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Copyright © 2021 Rashad Saeed et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

High Utility Itemset Mining (HUIM) is one of the most investigated tasks of data mining. It has broad applications in domains
such as product recommendation, market basket analysis, e-learning, text mining, bioinformatics, and web click stream analysis.
Insights from such pattern analysis provide numerous benefits, including cost cutting, improved competitive advantage, and
increased revenue. However, HUIMmethodsmay discover misleading patterns as they do not evaluate the correlation of extracted
patterns. As a consequence, a number of algorithms have been proposed to mine correlated HUIs. 'ese algorithms still suffer
from the issue of the computational cost in terms of both time and memory consumption. 'is paper presents an algorithm,
named Efficient Correlated High Utility Pattern Mining (ECoHUPM), to efficiently mine the high utility patterns having strong
correlation items. A new data structure based on utility tree (UTtree) named CoUTlist is proposed to store sufficient information
for mining the desired patterns. 'ree pruning properties are introduced to reduce the search space and improve the mining
performance. Experiments on sparse, very sparse, dense, and very dense datasets indicate that the proposed ECoHUPM algorithm
is efficient as compared to the state-of-the-art CoHUIM and CoHUI-Miner algorithms in terms of both time and
memory consumption.

1. Introduction

We live in a data age where a huge amount of data is
generated from different devices every day. It is expected that
463 exabytes of data will be generated on a daily basis by
2025 [1]. Data mining has received a great deal of attention
in order to transform data into useful information, due to
the exponentially explosive growth of data [2]. Pattern
mining is a type of unsupervised data mining approach,
which aims to find useful, interesting, and meaningful
patterns that can be used to support decision-making [3, 4].
Different pattern mining techniques are used to mine dif-
ferent types of patterns, including frequent patterns [5], high
utility patterns [6], sequential patterns, trends, outliers, and
graph structures [2, 6].

Frequent itemset mining (FIM) aims to extract patterns
containing items that frequently appear in transactional

database. [7]. 'is task has been tremendously studied and
remains to this day a very active research area as it has
several applications in domains such as market basket
analysis, product recommendation, text mining, e-learning,
bioinformatics, and web click stream analysis [3, 8, 9]. Even
though the mining of frequent pattern is useful, it depends
on the assumption that all items in the dataset are equally
important (e.g., weight or profit). Nevertheless, this as-
sumption is not true for several real-life applications [6, 10].
For instance, the pattern bread,milk{ } in a transaction
database may be extremely frequent but it may not be in-
teresting as it may produce a low profit. In different cir-
cumstances, numerous patterns like champagne, caviar􏼈 􏼉

may yield a higher profit even if they are not frequent [11].
To overcome this limitation of FIM, an emerging research
area is High Utility Itemset Mining (HUIM) which aims to
find high utility or important patterns [2, 6].
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HUIM takes into account the weight of items in the
database and their quantities in each transaction.'e goal of
HUIM is to find all patterns having utility not less than
minimum utility threshold. Recently, HUIM has become a
very active research area as it generalizes the problem of FIM
and has the same wide applications [12–15].

'e algorithms of HUIM are divided into two main
categories. 'e first category is called Two-Phase algorithms
[11, 16].'ese types of algorithms generate candidates in the
first phase, and then, in the second phase, they calculate the
utility of each candidate in order to derive HUIs. However,
due to the huge number of candidates generated in the first
phase, these algorithms may suffer from the problem of time
and memory consumption. 'e second category is One-
Phase algorithms [6, 10, 17]. 'e algorithms of this category
try to overcome the above issue by utilizing different data
structures to store sufficient information for mining the
desired patterns without candidate’s generation and utilize
various pruning properties to reduce the search space.

One critical downside of High Utility Itemset Mining
methods is that they generally extract patterns with a high
utility, but the items that make up these patterns are weakly
correlated. For marketing decisions, such patterns are either
useless or misleading [18–23]. For instance, with market
basket analysis application, the current algorithm of High
Utility Pattern Mining may find that buying a pen and a 60-
inch plasma TV is a high utility itemset, since these items
generally create a high profit when purchased together.
However, these items are weakly correlated and rarely sold
together. Hence, it would be a mistake to use this pattern to
promote TV to customers who buy pen [11, 21].

To address the above-stated issue, few numbers of al-
gorithms have been developed to mine Correlated High
Utility Itemsets, such as HUIPM [19], FDHUP [21],
FCHMbond [22], FCHMall-confidence [22], CoHUIM [20],
and CoHUI-Miner [24]. 'ese algorithms differ from each
other in the measures used to evaluate the interestingness of
the extracted patterns, the data structures, and pruning
properties that they used to reduce the search space and
improve the mining performance. In [20, 24], a projected
database has been utilized to reduce the database and im-
prove the efficiency of correlated HUIs mining. 'e pro-
jected database is effective, but it suffers from the
computational cost in terms of running time and memory
consumption.

In order to address such issue in mining Correlated High
Utility Itemsets, this study proposes a new algorithm named
Efficient Correlated High Utility Pattern Mining (ECo-
HUPM). In the proposed algorithm, new efficient data
structures and pruning properties are introduced to mine
the desired patterns in efficient manner. 'e main contri-
butions of this paper are summarized as follows:

(i) It proposes a novel algorithm, ECoHUPM, which
adopts the divide-and-conquer approach and em-
ploys UTtree structure which is an extended form of
FP-tree [25].

(ii) New data structure based on UTtree named
CoUTlist is proposed to store sufficient information

formining the desired patterns in one phase without
candidate’s generation.

(iii) 'e proposed algorithm introduces several pruning
properties to reduce the search space and improve
the mining performance.

(iv) An experimental performance evaluation of the
proposed algorithm is conducted on sparse, very
sparse, dense, and very dense datasets. 'e per-
formance of the proposed ECoHUPM algorithm is
compared with CoHUIM and CoHUI-Miner al-
gorithms for Correlated High Utility Itemset
Mining. Experimental results show that the pro-
posed ECoHUPM algorithm is better than the state-
of-the-art CoHUIM and CoHUI-Miner algorithms
in terms of both time and memory consumption.

'e rest of this paper is organized as follows: In Section
2, we review the literature associated with HUIM and
CoHUIM. Next, we introduce the mathematical prelimi-
naries and state the problem in Section 3. In Section 4, we
explain the proposed algorithm in detail. Section 5 gives
details of the experimental setup and analyzes the results.
Section 6 concludes the work of this paper.

2. Related Works

'is section reviews the literature on HUIM and the
CoHUIM.

2.1. High Utility Itemset Mining (HUIM). Yao and Hamilton
defined the problem of HUIs mining in 2004 [26]. 'ey de-
velopedUMining algorithm formining the itemset having high
utility. UMining is an approximate algorithm and may fail to
extract all HUIs. Hence, in order to extract the complete set of
HUIs, Liu et al. [16] developed a Two-Phase algorithm. In the
Two-Phase algorithm, a novel upper bound pruning property
named TWU (Transaction Weighted Utilization) has been
proposed to reduce the search space.'e Two-Phase algorithm
mines the HUIs in two phases. In the first phase, it generates
the candidate HUIs with their TWU not less than the mini-
mum utility threshold. 'en, in the second phase, it calculates
the utility of each candidate by scanning the database again to
drive the HUIs. However, the Two-Phase algorithm suffers
from the issue of time andmemory efficiency.'emain reason
is that a huge number of candidates may be generated in the
first phase.

In [27], a new method based on tree structure called HUP-
tree is proposed to mine HUIs. It integrates the Two-Phase
procedure and FP-tree concept to construct a compressed tree
structure for utilizing the TWU property.'is approach mines
HUIs in three steps: (1) constructs the tree, (2) generates the
candidate’s patterns, and then (3) identifies the HUIs from the
list of candidates. 'e mining performance of this algorithm is
affected by the number of conditional trees constructed during
the whole mining process and the traversal cost of each
conditional tree. Hence, this algorithm suffers from the time
and memory consumption due to the generation of a huge
number of conditional trees and candidate patterns as well [28].
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In order to improve the efficiency of HUIs mining,
several algorithms have been developed. To extract HUIs
without candidates generation, Liu and Qu proposed HUI-
Miner algorithm [29]. HUI-Miner utilizes utility-list
structure to store sufficient information for mining the HUIs
in one phase. 'en Fournier-Viger et al. developed an al-
gorithm named FHM [30], which introduced EUCS (Esti-
mated Utility Cooccurrence Structure) and EUCP
(Estimated Utility Cooccurrence Pruning) to improve the
HUIs mining performance. HUP-Miner [31] extended the
HUI-Miner to speed up utility list by utilizing a look-ahead
strategy and pruning the search space by database parti-
tioning. Chen and An [32] proposed PHU-Miner which is a
parallel version of HUI-Miner. A novel algorithm named
ULB-Miner was developed [33], in which improved utility
list has been proposed, called utility-list buffer, for speeding
up the utility-list join operation and reducing the memory
consumption. A new projection-based algorithm, named
MAHI [34], has been proposed to speed up the discovery of
HUIs by utilizing a MAprun (Matrix-based pruning
strategy).

For mining HUIs without the need to set the minimum
utility threshold, Tseng et al. [35] developed two types of
efficient algorithms named TKU (mining Top-K Utility
itemsets) and TKO (mining Top-K utility itemsets in One
phase) to extract top-K high utility itemsets. However, they
remain expensive in terms of both runtime and memory
usage. Hence, Duong et al. [12] designed a novel algorithm
named kHMC to extract the top-K HUIs more effectively.
'e kHMC utilizes three strategies called COV, RIU, and
CUD to reduce the search space and thus improves the
mining performance. Recently, Gunawan et al. [36] devel-
oped an algorithm based on binary particle swarm opti-
mization for optimizing the search for HUIs without setting
the minimum utility threshold beforehand. Instead, the
minimum utility threshold is determined as a postprocessing
step.

Although High Utility Pattern Mining has several ap-
plications, it has some limitations. As a consequence, many
extensions of High Utility Pattern Mining appeared in the
literature such as Incremental Utility Mining [37, 38] which
aims to extract HUPs from dynamic databases, On-Shelf
High Utility Pattern Mining [39–41] in which the shelf time
of items is considered, and Concise Representations of High
Utility Patterns (e.g., Maximal Itemsets [42, 43] and Closed
High Utility Itemsets [44–47]) that aim to extract a small list
of meaningful HUPs.

2.2. Correlated High Utility Itemset Mining (CoHUIM). A
number of correlation measures have been suggested in the
data mining literature which are used for association
analysis, such as bond, all-confidence, any-confidence
[48, 49], coherence [50] and Kulczynsky [51]. As the tra-
ditional algorithms of High Utility Itemset Mining do not
consider the correlation of the extracted patterns, they may
lead to noninteresting or misleading patterns. In such a case,
they usually discover itemsets having high utility, but these
itemsets may contain weakly correlated items.

In order to extract more interesting patterns and to avoid
misleading patterns resulting from the traditional methods
of HUIs mining, a number of algorithms have been pro-
posed to mine Correlated High Utility Itemset by utilizing
both utility and correlation measures. Ahmed et al. [19] first
proposed an algorithm named High Utility Interesting
Pattern Mining (HUIPM) with strong frequency affinity for
mining interesting patterns in high utility itemset, in which
the relation among items is meaningful. 'e HUIPM al-
gorithm introduced a new data structure named Utility Tree
based on Frequency Affinity (UTFA) as an efficient data
structure to store sufficient information required for mining
the desired patterns. While a new pruning property named
Knowledge Weighted Utilization (KWU) has been proposed
in this algorithm to reduce the search space, the HUIPM
algorithm recursively creates a number of conditional trees
to generate candidates and then derive interesting patterns.
'is procedure is time-consuming. 'us, Lin et al. [21]
developed a new algorithm named fast algorithm for mining
discriminative high utility patterns (FDHUP) to improve
HUIPM. In the FDHUP algorithm, two data structures
called Element Information table (EI table) and Frequency
Utility table (FU table) have been proposed to store required
information for mining the DHUP efficiently. New pruning
property is based on summation of affinitive utility and the
remaining affinitive utility has been introduced to reduce the
search space.

Fournier-Viger et al. [22] developed Fast Correlated
High Utility Itemset Miner (FCHM) algorithm for inte-
grating the concept of correlation in High Utility Itemset
Mining in order to extract profitable patterns that are highly
correlated. Two versions of the algorithm have been pro-
posed, FCHMbond and FCHMall-confidence, which are
based on bond and all-confidence measures that are already
used for measuring frequent correlated patterns [48, 50, 52].
'e FCHM algorithm is based on HUI-Miner [29], in which
the utility-list structure has been utilized, while TWU and
strategy based on summation of initial and remaining utility
have been used as pruning properties to reduce the search
space. Moreover, FCHMbond and FCHMall-confidence
utilize the antimonotonicity property of the bond and all-
confidence measures, respectively, for further improving the
mining performance.

Gan et al. [18, 20] proposed two algorithms to extract
correlated purchase behaviors by considering the correlation
and utility measures. 'e first algorithm [20] is named
Correlated High Utility Itemset Mining (CoHUIM), while
the second one [18] is Correlated high Utility Pattern Miner
(CoUPM). Both algorithms use the Kulczynsky (abbreviated
as Kulc) measure [51] in conjunction with utility measure to
evaluate the interestingness of the desired patterns. 'e
CoUPM utilizes the utility-list structure which is introduced
in [29] as a data structure to store information required to
mine the desired patterns. Meanwhile, an efficient projection
mechanism and a sorted downward closure property are
developed in CoHUIM to reduce the database size.

Vo et al. [24] suggested an algorithm, called CoHUI-
Miner, to efficiently extract Correlated High Utility
Itemset. 'e CoHUI-Miner applies the database projection
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mechanism to reduce the database size. Furthermore, it
proposes a new concept called the prefix utility of projected
transactions to directly calculate the utility of itemset.

Table 1 shows a summary of the Correlated High Utility
Itemset Mining algorithms and their features.

3. Fundamental Concepts

'is section presents preliminary concepts related to the
problem of Correlated High Utility Itemset Mining. We
adopted the definitions presented in previous work [53].

Definition 1 (quantitative database). Let I� i1, i2, . . . , im􏼈 􏼉 be
a set of items and for each item ip ∈ I(1≤p≥m) profit unit
(External Utility) denoted as pr(ip) in each transaction each
item is associated with internal utility (Quantity) denoted as
q(ip, Td). A quantitative database D � T1,􏼈 T2, . . . , Tn}

contains a set of transactions.
Table 2 shows the transactional database, while Table 3

shows external utilities for the items in Table 2.

Definition 2. Utility of an item ip in each transaction Td is
denoted by u(ip, Td) and is defined as u(ip, Td) �

q(ip, Td) × pr(ip), where pr(ip) is the external utility of an
item ip and q(ip, Td) is the quantity of an item ip in
transaction Td.

For example, u(b, T1) � 6 × 4 � 24.

Definition 3. Utility of an itemset X in the transaction Td is
denoted by u(X, Td) and is defined as u(X, Td) �

􏽐ip∈X&X∈Td
u(ip, Td), that is, the sum of the utilities of all

items inside pattern X in transaction Td.
For example, u(bc, T1) � u(b, T1) + u(c, T1) � (6 × 4)+

(2 × 4) � 32.

Definition 4. Utility of an itemset X in the quantitative
database D is denoted by u(X) and is defined as
u(X) � 􏽐X∈Td &Td⊆Du(X, Td), that is, the sum of the utilities
of itemset X in all transactions containing it.

For example, u(bc) � u(bc, T1) + u(bc, T2) + u(bc, T7)+

u(bc, T8) � 32 + 32+ 24 + 20�108.

Definition 5. An itemset X is called high utility itemset if
u(X)≥minUtil, where minUtil is the minimum utility
threshold.

For example, for the data presented in Table 2 with
minUtil� 90, {bc} is high utility itemset.

Definition 6. Utility of a transaction Td is denoted by tu(Td)

and is defined as the sum of the utilities of all items inside
transactionTd. tu(Td) � 􏽐ip∈Td

u(ip, Td).
For example, the utility of transaction T8 is calculated as

tu(T8) � u(b, T8) + u(c, T8) + u(d, T8) + u(e, T8) � 20 + 12
+ 3 + 25 � 60.

Definition 7. 'e Transaction Weighted Utilization (TWU)
of an itemset X in database D is defined as TWU(X) �

􏽐X∈Td &Td⊆Dtu(Td).

For example, TWU(bc) � tu(T1) + tu(T2) + tu(T7) +

tu(T8) � 70 + 31 + 26 + 60 � 187.

Definition 8. An itemset X is called High Transaction-
Weighted Utilization Itemset (HTWUI) if TWU(X)≥
minUtil, where minUtil is the minimum utility threshold.

For example, with minUtil� 90, an itemset (bc) is
HTWUI.

Different measures have been used to evaluate the in-
terestingness of the HUIs, such as frequency affinity, bond,
all-confidence, and Kulczynsky. Kulczynsky measure was
recommended in [2] and has been used in [18, 20, 24].
Kulczynsky (abbreviated as Kulc) is a null-invariant mea-
sure; it is not influenced by the null transactions and is used
to evaluate the inherent correlation of patterns [48, 51].

Definition 9 (support). 'e support of an itemset X in the
transactional databaseD is denoted by sup(X) and is defined
as the proportion of transactions in the database which are
matched by X. Sup(X) � (count(X)/n), where n is the total
number of transactions in the database.

For example, for the data in Table 2, sup(a) �

(8/11) � 0.727.

Definition 10. 'e correlation between items inside an
itemset X based on the Kulc measure is defined as the mean
of the conditional probabilities of items:

Kulc(X) �
1
k

􏽘
ip∈X

sup(X)

sup ip􏼐 􏼑
, (1)

where k is the number of items inside X.
For example, for the data in Table 2, Kulc

(ab) � 1/2((sup(ab)/sup(a)) + (sup(ab)/supp(b))) � (1/
2)((0.181/0.727) + (0.181/0.363)) � 0.375.

Definition 11. Correlated High Utility Itemset). For a given
quantitative database D with minimum utility threshold
(minUtil) and minimum correlation threshold (minCor),
the Correlated High Utility Itemset is an itemset X such that
u(X)≥minUtil &Corr(X)≥minCorr.

4. Proposed Algorithm

In order to address the need for more efficient algorithm for
mining Correlated High Utility Itemsets, we propose a new
algorithm named Efficient Correlated High Utility Pattern
Mining (ECoHUPM). 'is section presents the proposed
ECoHUPM algorithm in detail, the data structures that it
utilizes to store sufficient information for mining the desired
patterns, and the pruning properties that are used to reduce
the search space and improve the mining performance.

4.1. Database Revising. 'e proposed ECoHUPM algorithm
revises the input database in its first step. First, Property 1
[16] is used to remove all 1-itemsets with their TWU less
than minimum utility threshold. For instance, for the data
presented in Table 2, with minUtil� 90, “g” item is removed
as its TWU(g) � tu(T3) + tu(T9) � 27 + 4 � 31<minUtil.
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Second, in each transaction, the utility of each item is
computed through the formula quantity× profit as is stated
in Definition 2.'ird, items in each transaction are sorted in
the descending order of their support and the total utility is
assigned to each transaction. Table 4 shows the items in the
descending order of their support, while Table 5 shows the
revised database.

4.2. Search Space. 'e proposed ECoHUPM algorithm
utilizes a set-enumeration tree as a search space, whose
efficiency has been verified in pattern mining [29]. Reversed
depth-first search traversal is adopted as shown in Figure 1
to facilitate the search tree. Note that the ECoHUPM uses
the support descending order to revise database and then to
construct the UTtree. Hence, with reversed depth-first
search, the mining order for the running example is
f≺e≺b≺a≺d≺c􏼈 􏼉.

Definition 12. Given a set-enumeration tree and itemset X

represented by a node N, a set of nodes with their ancestors
N are called the extensions (supersets) of X.

For the k-itemset (itemset containing k items), we de-
note its extensions containing (k + i) items as i-extension of
the itemset. By adopting reverse depth-first traversal, any

extension of itemsetX is a combination of Xwith the item(s)
before X.

For instance, in the set-enumeration tree represented in
Figure 1, itemset debf􏼈 􏼉 is 2-extension of bf􏼈 􏼉, while itemset
cdebf􏼈 􏼉 is 3-extension of bf􏼈 􏼉.

4.3. Utility Tree and Correlation Utility-List Structures.
Once the database is revised, the proposed ECoHUPM al-
gorithm constructs the utility tree (UTtree). A UTtree is a
concise structure that stores sufficient information for fa-
cilitating the mining of Correlated High Utility Itemsets in a
single phase. It is an extended form of FP-tree [25], where
each node consists of four fields: label, interLink,
parentLink, and utList. 'e label refers to the item’s
label,interLink points to the next node of the same item,
parentLink points to the parent node, and utList is a dic-
tionary that stores both a transaction’s ID as keys and item’s
utility in each transaction as values.

A UTtree is constructed with only one scan of the revised
database as is shown in Algorithm 1. First, the tree is ini-
tialized by creating the Root node. 'en the transactions are
processed one by one, as shown in lines 1 and 2. 'e in-
formation of each transaction is inserted into the tree by
calling insertTree(Ti, itemsList, N d) function as shown in

Table 1: Summary of Correlated High Utility Itemset Mining algorithms and their features.

No. of phases Algorithm Measures Data structures Pruning properties

Two phases HUIPM [19] UTFA KWU
CoHUIM [20] Utility and FA Projected database TWU

One phase

FDHUP [21] Utility and Kulczynsky EI table with FU table (1) TWU
(2) Sum of AU and RAU

FCHMbond [22] Utility and bond Utility list
(1) TWU

(2) Sum of iutil and rutil
(3) Antimonotonicity of bond

CoHUIM [20] Projected database TWU

CoUPM [18] Utility and Kulczynsky Utility list (1) TWU
(2) Sum of iutil and rutil

CoHUI-Miner [24] Projected database with prefix utility

Table 2: A transactional database.

TID Transaction
T1 {a: 2, b: 6, c: 2, d: 2, e: 6}
T2 {a: 3, b: 2, c: 3, d: 2}
T3 {a: 3, c: 2, d: 2, e: 3, g: 3}
T4 {a: 4, c: 4, d: 4, e: 12, f: 12}
T5 {a: 3, c: 4, d: 3, f: 4}
T6 {a: 2, c: 3, d: 2, f: 3}
T7 {b: 2, c: 4, d: 2}
T8 {b: 5, c: 3, d: 3, e: 5}
T9 {d: 3, g: 1}
T10 {a: 6, c: 5}
T11 {a: 2, c: 2}

Table 3: External utility.

a b c d e f g

3 4 4 1 5 4 1

Table 4: Items’ support.

c d a b e f g

10 9 8 4 4 3 2

Table 5: 'e revised database.

TID Transaction TWU
T1 {c: 8, d: 2, a: 6, b: 24, e: 30} 70
T2 {c: 12, d: 2, a: 9, b: 8} 31
T3 {c: 8, d: 2, a: 9, e: 15} 34
T4 {c: 16, d: 4, a: 12, e: 60, f: 40} 132
T5 {c: 16, d: 3, a: 9, f: 16} 44
T6 {c: 12, d: 2, a: 6, f: 12} 32
T7 {c: 16, d: 2, b: 8} 26
T8 {c: 12, d: 3, b: 20, e: 25} 60
T9 {d: 3} 3
T10 {c: 20, a: 18} 38
T11 {c: 8, a: 6} 14
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line 3. 'e function insertTree(Ti, itemsList, N d) is exe-
cuted as follows: First, the items of the current transaction Ti

are sorted in itemsList, and the first item is stored in
firstItem. 'en, if the current node (N d) has N child such
that N.label � firstItem, update N.utList dictionary by
adding Ti key with u(fisrtItem, Ti) value; else create node N

such that N.label � fisrtItem, N.parentLink points to N d,
N.interLink points to the previous node of the same label,
and N.utList � Ti: u(fisrtItem, Ti)􏼈 􏼉. 'ereafter, while the
list of remaining items (itemsList[1: ]) is not empty, call the
function insertTree(Ti, remainingItems, N) recursively. Fi-
nally, after inserting the information of the last transaction,
the final UTtree is returned (line 5).

For the revised database presented in Table 4, Figure 2
shows the UTtree after inserting the first transaction. First,
the tree is initialized by the Root node, and then node c is
created with label � c, parentLink � Root, and
utList � T1: 8􏼈 􏼉. 'en, node d is created with label � d,
parentLink � c, and utList � T1: 2􏼈 􏼉. Node a is created with
label � a, parentLink � d, and utList � T1: 6􏼈 􏼉. Node b is
created with label � b, parentLink � a, and utList �

T1: 24􏼈 􏼉. Node e is created with label � e, parentLink � b,
and utList � T1: 30􏼈 􏼉. As the current transaction is the first
transaction, interLink of all nodes points to the items
holding the same label in the header table. Similarly, the
second and third transactions are inserted into the UTtree as
shown in Figure 3. 'e final UTtree after inserting the last
transaction is shown in Figure 4.

Besides adopting UTtree, new condensed data structure
named CoUTlist is proposed to store sufficient information
for mining the superset patterns without needing to scan the
UTtree multiple times.

Definition 13. 'e Correlation Utility list (CoUTlist) of an
itemset X contains a set of elements, where each element
represents node called a suffix where itemset X appears. In
the CoUTlist, each element has four fields:

(i) nodeNo is a unique identifier number for each node,
which is used as a sequence number, for example, (1,
2, . . ., n).

(ii) nodeSupp stores the total number of transactions,
where itemset X occurred in the current node N.
nodeSupp � count(N.utList.keys).

(iii) nodetUtility stores the total utility of itemset X in
the current node N. nodetUtility � sum(N.

utlist.values).
(iv) prefixPath is a dictionary, where the keys are the

labels of the parent nodes of the current node, and

the values are the summation of the utilities of each
parent node in the current path.
prefixPath� Parent1: value1, Parent2: value2, . . . ,􏼈

Parentn: valuen}, where Parenti is the parent node in
the current path and valuei � sum(Parenti.
utList.values) for the keys in N.utList.keys.

4.3.1. 5e CoUTlist of 1-Itemset. Given a UTtree and item ip,
we denote the set of nodes labeled ip as suffixes and the set of
the parent nodes in the current path as prefixPath. 'e
CoUTlist of 1-itemset (ip) is denoted as CoUTlist(ip) and is

c d

cd ca da

cda cdb cab dab

cdab cdae cdbe cabe dabe

cdabe cdabf cdbef

cdaf cdbf cabf dabf cdef cbef dbef

cde cae dae cbe dbe abe cdf caf daf cbf dbf abf cef def bef

cb db ab ce de ae be cf df af bf ef

a b e f

Root

Figure 1: Set-enumeration tree with reversed depth-first traversal.

Header table
Label interLink

c

d

a
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e

f

…

…

…

…

…

…

c

d

a

b

e

{T1: 8}

{T1: 2}

{T1: 6}

{T1: 24}

{T1: 30}

utList

parentLink
Root

Figure 2: UTtree after inserting T1.

Header table
Label interLink

c

d

a

b

e

f

…

…

…

…

…

…

c

d

a

b
e

e

{T1: 2, T2: 2, T3: 2}

{T1: 8, T2: 12, T3: 8}

{T1: 6, T2: 9, T3: 9}

{T1: 24, T2: 8}
{T3: 15}

{T1: 30}

Root

Figure 3: UTtree after inserting T3.
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constructed as follows: ∀N ∈ suffixes, if [P1, P2, . . . , Pn]

∈ prefixPath, [P1, P2, . . . , Pn] are the parents of N; then
construct a quadruple (nodeNo, nodeSupp, nodeUtility,
prefixPath), and append it to CoUTlist(ip).

Figure 5 shows how the CoUTlist of an item a{ } denoted
as CoUTlist(a) is constructed. Based on the UTtree shown in
Figure 3, there are two nodes: for those whose N.label � a,
we denote the first node as suffix1 and the second node as
suffix2. According to Definition 13, the first element of the
CoUTlist(a) represents suffix1, with nodeNo� 1,
nodeSupp � count(N.utList.kesy) � 6, nodeUtility � sum
(N.utList.values) � (6 + 9 + 9 + 12 + 9 + 6) � 51, and pre
ffixPath ffixPath � d: (u(d, T1)􏼈 +(u(d, T2) + (u

(d, T3) + (u(d, T4) + (u(d, T5) + (u(d, T6), c: (u(c, T1) +

(u(c, T2) + (u(c, T3) + (u(c, T4) + (u(c, T5) + (u(c, T6
)} � d: 15, c: 72{ }. 'e second element of the CoUTlist(a)
represents suffix2, with no de No � 2, nodeSupp
� count(N.utList.kesy) � 2, nodeUtility � sum(N.utList.
values values) � (18 + 6) � 24, and path � c: (u(c, T10)􏼈

+(u(c, T11)} � c: 28{ }. Subsequently, the elements of suffix1
and suffix2 formalized CoUTlist(a) as shown in Figure 6.

In the same manner, the CoUTlist of the remaining 1-
itemsets are constructed as shown in Figure 7.

4.3.2. 5e CoUTlist of k-Itemset. Let itemset X � Ik,􏼈

Ik−1, . . . , I2, I1} be an extension of itemset Y � Ik−1,􏼈

. . . , I2, I1}. We denote the element in CoUTlist(Y) as Ynode
and the element in CoUTlist(X) as Xnode.

Definition 14. Item xi is after itemset X if xi is after all items
in X. Here the keys {represent items} in prefixPath of Ynode
are sorted according to the mining order which is the as-
cending order on their supports and are denoted as X≺xi.

For example, we have the first node of the CoUTlist of f
itemset, ead{ }≺c.

Definition 15. Given an itemset Y � Ik−1, . . . , I2, I1􏼈 􏼉, the
CoUTlist of its superset X � Ik, Ik−1, . . . , I2, I1􏼈 􏼉 is con-
structed as follows: ∀ Ynode in CoUTlist(Y), if Ik ∈ the
prefixPath of Ynode, add Ynode to the CoUTlist(X) such that

(i) nodeNo� nodeNo of Ynode

(ii) nodeSupp� nodeSupp of Ynode

(iii) nodeUtility � nodeUtility + prefixPath[Ik] of Ynode

(iv) prefixPath� {key: value for key, value in the
prefixPath of Ynode, if key ∈ X≺Ik}

Figure 8 shows how the CoUTlist of da{ } itemset and
CoUTlist of ca{ } itemset are constructed from the CoUTlist
of a{ } itemset. It further shows how the CoUTlist of c da{ }

itemset is constructed from the CoUTlist of da{ } itemset.
'e CoUTlist(a) is [[1, 6, 51, ‘d’: 15, ‘c’: 72], [2, 2, 24, ‘c’: 28]].
As item d{ } has only appeared in the first element of
CoUTlist(a), only one element is added to the CoUTlist(da),
whose nodeNo� 1, nodeSupp� 6, nodeUtility � 51 + 15� 66,
and prefixPath� c: 72. On the other hand, item c{ } has
appeared in the two elements of CoUTlist(a); hence, two
elements are added to the CoUTlist(ca). 'e first element is
with nodeNo� 1, nodeSupp� 6, nodeUtility � 51 + 72�123,
and prefixPath� { }, while the second element is with
nodeNo� 2, nodeSupp� 2, nodeUtility � 24 + 28� 52, and
prefixPath� { }. Similarly, the CoUTlist(cda) is constructed
from the CoUTlist(da). As item c{ } has appeared in the
element of CoUTlist(da), this element is added to the
CoUTlist(cda) with nodeNo� 1, nodeSupp� 6,
nodeUtility � 66 + 72�138, and prefixPath� { }.

Header table
Label interLink
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d

a

b

e

f

…

…

…

…

…

…

{T1: 8, T2: 12, T3: 8, T4: 16, T5: 16,
T6: 12, T7: 16, T8: 12, T10: 20, T11: 8}

{T1: 2, T2: 2, T3: 2, T4: 4, T5: 3, T6: 2, T7: 2, T8: 3}

{T1: 6, T2: 9, 3: 9, 4: 12, 5: 9, 6: 6}

{T9: 3}

{T10: 18, T11: 6}

{T7: 8, T8: 20}

{T1: 24, T2: 8} {T3: 15, T4: 60} {T5: 60, T6: 12}

{T8: 20}

{T4: 40}{T1: 30}

Root
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d

a

d

a

b

e

e

b

e

f

f

Figure 4: 'e final UTtree after inserting T11.
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{T1: 8, T2: 12, T3: 8, T4: 16, T5: 16, T6: 12, T7: 16, T8: 12, T10: 20, T11: 8}

{T1: 2, T2: 2, T3: 2, T4: 4, T5: 3, T6: 2, T7: 2, T8: 3}

{T1: 6, T2: 9, T3: 9, T4: 12, T5: 9, T6: 6}

{T10: 18, T11: 6}
Parent 1 = {c: 28}

Parent 2 = {c: 72}

Parent 1 = {d: 15}

Node 1

Node 2

Count = 6

Count = 2

Sum = 51

Sum = 24

Root

c

a

d

a

nodeNo nodeSupp nodeUtility prefixPath

2 24 {c: 28}2

nodeNo nodeSupp nodeUtility prefixPath

6 51 {d: 15, c: 72}1

Figure 5: CoUTlist of 1-itemset construction.

nodeNo nodeSupp nodeUtility prefixPath

6 51 {d: 15, c: 72}

{c: 28}2 24

1

2

Figure 6: CoUTlist of item {a}.

The CoUTlist of {f} itemset

The CoUTlist of {e} itemset

The CoUTlist of {c} itemset

The CoUTlist of {d} itemset

The CoUTlist of {b} itemset

nodeNo nodeSupp nodeUtility prefixPath

1 40 {e: 60, a: 12, d: 4, c: 16}

{a: 15, d: 5, c: 28}2 28

1

2

nodeNo nodeSupp nodeUtility prefixPath

1 30 {b: 24, a: 6, d: 2, c: 8}

{a: 21, d: 6, c: 24}2 75

1

nodeNo nodeSupp nodeUtility prefixPath

10 128 { }1

2

{b: 20, d: 2, c: 12}1 253

nodeNo nodeSupp nodeUtility prefixPath

2 32 {a: 15, d: 4, c: 20}

{d: 5, c: 28}2 28

1

2

nodeNo nodeSupp nodeUtility prefixPath

8 20 {c: 100}

{ }1 3

1

2

Figure 7: 'e CoUTlist of the remaining 1-itemsets.
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4.4. Pruning Properties. Alongside adopting Property 1
(TWU) [16], three new pruning properties are introduced in
the proposed ECoHUPM algorithm and applied to reduce
the search space.

Property 1. Transaction-Weighted Upper Bound Property
(TWU) is already introduced in [16]. 'e proposed algo-
rithm utilizes the TWU property [16] to remove all 1-
itemsets having TWU less than minUtil threshold.

Let X be a k-itemset, and let Y be a (k− 1)-itemset such
that Y ⊂ X. If X is HTWUI, Y is HTWUI as well. 'is means
that if an itemset is Low Transaction-Weighted Utilization
Itemset (LTWUI), all its supersets will be LTWUIs as well.
Hence, this property can be used to reduce the search space
by removing LTWUIs with their supersets from the search
space.

Property 2. 'e first proposed pruning property is Upper
Bound property based on summation of Utility and the Path
Utilities (UBUPU).

Given an itemset Y, if u(Y) plus pu(Y) is less than the
minimum utility threshold (minUtil), Y and any superset of
Y are not CoHUIs.

Proof. Let X be a superset of Y; we know the following.
'e utility of Y is calculated as the sum of the nodes’

utilities in the CoUTlist(Y).

u(Y) � 􏽘
Ynode∈CoUTlist(Y)

nodeUtility,
(2)

for example, u(a) � 51 + 24� 75.
'e path utility of Y itemset is calculated as the sum of

the prefixes’ utilities stored in the prefixpath in the
CoUTlist(Y).

pu(Y) � 􏽘
Ynode∈CoUTlist(Y)

sum(prefixPath.values),
(3)

for example, pu(a) � [(15 + 72) + (28))� 115.
Since Y⊆X,

U(X)≤ u(Y) + pu(Y), (4)

for example, u(da) � 66, u(ca) � 175, and u(c da) � 138.
All values ≤u(a)+pu(a) � 75 + 115�190. □

Property 3. 'e second proposed pruning property is Lower
Bound property based on the Node Utility (LBNU). As the
CoUTlist of each itemset X is a list of elements (nodes),
where each element represents a set of transactions con-
taining X, on the contrary to the utility list [18, 22] or
projected database [20, 24], where each element represents a
single transaction, with CoUTlist, there is a possibility that
the utility of some itemsets exceeds the minUtil in some
elements of their CoUTlists, and thus the following lower
bound property based on the nodeUtility is formed.

Consider an itemset X: ∀ Xnode ∈ CoUTlist(X), if
nodeUtility ≥minUtil, then all possible combinations of
itemsets in the current path are considered high utility
itemsets (Figure 9).

Proof. Let CoUTlist(X) be the correlation utility list of
itemset X, and ∀ Xnode ∈ CoUTlist(X), we know the
following:

'e set of parent nodes in the current path is denoted
as [P1, P2, . . . , Pn].

u(P1 + X) � nodeUtility + prefixPath[P1].

Hence, u(i − itemset + X)≥nodeUtility ≥minUtil,
where i ∈ [1, n]).

For example, for the running example, with
mminUtil� 90, as shown in Figure 9, in the CoUT-
list(ae), the nodeUtility of the second
element� 96≥minUtil. Hence, all possible combi-
nations of itemsets in the current path da e{ }, cae{ },
and c da e{ } are considered high utility itemsets. □

Property 4. 'e third proposed pruning property is Sorted-
Reversing Downward Closure (SRDC) property based on
Kulc measure, which is used as a correlation measure in the
proposed ECoHUPM algorithm. By adopting reverse depth-
first traversal, each k-itemset is in this form
Ik, Ik−1, . . . , I2, I1􏼈 􏼉, and because these items are sorted based
on their support descending order, the sorted-reversing
property based on Kulc measure is formed as

kulc IkIk−1Ik−2, . . . , I1( 􏼁≤ kulc Ik−1Ik−2, . . . , I1( 􏼁. (5)

suffixNo
1
2

suffixNo
The CoUTlist of {da} itemset

The CoUTlist of {cda} itemset

The CoUTlist of {ca} itemset

1

6
2

51
24

{d: 15, c: 72}
{c: 28}

1
2

6
2

123
52

{ }
{ }

totTran totUtility Path

suffixNo totTran totUtility Path
6 66 {c: 72}

1 6 138 { }

totTran totUtility Path

suffixNo totTran totUtility Path

Figure 8: Constructing the CoUTlist of k-itemset.
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Proof. Let X � Ik, Ik−1, . . . , I2, I1􏼈 􏼉 be a superset of
Y � Ik−1, . . . , I2, I1􏼈 􏼉; we know that

sup(X)≤ sup(Y),

sup Ik−1( 􏼁≤ sup Ik( 􏼁.
(6)

Hence,

Kulc(X) �
1
k

sup(X)

sup Ik( 􏼁
+

sup(X)

sup Ik−1( 􏼁
+ · · · +

sup(X)

sup I1( 􏼁
􏼢 􏼣

≤Kulc(Y) �
1

k − 1
sup(Y)

sup Ik−1( 􏼁
+

sup(Y)

sup Ik−2( 􏼁
+ · · · +

sup(XY)

sup I1( 􏼁
􏼢 􏼣.

(7)

Note that the proposed SRDC property is similar to the
sorted downward closure (SDC) property which was
employed in [20, 24]. However, SDC cannot be applied
directly in the proposed ECoHUPM algorithm, because, in
[20, 24], the items are sorted in the ascending order of their
supports. Meanwhile, in ECoHUPM, the items are sorted in
the descending order of their supports.

'e proposed UBUPU and SRDC properties are
employed to reduce the search space by removing all
supersets of each Y itemset if kulc(Y)< (minCorr) or
sum(u(Y), pu(Y)) <minUtil. On the other hand, the
proposed LBNU property is employed to improve the
searching efficiency as follows: in each element in the
CoUTlist of Y itemset, if nodeUtility is equal to or greater
than minUtil, all possible supersets of Y in the current path
are considered as HUIs. Hence, ECoHUPM needs only to
calculate the correlation of each superset X in the current
path without needing to make sure that u(X) or
sum(u(X) + pu(X)) exceeds minUtil.

Figure 10 shows how these three properties help sig-
nificantly in reducing the search space and thus improve the
mining performance. For example, with minCorr� 0.4 and
minUtil� 90, since kulc(ef) � 0.29<minCorr, ef􏼈 􏼉 and all
its supersets are removed from the search space based on the
proposed SRDC property. Similarly, the itemsets bf􏼈 􏼉, abe{ },
and ab{ } are removed along with their supersets from the
search space according to the proposed UBUPU and SRDC
properties. As nodeUtility of the second element of
CoUTlist(ae) is greater than minUtil, all its supersets in the
current path da e{ }, cae{ }, and c da e{ } are considered HUIs
as stated in the proposed LBNU property, and thus ECo-
HUPM only needs to calculate their Kulc values to examine
whether they are Correlated HUIs or not (Algorithm 1). □

4.5. ECoHUPM Algorithm. Using the UTtree and the
CoUTlist, we developed an efficient algorithm named
ECoHUPM for mining Correlated High Utility Itemsets.

ECoHUPM adopts reverse depth-first traversal for set-
enumeration tree searching and employs the pruning
properties to reduce the search space. 'e pseudocode of
ECoHUPM is shown in Algorithm 2.

'e input for ECoHUPM is database D including
transactional database with external utility along with
minUtil, as a given minimum utility threshold, and
minCorr, as a given minimum correlation threshold. In line
1, the ECoHUPM preprocess database D to obtain the re-
vised database RD, and then it stores the set of unique items
sorted in the descending order of their support in itemsList
(line 2). 'en it runs Algorithm 1 to construct the UTtree by
performing one scan of the RD (line 3).

Lines 4 to 15 state the procedure of extracting the
Correlated High Utility Itemsets. For each loop started by
line 4, ECoHUPM finds all Correlated HUIs that are
supersets of item X. Lines 5 and 6 construct the CoUTlist of
1-itemset X with the help of interLink and parentLink of
nodes whose label is X in the UTtree as is illustrated in
Section 4.3.1. As the correlation value of each 1-itemset is 1,
lines 7 to 9 add X itemset to the CoHUPs list if its utility is
equal or greater thanminUtil. Line 10 employs the proposed
UBUPU property by examining the summation of utility
and path utilities of an itemset X. If the sum(u(X) + pu(X))

is less than minUtil, all its supersets will be pruned using the
proposed UBUPU property. Otherwise, the function search
is called to search its supersets (line 11). 'is procedure is
recursively performed for all 1-itemsets to discover Corre-
lated High Utility Itemsets (Algorithm 3).

'e function search(X,CoUTlist(X), minUtil, min
Corr) is used to search the whole list of extensions of
itemset X in order to discover all correlated high utility
supersets. It scans CoUTlist(X) node by node to find all
possible prefixes (lines 1–12). If the utility of the current
node nodUtility is equal to or greater than minUtil, all
prefixes in the prefixPath of the current node are added to
the list of high utility prefixes HUprefixesList (lines 5 to 7).
All unique prefixes are added to the prefixList (lines 8
to10). 'en the procedure in lines 13 to 29 is performed for
each prefix Pi in prefixList. First, 1-extension itemset of X

is formed such that itemset� Pi +X (line 14) and its
CoUTlist is constructed (line 15). Line 16 implements the
proposed SRDC property to remove the itemset with all its
supersets from the search space if its Kulc value is less than
minCorr. Lines 17 to 19 employ the proposed LBNU
property to add an itemset to the list of CoHUPs if current
Pi is in the HUprefixList and search function is called to
search all its supersets. Otherwise, lines 21 to 23 add an
itemset to the list of CoHUPs if its utility is equal to or
greater than minUtil, while lines 24–26 employ the pro-
posed UBUPU property to remove the itemset with all its
supersets if its utility plus path utilities is less than
minUtil; otherwise, search function is called to search its
supersets.

5. Experiment Design

In this section, we present the design of the experiments for
performance evaluation. Experiments were performed on a

The CoUTlist (ae)
nodeNo nodeSupp nodeUtility prefixPath
1

2 2

1

96

36

{d: 6, c: 24}

{d: 2, c: 8}

Figure 9: 'e CoUTlist of {ae} itemset.
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computer with an Intel® CoreTM i7-6600U CPU@ 2.60GHz
(4 CPUs), 2.8GHz, and 8GB of memory, running 64-bit
Windows 10 Pro. 'e performance of the proposed ECo-
HUPM algorithmwas compared to that of the CoHUIM and
CoHUI-Miner algorithms in terms of both runtime and
memory consumption. All algorithms were implemented
using Python 3 and Jupyter Notebook.

5.1. Datasets Used. We used five standard datasets down-
loaded from SPMF library [54], two real-life datasets with
real utility values (Foodmart and Ecommerce), and three
real-life datasets with synthetic utility values (BMS, Chess,

and Mushroom). Characteristics of the considered datasets
are shown in Table 6.

minCorr is adapted with three times on each sparse
dataset and four times on each dense dataset to evaluate the
efficiency of the proposed ECoHUPM algorithm and they
are denoted, respectively, as ECoHUPM-minCorr1, ECo-
HUPM-minCorr2, ECoHUPM-minCorr3, and ECoHUPM-min-

Corr4. 'e different three minCorr thresholds are,
respectively, set as follows: (1) in Foodmart dataset, 0.1, 0.2,
0.3; (2) in Ecommerce dataset, 0.1, 0.2, 0.3; (3) in BMS
dataset, 0.5, 0.6, 0.7; (4) in Mushroom dataset, 0.4, 0.45, 0.5,
0.55; and (5) in Chess dataset, 0.7, 0.75, 0.8, 0.85. Because all
algorithms use the same measures to evaluate the

c

cd cb db ab ce de ae be cf df af bf ef

befaefdefcefabfdbfcbfdafcafcdfabedbecbedaecaecdedab

cdab cdae cdbe cabe dabe

cdabe cdabf cdaef cdbef cabef dabef

cdabef

cdaf cdbf cabf dabf cdef caef daef cbef dbef abef

cabcdb
cda

ca da

d a b e f

Root

(0.29, 132)(0, 0)

(0.21, 70)

(0.38, 71)

Figure 10: Pruning search space.

Input: 'e revised Database RD
Output: 'e UTtree
Initialization: Create Root node to initialize the tree

(1) for each transaction Ti in RD do
(2) itemsList← Items of Ti

(3) Call insertTree (Ti, itemsList,Root)
(4) end for
(5) return UTtree

Function: insertTree (Ti, itemsList, N d)

(1) firstItem←itemsList[0]

(2) if N d has Nchild such that N.label � firstItem then
(3) Update the utList of N

(4) else
(5) Create new node N for the firstItem
(6) N.parentLink←N d

(7) N.interLink points to the nodes whose label is firstItem
(8) remainItems←itemsList[1: ]

(9) if remainItems is not null then
(10) Call insertTree (Ti, remainItems, N)

(11) end if
(12) end if

ALGORITHM 1: Algorithm for constructing UTtree.
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interestingness of the extracted patterns, all algorithms
resulted in the same number of patterns in all experiments.
Tables 7–11 show the total number of Correlated HUIs when
minUtil and minCorr are varied in each dataset.

5.2. Runtime. 'e runtime of the proposed ECoHUPM
algorithm was compared with those of two state-of-the-art
Correlated HUIs mining algorithms: CoHUIM and CoHUI-
Miner. For each dataset, the minUtil threshold was adjusted,

Input: Database D, minUtil, and minCorr.
Output: All Correlated High Utility Itemsets.

(1) Scan D to obtain the revised database RD;
(2) itemsList← the set of unique items in RD sorted on their support descending order;
(3) Execute the Algorithm 1 to construct UTtree for the RD;
(4) while itemsList not NULL do
(5) X← the last item in itemsList;
(6) from the header table of the UTtree follow the interLink of the nodes labeled X to construct the CoUTlist(X);
(7) if u(X)≥minUtil then
(8) CoHUPs←CoHUPs∪X

(9) end if
(10) if u(X) + pu(X)≥minUtil then
(11) Call search (X, CoUTlist(X), minUtil, minCorr)
(12) end if
(13) itemsList←itemsList-[X]

(14) end while
(15) return CoHUPs

ALGORITHM 2: ECoHUPM algorithm.

Function: search (X, CoUTlist(X), minUtil, minCorr)
(1) HUprefixList←∅
(2) prefixList←∅
(3) for each Xnode ∈ CoUTlist(X) do
(4) for each Pi ∈ prefixPath do
(5) if nodeUtility≥minUtil then
(6) HUprefixList←HUprefixList∪Pi

(7) end if
(8) if Pi ∉ prefixList then
(9) prefixList←prefixList∪Pi

(10) end if
(11) end for
(12) end for
(13) for each Pi ∈ prefixList do
(14) itemset←Pi +X;
(15) Scan the CoUTlis(X) to construct the CoUTlist(itemset)
(16) if Kulc(itemset)≥minCorr then
(17) if Pi ∈ HUprefixList then
(18) CoHUPs←CoHUPs∪ itemset
(19) Call search(itemset, CoUTlist(itemset), minUtil, minCorr)
(20) else
(21) if u(itemset)≥minUtil then
(22) CoHUPs←CoHUPs∪ itemset
(23) end if
(24) if u(itemset) + pu(itemset)≥minUtil then
(25) Call search (itemset, CoUTlist(itemset), minUtil, minCorr)
(26) end if
(27) end if
(28) end if
(29) end for

ALGORITHM 3: Algorithm for searching the list of extensions of itemset X.
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Table 6: Characteristics of the used datasets.

Dataset
name Description Transactions

count
Items
count

Average items
count per
transaction

Has real
utility
values?

Sparse or
dense

Foodmart
Dataset of customer transactions from a retail

store, obtained and transformed from SQL-Server
2000.

4,141 1,559 4.42 Yes Sparse
dataset

Ecommerce

Transactional dataset which contains all the
transactions occurring between 01/12/2010 and
09/12/2011 of a UK-based and registered nonstore

online retail.

14,975 3,803 15.4 Yes Sparse
dataset

BMS Click stream data from a web store used in KDD-
Cup 2000. 59,602 497 2.51 No

Very
sparse
dataset

Mushroom Prepared based on the UCI mushrooms dataset. 8,124 119 23 No Dense
dataset

Chess Prepared based on the UCI chess dataset. 3,196 75 37 No
Very
dense
dataset

Table 7: 'e total number of Correlated HUIs when minUtil and minCorr are varied in Foodmart dataset.

minUtil 0.00001 0.00005 0.0001 0.0005 0.001
minCorr 1 53443 52776 47510 2102 258
minCorr 2 1951 1942 1893 925 257
minCorr 3 1575 1573 1564 915 257

Table 8: 'e total number of Correlated HUIs when minUtil and minCorr are varied in Ecommerce dataset.

minUtil 0.0005 0.0007 0.0009 0.0011 0.0013
minCorr 1 4956 3040 1857 1167 799
minCorr 2 1345 977 745 592 467
minCorr 3 901 645 479 386 318

Table 9: 'e total number of Correlated HUIs when minUtil and minCorr are varied in BMS dataset.

minUtil 0.00001 0.00005 0.0001 0.0005 0.001
minCorr 1 4255 1233 788 518 231
minCorr 2 930 510 388 271 190
minCorr 3 539 411 335 251 188

Table 10: 'e total number of Correlated HUIs when minUtil and minCorr are varied in Mushroom dataset.

minUtil 0.005 0.006 0.007 0.008 0.009
minCorr 1 95559 93034 89771 86276 82922
minCorr 2 48099 47118 45759 44473 43380
minCorr 3 24041 23633 23070 22645 22372

Table 11: 'e total number of Correlated HUIs when minUtil and minCorr are varied in Chess dataset.

minUtil 0.005 0.006 0.007 0.008 0.009
minCorr 1 119279 119268 119261 119250 119203
minCorr 2 49256 49245 49238 49234 49231
minCorr 3 19485 19475 19469 19465 19463
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and the runtime execution of each algorithm was calculated.
Figures 11 and 12 show the results for the sparse and dense
datasets, respectively. It can be observed that ECoHUPM is
faster than CoHUIM and CoHUI-Miner. Further, it is found
that ECoHUPM is significantly faster than CoHUIM on
sparse datasets such as Foodmart (up to 12.8 times) and
Ecommerce (up to 15.6 times) and on very sparse datasets
such as BMS (up to 8.7 times). For the dense datasets, it is
observed that, in most cases, the CoHUIM fails to discover
the Correlated HUIs when the minUtil and minCorr
thresholds are set to low values as is shown on the Mush-
room dataset with minCorr� [0.35–0.45] and
minUtil� [0.005–0.009]. Meanwhile, when the thresholds
are set to high values such as minCorr� 0.5 and
minUti� [0.05–0.09], the ECoHUPM is faster than
CoHUIM (up to four times). Similarly, on very dense
datasets such as Chess, CoHUIM fails to discover the
Correlated HUIs with minCorr� [0.7–0.8] and
minUtil� [0.005–0.009]. Meanwhile, when the thresholds

are set to high values such as minCorr� 85 and
minUti� [0.08–0.28], the ECoHUPM is faster than
CoHUIM (up to 4.6 times).

On the other hand, the ECoHUPM is faster than the
CoHUI-Miner on sparse datasets such as Foodmart and
Ecommerce (up to 5 and 2.2 times, respectively) and it is
slightly faster on very sparse dataset such as BMS (up to 1.3
times). For dense datasets with low threshold values, the
ECoHUPM is significantly faster than the CoHUI-Miner on
the Mushroom dataset (up to 3.2 times) and on very dense
datasets such as Chess (up to 4.3 times faster). Meanwhile,
with high threshold values, the ECoHUPM is slightly faster
than the CoHUI-Miner on Mushroom dataset (up to 2.1
times faster) and on Chess dataset (up to 1.4 times faster).

'emain reason why the ECoHUPM algorithm is always
faster than CoHUIM and CoHUI-Miner algorithms is that
the novel CoUTlist structure is highly effective in reducing
the database size as compared to the projection mechanism
used on CoHUIM and CoHUI-Miner algorithms. 'at is, in
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Figure 11: Runtime for sparse datasets. (a) Foodmart (minCorr� 0.1). (b) Foodmart (minCorr� 0.2). (c) Foodmart (minCorr� 0.3). (d)
Ecommerce (minCorr� 0.1). (e) Ecommerce (minCorr� 0.2). (f ) Ecommerce (minCorr� 0.3). (g) BMS (minCorr� 0.5). (h) BMS
(minCorr� 0.6). (i) BMS (minCorr� 0.7).
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the CoUTlist, each element represents a set of transactions
where the itemset occurs in the same path. Meanwhile, in the
projected database, each element represents a single trans-
action where the itemset occurs. Moreover, the proposed
pruning properties help in reducing the search space.

'e CoHUIM algorithm performs two phases. It first
generates the candidate itemsets whose correlation is equal
to or greater than the minCorr threshold, and then it cal-
culates the utility of each candidate. Hence, in all datasets,
CoHUIM is much slower than the CoHUI-Miner and the
proposed ECoHUPM.

'e size of the projected database of an itemset increases
as the density of the datasets is increased and thus the cost of
building the projected database of the supersets is also in-
creased. 'us, the CoHUIM could not find the Correlated
HUIs when it was run on Mushroom and Chess datasets
with lowminUtil and minCorr thresholds.'is is because it
suffers from excessive dataset scanning in the second phase.

'e CoHUI-Miner is a One-Phase algorithm. However,
due to the big size of the projected database of each itemset
as compared to the CoUTlist especially in dense and very
dense datasets, the proposed ECoHUPM is significantly

faster than the CoHUI-Miner on Mushroom and Chess
datasets.

In very sparse datasets, the size of the CoUTlist of each
itemset is slightly smaller than the size of the projected
database. Hence, the proposed ECoHUPM is slightly faster
than the CoHUI-Miner in BMS dataset.

5.3.MemoryUsage. 'e comparison of the memory usage of
the proposed ECoHUPM against CoHUIM and CoHUI-
Miner is shown in Figure 13. In this figure, the Y-axis
represents the memory usage which is measured by the
memory usage module in Python.

It is observed that the proposed ECoHUPM algorithm
consumes less memory as compared to the CoHUIM and
CoHUI-Miner in all datasets. More specifically, on the
sparse datasets such as Foodmart and Ecommerce, the
memory usage of the CoHUIM occupies 1.5 and 3 times the
memory of the proposed ECoHUPM, respectively. Mean-
while, on very sparse datasets such as BMS, the memory
usage of the CoHUIM occupies 2.2 times the memory of the
proposed ECoHUPM.
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Figure 12: Runtime for dense datasets. (a) Mushroom (minCorr� 0.35). (b) Mushroom (minCorr� 0.4). (c) Mushroom (minCorr� 0.45).
(d) Mushroom (minCorr� 0.5). (e) Chess (minCorr� 0.70). (f ) Chess (minCorr� 0.75). (g) Chess (minCorr� 0.80). (h) Chess
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Likewise, on sparse and very sparse datasets such as
Foodmart, Ecommerce, and BMS, the CoHUI-Miner oc-
cupies 1.07, 1.8, and 1.3 times the memory of the proposed
ECoHUPM, respectively. Meanwhile, on dense and very
dense datasets such as Mushroom and Chess, the CoHUI-
Miner occupies 1.7 and 2.2 times the memory of the pro-
posed ECoHUPM, respectively.

6. Conclusion

'is paper proposed an efficient algorithm named ECo-
HUPM for mining Correlated HUIs. 'e ECoHUPM al-
gorithm adopts divide-and-conquer approach and employs
UTtree structure which is an extended form of FP-tree. A
novel data structure based on the UTtree named CoUTlist is
proposed in the ECoHUPM to store sufficient information
for mining the desired patterns in an efficient manner.'ree
new pruning properties have been introduced and applied to
reduce the search space and improve the mining perfor-
mance. 'e first proposed pruning property isUpper Bound
property based on summation of Utility and the Path
Utilities (UBUPU), the second one is Lower Bound property
based on the Node Utility (LBNU), and the third one is
Sorted-Reversing Downward Closure (SRDC) property
based on Kulc measure.

An extensive experimental evaluation was conducted on
five datasets including sparse, very sparse, dense, and very
dense datasets. 'e experimental results show that the
proposed ECoHUPM algorithm is efficient as compared to
the state-of-the-art CoHUIM and CoHUI-Miner algorithms
in terms of both time and memory consumption.
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