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In this paper, a generalized (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation is considered. Based on the Hirota
bilinear method, three kinds of exact solutions, soliton solution, breather solutions, and lump solutions, are obtained. Breathers
can be obtained by choosing suitable parameters on the 2-soliton solution, and lump solutions are constructed via the long wave
limit method. Figures are given out to reveal the dynamic characteristics on the presented solutions. Results obtained in this work
may be conducive to understanding the propagation of localized waves.

1. Introduction

Nonlinear subject is a new interdisciplinary subject which
studies the common properties of nonlinear phenomena.
'e theory of solitons, as one of the three branches of
nonlinear science, has wild applications in many fields of
natural science such as fluids, plasmas, nonlinear optics, field
optics, solid-state physics, and marine science. Hence, it is
very important andmeaningful to study the exact solution of
the nonlinear system. By far, researchers have established
several effective methods to search exact solutions of soliton
equations, including the Bäcklund transformation [1–7], the
Darboux transformation [8–13], the Riemann Hilbert ap-
proach [14], Hirota’s bilinear method [15–20], tanh-function
method [21–24], and so on [25]. Among these methods, the
Hirota bilinear transformation is widely used by scholars
because of its simplicity and directness.

'e Hirota bilinear transformation method can be used
to find the soliton, breather, lump, and rouge wave solutions
of the equation. Solitons, breathers, lumps, and rogue waves
are four types of nonlinear localized waves, which have some
physical applications in nonlinear optics, plasmas, shallow
water waves, and Bose–Einstein condensate. Solitons

[26–29] are the stable nonlinear waves. Lump and lump-type
are a kind of rational function. Lump [30–39] is a rational
function solution and localized in all space directions. Rogue
waves [40–43] are localized in both space and time and
appear from nowhere, and disappear without a trace.
Breathers [44–49] are the partially localized breathing waves
with a periodic structure in a certain direction. Rogue waves
and breathers are localized structures under the background
of the instability. In recent years, the study of nonlinear
localized waves and interaction solutions among them is one
of the important research subjects. For example, based on
the Hirota bilinear method, Yue et al. [50] obtained the N-
solitons, breathers, lumps, and rogue waves of the (3 + 1)-
dimensional nonlinear evolution equation and analysed the
impacts of the parameters on these solutions. Based on the
Hirota bilinear method, Liu et al. [51] constructed the N-
soliton solution for the (2 + 1)-dimensional generalized
Hirota–Satsuma–Ito equation, from which some localized
waves such as line solitons, lumps, periodic solitons, and their
interactions are obtained by choosing special parameters.
Hossen et al. [52] derived multisolitons, breather solutions,
lump soliton, lump kink waves, andmultilumps for the (2+ 1)-
dimensional asymmetric Nizhnik–Novikov–Veselov equation
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based on the bilinear formalism and with the aid of symbolic
computation.

In this paper, we study soliton solution and local wave
solution of generalized (2 + 1)-dimensional Caloger-
o–Bogoyavlenskii–Schiff equation:

ut + uxxy + 3uuy + 3uxvy + δ1uy + δ2vyy � 0,

vx � u,
(1)

which was constructed by Bogoyavlenskii [53] and Schiff
[54] in different ways. 'is is a generalization of a (2 + 1)-
dimensional CBS equation considered in [55]:

vxt + vxxxy + 3vxvxy + 3vxxvy � 0, (2)

whose coefficients have a different pattern from the original
one (4.2) (see, e.g., [56] and references therein). In [57], Toda
and Yu derived the (2 + 1)-dimensional CBS equation from
the Korteweg–de Vries equation. Based on the Hirota bi-
linear formulation, Chen and Ma [30] explored lump so-
lutions, through Maple symbolic computations by using
quadratic polynomial, to a generalized Caloger-
o–Bogoyavlenskii–Schiff equation. Wazwaz [55] derived
multiple-soliton solutions and multiple singular soliton
solutions for the (2 + 1) and (3 + 1)-dimensional CBS
equations, based on the Cole–Hopf transformation and the
Hirota bilinear method. Bruzon et al. [56] used classical and
nonclassical methods to obtain symmetry reductions and
exact solutions of the (2 + 1)-dimensional integrable Calo-
gero–Bogoyavlenskii–Schiff equation. Very recently, Roshid
[58, 59] gave the general formula of n-soliton and found the
various dynamics.

'e structure of this paper is as follows. In Section 2,
we introduce the bilinear form of a generalized Calo-
gero–Bogoyavlenskii–Schiff equation. 'en, based on the
Hirota bilinear method, we will get the soliton solutions
of equation (1). In Section 3, by choosing suitable pa-
rameters on the two-soliton solution, breather solutions
can be obtained. Moreover, we will get the y-periodic
soliton structures of solutions and the (x, y)-periodic
soliton structures by choosing different parameters on the
breather solution, In Section 4, in order to obtain the
lump solution, we can choose suitable parameters on the
two-soliton solution. We shall give our conclusions in
Section 5.

2. The Soliton Solutions

By using transformation,

u � 2(lnf)xx,

v � 2(lnf)x.
(3)

Equation (1) is converted into the following bilinear
formulism [30]:

DtDx + D
3
x Dy + δ1 · DxDy + δ2 · D

2
y f · f � 0. (4)

'at is,

2 ftxf − ftfx + fxxxyf − fxxxfy − 3fxxyfx

+3fxxfxy + δ1 fxyf − fxfy  + δ2 fyyf − f
2
y  � 0,

(5)

where f � f(x, y, t), and the derivatives DtDx, D3
x Dy,

DxDy, D2
y are all bilinear derivative operators [15] defined

by

D
m
x D

n
y D

p
t (f · g) � zx − zx′( 

m
zy − zy′ 

n
zt − zt′( 

p
f

· (x, y, t)g x′, y′, t′( |x�x′ ,y�y′,t�t′ .

(6)

It is clear that if f solves equation (5), then u � u(x, y, t)

is a solution of equation (1) through transformation (3).

2.1. %e 1-Soliton Solution. In order to find one soliton
solution of generalized Calogero–Bogoyavlenskii–Schiff
equation, suppose

f � 1 + e
η1 , (7)

where

η1 � a1x + b1y + c1t + η01, (8)

where the parameters a1, b1, c1, and η01 are arbitrary
constants.

Substituting equations (7) and (8) into equation (5), we
have

c1 � −
b1 a

3
1 + a1δ1 + b2δ2 

a1
. (9)

'en, substituting equations (7) to (9) into equation (3),
we have

u �
2a

2
1 exp η1( 

1 + exp η1( ( 
2,

v �
2a1 exp η1( 

1 + exp η1( 
,

(10)

while

η1 � a1x + b1y + c1t + η01. (11)

If we take a1 � 2, b1 � 4, δ1 � 1, δ2 � −1, η01 � 0, one-
soliton solution can be obtained about equation (1), which is
shown in Figure 1 at t � 0. In the process of wave propa-
gation, we can observe that the velocity, amplitude, and
shape of u, v are always consistent.

2.2. %e 2-Soliton Solution. Set

f � 1 + e
η1 + e

η2 + A12e
η1+η2 , (12)

where

ηi � aix + biy + cit + η0i, (i � 1, 2), (13)
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where the parameters ai, bi, ci, and η0i are arbitrary
constants.

Substituting equations (12) and (13) into equation (4).
'rough maple software calculation, we can get

ci � −
bi a

3
i + aiδ1 + biδ2 

ai

, (i � 1, 2), (14)

A12 � −
a
3
1 − a

2
1a2  a1a2 − 2a

2
2 b2 + a

3
2 − a1a

2
2  a1a2 − 2a

2
1 b1 − δ2 a1b2 − a2b1( 

2

a
3
1 + a

2
1a2  a1a2 + 2a

2
2 b2 + a

3
2 + a1a

2
2  a1a2 + 2a

2
1 b1 − δ2 a1b2 − a2b1( 

2. (15)

Substituting equations (12) and (15) into equation (3).
'rough maple software calculation, we can obtain the two-
soliton solution.

If we take a1 � 2, b1 � 4, a2 � 3, b2 � 2, δ1 � 1, δ2 � −1,

η01 � 0, and η02 � 0 in Figure 2. We can observe that u is the
two bell-shaped waves and v is two-kink soliton. 'is is an
elastic collision, because their velocity, amplitude, and shape
did not change during the wave propagation.

3. The Breather Solutions

Breather solutions of equation (1) can be obtained in the (x,
y) plane, by choosing suitable parameters on the two-soliton
solution, where the parameters in equation (3) meet the
following conditions:

a1 � a2 � m,

b1 � p + ik,

b2 � p − ik,

η01 � η02 � 0.

(16)

Equation (12) can be rewritten as

f � 1 + 2e
ξ cos(ky + ωt) + A12e

2ξ
, (17)

with

ξ � mx + py − m
2
p + pδ1 +

p
2

− k
2

 δ2
m

⎛⎝ ⎞⎠t,

ω � − m
2
k + δ1k +

2kpδ2
m

 ,

A12 �
k
2δ2

−3m
2
p + k

2δ2
.

(18)

If taking m � 2, p � 0, k � 2, δ1 � 1, and δ2 � −1, we
have the y-periodic soliton structures of solutions u, v as
shown in Figures 3 and 4 and their directions are perpen-
dicular to the x-axis. Taking t � −10, t � 0, and t � 10, we can
obtain the dynamic behavior of solving u with time as shown
in Figure 3. 'e dynamic behavior of solving v with time is
shown in Figure 4.'e line of breathers can be obtained in the
(x, y) plane. When t� 0, the alternation of light and dark of
soliton can be observed from Figures 3(b) and 4.

2

1.5

1

0.5

0
–30 –20 –10 0 10 20 30

151050–5–10–15x

y

(a)

4

3

2

1

0
–30 –20 –10 0 10 20 30

151050–5–10–15
x

y

(b)

Figure 1: One-soliton solution (u) v of equation (1) with the parameter selections a1 � 2, b1 � 4, δ1 � 1, δ2 � −1, and η01 � 0, at t � 0. (a) u. (b) v.
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Figure 3: Continued.
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Figure 2: One soliton solution u, v of equation (1) with the parameter selections a1 � 2, b1 � 4, a2 � 3, b2 � 2, δ1 � 1, δ2 � −1, η01 � 0,

and η02 � 0, at t � 0. (a) u. (b) v.
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Figure 3: Continued.
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If taking m � 2, p � 1, k � 2, δ1 � 1, and δ2 � −1, we
have the (x, y)-periodic soliton structures as shown in Figures 5
and 6. 'eir shapes remain the same during the propagation.
Taking t � −5, t � 0, and t � 5, we can obtain the dynamic
behavior of solving u with time as shown in Figure 5. 'e
dynamic behavior of solving v with time is shown in Figure 6.

4. The Lump Solutions

In order to obtain the lump solution, we can choose suitable
parameters on the two-soliton solution. Setting parameters

a1 � l1 · ε,
a2 � l2 · ε,
b1 � n1 · a1,

b2 � n2 · a2,

η01 � η∗02 � l · π,

(19)

in equation (12) and taking the limit as ε⟶ 0, the function
f converted into the following form:

f � θ1θ2 + θ0( l1l2ε
2

+ o ε3 , (20)

with

θ1 � −x − n1y + δ1n1 + δ1n
2
1 t,

θ2 � −x − n2y + δ1n2 + δ1n
2
2 t,

θ0 �
6 n1 + n2( 

δ2 n1 − n2( 
2.

(21)

Substituting equations (20) and (21) into equation (3),
we can obtain

u �
4

θ1θ2
−

2 θ1 + θ2( 
2

θ1θ2 + θ0( 
2. (22)

If taking n1 � a + ib and n2 � a − ib, a, b are all real
constants. We have the lump soliton of solutions u and v

shown in Figure 7. 'e lump solutions u have one global
maximum point and two global minimum points in
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Figure 3: 'e breather solution u of equation (1) with the parameter selections m � 2, p � 0, k � 2, δ1 � 1, and δ2 � −1.
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Figure 4: 'e breather solution v of equation (1) with the parameter selections m � 2, p � 0, k � 2, δ1 � 1, and δ2 � −1.
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Figure 7(a). 'e lump solutions v have one global maximum
point and one global minimum point in Figure 7(b).

5. Conclusions

In summary, we have investigated the 1-soliton, 2-soliton,
and localized nonlinear wave solutions of the generalized
Calogero–Bogoyavlenskii–Schiff equation. 'rough the
Hirota bilinear method, 1-soliton and 2-soliton solutions
have been shown in Figures 1 and 2. Breathers are derived
via choosing appropriate parameters on 2-soliton solutions,
while lumps solution are obtained through the long wave
limit on the soliton solutions. Some obtained results are
shown in Figures 3–7. We analysed their dynamic behavior
and vividly demonstrated their evolution process. Mean-
while, these methods used in this paper are powerful and
absolutely reliable to search the exact local wave solutions of
other nonlinear models. And it is helpful for us to find the
soliton molecules [60–63] in future.
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