation (21). (b) Overlap of the
analytical result in the synchronization map shown in Figure 4(a).
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Figure 6: (a) Synchronization map as a function of integration orders qm and qs of master and slave Rössler systems, equations (18)–(20),
and considering a fixed integration order of qd � 0.985 in the dynamic coupling. (b) Synchronization map for system equations (18)–(20) as
a function of the integration order qd of the dynamic coupling, while considering that the master and slave oscillators have fixed integer
order, i.e., q � 1.
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D
q
e1 � σ e2 − e1 − ϕ x1m(  − ϕ x1s(  ( ,

D
q
e2 � e1 − e2 + e3,

D
q
e3 � −βe2 − h1,

D
q
e4 � −αe4 + e5,

D
q
e5 � −c1e4 − c2e5 − ke3.

(29)

Due to the nature of the nonlinearity of the Chua circuit,
it is not possible to perform the same analysis as in the
Rössler system; instead, it is necessary to use the Jacobian of
the error model, equation (30), evaluated in one of the
equilibrium points of the system. Since the Chua circuit has
symmetric equilibrium points located at E1 � (−1.841,

0.0004474, 2.179) for the previously defined values, the
choice of one of these points does not affect the analysis.

J �

−σ − σp(x) σ 0 0 0

1 −1 1 0 0

0 −β 0 1 0

0 0 0 −αc 1

0 0 0 −c1 −c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

where p(x) � 1/2(b sign(|x| − 1) + b) − 1/2(a sign(|x| − 1)

− a)).
After defining the system shown in equation (30), it is

possible to perform the stability system analysis, where the
stability of the dynamic model of the Chua coupling error is
sought by modifying the integration order and the coupling
force. 0e analytical result is shown in Figure 9(a) and then
compared with the map obtained from the time series
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Figure 7: Bifurcation diagram of the Chua system by modifying the integration order, equation (23). 0e abscissa axis indicates that the
three oscillator state variables have the same integration order.
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Figure 8: Numerical result equations (25)–(27). (a) Limit behavior of the system as a function of coupling strength k and integration order q.
(b) Synchronization index equation (14) as a function of integration order, for a fixed k � 13 and k � 20. A value of S � 3 indicates complete
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analysis in Figure 8(b). As with the Rössler case, the ana-
lytical result is able to describe the boundary at which the
system is unstable.

Remark 2. Similarly, to the case of the Rössler systems, we
have also investigated the onset of synchronization in the
fractional-order Chua oscillators as a function of the de-
rivative orders in the oscillators while keeping the coupling
system at fixed qd, resulting in the map as shown in
Figure 10(a). 0e results from the analysis of the behavior of
the Chua systems under the dynamic coupling integration

order variation are shown in Figure 10(b), where the inte-
gration orders of the oscillators remain fixed at qm,s � 1.

6. Discussion

From the results presented in this study, it is possible to
confirm the research question formulated in the introduc-
tion of this study, according to which the use of dynamic
couplings in chaotic systems of fractional order is able to
induce complete synchronization, as it has been reported in
their counterparts of integer order. Likewise, it is noteworthy
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Figure 9: (a) Stability analysis from linear error dynamics for the coupled Chua system as shown in equation (29). (b) Overlay of the
analytical result in the synchronization map as shown in Figure 8(a).
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Figure 10: Synchronization map as a function of integration orders for the Chua systems, equations (25)–(27). (a) 0e integration order of
the master and slave is varied, whereas the integration order of the dynamic coupling remains fixed. (b)0e order of the dynamic coupling is
varied, while the master and slave systems have fixed integer order q � 1.
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to mention that the transition from unsynchronized be-
havior to synchronization is not abrupt, since there exists a
region where the coupled systems may exhibit some sort of
intermittency phenomenon.0ese areas are indicated by the
blurred areas in Figures 4 and 8.

If the oscillators are modeled with fractional derivatives
but a fixed integration order is maintained in the coupling
system, the desired synchronous behavior is achieved only
under the condition that both oscillators have the same
integration order. Small variations in the integration order
in some of the models cause the systems to lose their
synchrony, as shown in Figures 6(a) and 10(a). In contrast,
the synchronization seems to have some robustness against
variations in the integration order of the dynamic coupling,
provided that the oscillators have the same integration order,
as shown in the numerical results presented in Figures 6(b)
and 10(b).

It is also noteworthy that in the (q, k) plane there exist
regions where the systems are easier to synchronize. 0is is
explained by the bifurcation diagrams of the isolated os-
cillators, given in Figures 3 and 7, where the modification in
the integration order causes important qualitative changes in
the dynamics of the system, where both models are able to
present chaotic or periodic behavior, for a set of parameters
where the integer-order dynamics is always chaotic, only due
to the modification of the derivative order. 0is is not only
an indication that the synchronization between the systems
requires lower coupling forces for periodic and quasiperi-
odic behaviors but also a clear indication that the change in
the integration order can be associated with a modification
of the vector field, which can also be achieved in the integer-
order system by modifying the system parameters [17].

0e local stability analysis is in good agreement with the
numerical analysis, as shown in Figures 5 and 9. It should be
noted, however, that the stability conditions are only nec-
essary conditions. 0is result is similar when talking about
the stability of the equilibrium points in a chaotic system,
where obtaining unstable saddle points with index 2 favors
the occurrence of chaotic behavior but does not guarantee
the occurrence of a strange attractor in the system [49].

It is worth mentioning that in the cases of analysis where
the equations to solve do not have the same derivative order,
the algorithm proposed by Petráš is implemented [50];
otherwise, the Adams–Bashforth–Moulton (ABM) method
is used [46], which is a generalization of the classical ABM
integrator that is well known in the resolution of first-order
switching system problems [40, 51].

Notice that the results presented here have been obtained
under the assumption of identical oscillators. It is still
necessary to determine the robustness of the dynamic
coupling against parameter mismatches or external distur-
bances in the oscillators.

7. Conclusions

We have analyzed the onset of synchronization in fractional-
order chaotic systems interacting via a linear time-invariant
dynamic coupling, which also is described by fractional
derivatives. 0e obtained results have shown the ability of

the dynamic coupling to induce synchronization in the
systems, and the strong influence of the integration order on
the onset of synchronized behavior has been demonstrated.

Among the observed limitations is that dynamic cou-
pling is sensitive to variations in the integration order of the
systems.0erefore, the master and slave systems should have
the same integration order. Furthermore, it has been shown
that the linearization approach used here to study the local
stability of the synchronous solution only provides necessary
conditions. Further investigation is needed to derive
stronger stability conditions. Perhaps the use of transverse
Lyapunov exponents can solve this problem. It remains as
future work to extend these results to the bidirectional case
and also to the case of networks. Also, it would be interesting
to investigate whether any emergent behavior or other types
of synchronous behaviors can occur in the coupled systems
depending on the integration order of both the systems and
the coupling.

Finally, we would like to point out that the results
presented here apply to the Caputo definition of fractional
derivative. Moreover, these results were obtained using two
different numerical approaches, namely, the ABM and the
Petráš integrator method. As future work, we plan to
compare these results with different fractional operators,
such as the Riemann–Liouville operator or the Atanga-
na–Baleanu operator, to name a few.
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