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Community structure is one of the most important characteristics of complex networks, which has important applications in
sociology, biology, and computer science.0e community detectionmethod based on local expansion is one of the most adaptable
overlapping community detection algorithms. However, due to the lack of effective seed selection and community optimization
methods, the algorithm often gets community results with lower accuracy. In order to solve these problems, we propose a seed
selection algorithm of fusion degree and clustering coefficient. 0e method calculates the weight value corresponding to degree
and clustering coefficient by entropy weight method and then calculates the weight factor of nodes as the seed node selection
order. Based on the seed selection algorithm, we design a local expansion strategy, which uses the strategy of optimizing adaptive
function to expand the community. Finally, communitymerging and isolated node adjustment strategies are adopted to obtain the
final community. Experimental results show that the proposed algorithm can achieve better community partitioning results than
other state-of-the-art algorithms.

1. Introduction

Complex networks are ubiquitous in the real world, such as
social networks, academic cooperation networks, world wide
networks, and biological networks [1]. 0ey are generally
composed of nodes (individuals) and edges (relationships
between individuals). For example, in social networks, nodes
represent people and edges represent relationships between
people. Although these networks belong to different fields,
they follow the same laws. (1) Small world effect: complex
networks have small average paths and large aggregation
coefficients. (2) Scale-free: the degree of nodes in the net-
work obeys the power-law distribution. (3) Community
structure: the network can be divided into multiple groups
with relatively close internal edges, and the connections
between groups are relatively sparse.

Community structure is one of the most important
structural features of complex networks [2]. It is ubiquitous

in various complex networks in the real world. For example,
in social networks, individuals with common interests have
closer relationships and form communities of common
interests. 0e community detection technology can predict
the hobbies of new network users. In the protein network
[3], proteins with the same or similar functions constitute
each community. Community detection technology can
identify the group of unfamiliar proteins and thus discover
the protein function. In the academic cooperation network,
scholars who have similar research directions or have
participated in similar projects constitute a community.
Community detection technology can help cross-research
projects between statistics departments.

According to the different characteristics of community
structure, the community structure is divided into two
categories: nonoverlapping community [4] and overlapping
community [5, 6]. Nonoverlapping community means that
the nodes in the network belong to only one community;
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each community exists independently. In the real world,
network communities are often not independent. Different
communities usually share some nodes, which is called
overlapping community, and the nodes shared among
communities are called overlapping nodes. Figure 1 is a
nonoverlapping community network. It can be seen from
Figure 1 that there are no public nodes between the two
communities. Figure 2 shows the overlapping community
structure, and the black circle represents an overlapping
node.

Overlapping community detection in complex networks
has attracted the attention of many scholars and achieved
many results [7], such as LFM [8], COPRA [9], and LINK
[10]. However, most overlapping community algorithms
lack effective seed selection and community optimization
methods, and these algorithms often get community results
with low accuracy [11]. To solve these problems, this paper
proposes an overlapping community detection algorithm
based on information fusion. 0e main contributions of this
paper are as follows:

(i) We propose an overlapping community detection
algorithm based on information fusion, which
improves the quality of community detection
through an effective seed selection method and
community optimization methods.

(ii) We propose a seed selection method of fusion
degree and clustering coefficient. 0e method
combines the weight factor, degree, and clustering
coefficient to calculate the node importance, which
ensures that the seed has a large total node influence
and there is a high degree of similarity between
nodes.

(iii) Finally, we verify the algorithm’s performance on
synthetic networks and real networks. 0e experi-
mental results show that compared with the state-
of-the-art algorithms, our proposed method can
find more accurate community structures.

0e remainder of this paper is organized as follows: in
Section 2, the related work of locally extended overlapping
community detection method is introduced; Section 3 de-
scribes the implementation of overlapping community de-
tection algorithm based on information fusion; Section 4
gives the specific experimental results; and finally, the re-
search work of this paper is summarized in Section 5.

2. Related Work

Overlapping community detection method based on local
expansion is one of the most important methods to deal with
the problem of overlapping community detection in large-
scale networks [12], which includes two steps: firstly, some
nodes or some node sets in the network are selected as the
seed of each community and continue to expand outward
through the fitness function (optimization function) until a
certain termination condition is met to form a community.
Finally, the fitness function reaches the local optimal value as
the termination condition for the end of community

expansion. Formally speaking, given an undirected network
G (V, E), a set of seed nodes S, and a fitness function f (C), the
goal of the community expansion process is to find a
subgraph C and make f (C) reach the local optimal value [13]
(S⊆C). 0e subgraph C is the result of the community
expanded by S. At present, there are a large number of
community quality evaluation functions that can be used as
the fitness function of community expansion, such as
modularity [14], subgraph density [15], centrality [16],
conductivity [17], and edge-surplus [18].

Since the expansion process of each seed is independent,
an overlapping community structure is formed when the two
seeds are expanded to the same node. Meanwhile, the ex-
pansion process of the method generally only needs the local
network information, which has high efficiency and is ex-
tremely suitable for large-scale networks. Lancichinetti et al.
[19] proposed the LFM algorithm, which is a typical rep-
resentative of the local expansion method. A subgraph G of
the network is defined as follows:

fG �
k

G
in

k
G
in + k

G
out􏼐 􏼑

α, (1)

where kG
in represents the total internal degree of all nodes in

the subgraph and kG
out is the total externality. 0e symbol α is

an adjustable parameter. Meanwhile, the fitness of a node A
relative to a subgraph G is defined as follows:

f
A
G � fG+ A{ } − fG− A{ }, (2)

where G + A and G − A indicate that the node A belongs to
G and does not belong toG, respectively. LFM algorithm first
randomly selects a node in the network as an initial sub-
graph, continuously adds nodes around the subgraph, and
removes nodes inside the subgraph according to formula (1)
to increase the fitness of the subgraph until the fitness re-
mains unchanged. 0en, it selects a node that does not
belong to any community and repeats the above expansion
process until all nodes in the network belong to at least one
community.

A B

Figure 1: An example of nonoverlapping community structure.

A

B

Figure 2: An example of overlapping community structure.
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Lee et al. [20] proposed the GCE algorithm, which selects
themaximum cliques with the number of nodes not less than
K as the seeds and uses the same fitness function as the LFM
algorithm to expand each community. Baumes et al. [21]
proposed two overlapping community detection algorithms
based on local expansion: IS (Iterative Scan) and RARE
(Rank Eemoval). 0ese two algorithms are mainly oriented
to directed networks. 0e RARE algorithm takes some
nonadjacent subgraphs of the network as seeds, removes the
moderately large nodes in the network, and then adds the
removed nodes to each community that can increase the
community density function. Andersen et al. [22] proposed
a community expansion method based on PageRank. 0e
algorithm takes an initial node in the network as an ex-
tension object. Firstly, the approximate PageRank vector p
starting from node u is calculated, and then a sweep tech-
nique is used to select the node set with the best conductivity
around node u. 0e nodes in the network are sorted
according to p(vi)/d(vi) from large to small (where d (vi)
represents the degree of node vi), and a node sequence is
generated. 0e first k nodes in the sequence are selected to
form a set. Different k values correspond to different sets,
and the set with the lowest conductivity is the community
expanded by node u.

Based on the above work, Silistre et al. [23] proposed two
selection seed selection strategies: GRACLUS CENTERS and
SPREAD HUBS. Both methods select a single node as a seed
and use the community expansion method proposed by
Andersen et al. [22]. Zhang et al. proposed [24] the CFCD
algorithm and defined the core similarity. On this basis, they
defined the core centrality of nodes and the core fitness of
communities.0e algorithm selects the node with the largest
centrality that is not in the core of any existing community as
a seed and takes the set composed of the node and its ad-
jacent nodes as the initial community. However, due to the
lack of fast and effective seed selection and community
optimization methods, these algorithms often get commu-
nity results with lower accuracy. In order to solve these
problems, we propose a seed selection method based on the
importance of nodes based on the degree of fusion and
clustering coefficient, which ensures that the seeds have a
large total node influence and also ensures that the internal
nodes of the seeds have a high degree of similarity.

3. Proposed Method

In this section, we introduce the implementation process of
the algorithm in detail. 0e main steps of overlapping
community detection algorithm based on information fu-
sion (OCDIF) include seed nodes selection (Section 3.1),
local community expansion (Section 3.2), community
merging (Section 3.3), and isolated nodes adjustment
(Section 3.4). 0e principle and process of each step are
described in detail as follows.

3.1. Seed Node Selection. In the existing overlapping com-
munity detection methods based on local expansion, the
selection of seed nodes is random. However, it can not

obtain a better community structure, and the result of
community detection is unstable. In this paper, we take the
node influence value as the node importance index and the
node influence value as the selection order of seed nodes.
0e influence value of the node is large, which indicates that
the node occupies an important position in the network.
0en, the community structure can be guaranteed to have a
certain reference value by expanding the community from
this node. Moreover, due to the fixed selection order of seed
nodes, stable community detection results can be obtained.
It overcomes the defect of poor stability of existing over-
lapping community detection results based on local
expansion.

0emore neighbors of a node in the network, the greater
the influence of this node, so the propagation ability of a
node mainly depends on the sum of its direct neighbor
degrees. However, considering the local properties of net-
work nodes, different nodes with the same sum of direct
neighbor degrees may have different propagation capabil-
ities. 0erefore, in addition to the nodes degree, other nodes
attributes need to be considered. At the same time, the
topological connection between the nodes and its neighbors
also has an impact on the propagation ability.0e greater the
clustering coefficient, the greater the importance of the node.

Combining the degree and clustering coefficient of nodes
and entropy weight, we propose a seed selection method of
fusion degree and clustering coefficient. Firstly, the concepts
of degree and clustering are introduced. 0e degree value of
a node in an undirected network is defined as the number of
nodes directly connected to the node. Given an undirected
network G� (V, E), the corresponding adjacency matrix
A � aij􏽮 􏽯

n∗ n
, Di indicates the ability of a node to com-

municate directly with other nodes.0e larger theD(i) value,
the more important the node is:

D(i) � 􏽘
N

j�1
aij, (3)

where ki represents the total number of neighbors of the
node i and ei represents the actual number of undirected
edges between ki neighbors.

Firstly, the degree and clustering coefficient of nodes are
normalized to dimensionless. 0e matrix R is created
according to the normalized value. n represents the number
of nodes in the network, r1j represents the normalized value
of the degree of the node j, and r2j represents the normalized
value of the clustering coefficient of the node j, as shown in

R �
r11 r12 . . . r1n

r21 r22 . . . r2n

􏼢 􏼣. (4)

Secondly, calculate the entropy value Ei of the node i, as
shown in

Ei � −ln (n)
− 1

􏽘

n

j�1
rij ln rij􏼐 􏼑. (5)

0e weight wi of degree and clustering coefficient is
obtained according to entropy Ei, as shown in
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wi �
1 − Ei

2 − 􏽐
2
i�1 Ei

, i � 1, 2. (6)

0e weight factor Vw(i) of the node i is calculated
according to the weight calculated by the above formula.0e
specific calculation formula is as follows:

Vw(i) � w1 × D(i) + w2 × CC(i), (7)

where Vw(i) represents the weight factor of the node i. D(i)
and CC(i) represent the degree value and the processed
clustering coefficient of node i, respectively. w1 and w2
represent the contribution weight of the degree value and the
clustering coefficient, respectively.

Finally, formula (8) is the calculation process of the node
importance CLC. Arrange the nodes in descending order
and store them in the vector X, select node A that is not
allocated to any community from X in order, and treat node
A as a local community C. 0e pseudocode of the nodes’
importance evaluation is shown in Algorithm 1.

CLC(i) �� (i) × Vw(i) + 􏽘
j∈ Γ(i)

Vw(j).
(8)

3.2. Local Community Expansion. 0is section mainly in-
troduces the process of local community expansion. 0e
condition for starting and stopping is that the adaptation
function reaches the local maximum. 0e adaptation
function is shown in

f(c) �
K

in
C

K
in
C + K

out
C􏼐 􏼑

α, (9)

where Kin
C and Kout

C represent the total number of internal
and external degrees of local community, respectively. α is a
parameter greater than 0, which is used to adjust the
community scale. Lanchinetti pointed out that the result of
community detection is the best when α is 0.9, so all ex-
periments in this paper set the value of parameter α to 0.9.
Each time the algorithm expands the local community, the
neighbors of the local community are added with a marker
bit, which indicates that the node has joined the community.

If a node is only connected to the current node, it is
considered that the node must have the same label as the
current node. According to this idea, we introduce a concept
“similar,” as shown in Figure 3. All edges of an existing local
community A and node 2 are connected not only to the
nodes in local community a, but also the outside local
community A. 0erefore, node 2 cannot be directly added to
A. It is necessary to calculate the fitness function value of
node 2 before deciding whether they can be added to A. All
edges connected with node 1 are in A, node 1 is directly
added to local community A and the fitness function value
will not be calculated. 0is greatly reduces the time of the
algorithm and improves the quality of community detection.

3.3. Community Merging. After the expansion of local
communities, there are many small-scale local communities in
the divided community results because it also follows the trend

of “birds of a feather flock together” in the network, forming a
large-scale community structure rather than scattered small
communities. In order to obtain the ideal result of community
detection, these small communities need to be merged. Silistre
et al. [23] gave the concept of community overlap, which is
used to judge whether two communities can be merged into
one community.0e greater the degree of overlap is, the more
reasonable it is to merge the two communities into one. 0e
calculation of community overlap is shown in

OS Ci, Cj􏼐 􏼑 �
Vi ∩Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

min Vi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, Vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+
E
in
i ∩E

in
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

min E
in
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, E
in
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

, (10)

where Vi and Vj represent the set of nodes in Ci and Cj and
Ein

i and Ein
j represent the set of inner edges of Ci and Cj.

According to the degree of community overlap, it can be
judged whether two communities can be merged into one
community and calculate the average value of community
overlap OS, which is shown in

OS �
􏽐Ci,Cj∈COS Ci, Cj􏼐 􏼑

|C|
. (11)

0e algorithm first judges whether the overlap degree of
any two communities is greater than OS. When the overlap
degree OS(ci, Cj)>OS, the two communities are merged.

3.4. IsolatedNodes Adjustment. After the implementation of
community merging, there are still isolated nodes. It is
necessary to judge whether the isolated nodes can become a
community. 0e judgment of an isolated node is mainly
divided into two points. As shown in Figure 4, node 1 is an
isolated node and is not connected to other nodes. At this
time, the node can exist as an independent community.

Another situation is that, as shown in Figure 5, node 1 is
an isolated node, but node 1 is connected to nodes 3 and 2.
According to formula (12), there is node similarity Svw

between the isolated node and its neighbors:where kv and kw

represent the degree of node v and node w, respectively.
0en, calculate the average similarity between the node and
all neighbor nodes s according to

Svw �
|Γ(v)∩ Γ(w)|

����
kvkw

􏽰 , (12)

S �
􏽐w∈N|Γ(v)∩ Γ(w)|/

����

kvkw

􏽱

|Γ(v)|
. (13)

If Svw ≥ S, it will be allocated to the neighbors community.
0e isolated node may be allocated to multiple communities.
It is also in line with the requirements of overlapping
communities. 0e pseudocode of community merging and
isolated nodes adjustment are shown in Algorithm 2.

4. Experimental Results and Analysis

0is article uses Python language to implement the OCDIF
algorithm. 0e seed selection algorithm proposed in this
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Input: a network G(V, E), the number of nodes in the network n
Output: the importance of each node

(1) Initialize D�∅, CC�∅
(2) for i in n do
(3) Calculate D(i) using formula (4) during D decomposition
(4) end for
(5) for i in n do
(6) Calculate CC(i) using formula (5)
(7) end for
(8) Create matrix R using formula (6)
(9) for i in 2 do
(10) Calculate Ei using formula (7)
(11) end for
(12) for i in n do
(13) Calculate CLC(i) using formula (10)
(14) end for

ALGORITHM 1: Node importance evaluation algorithm.
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Figure 3: A special case.
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Figure 4: Isolated nodes without edges.
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Figure 5: Isolated node with connected edges.
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paper is compared with similar methods on the real network.
At the same time, the OCDIF algorithm is compared with
other overlapping community detection algorithms on real
large-scale networks. 0e experimental environment is
Core(TM) i5-4590, 3.3GHz CPU, 16 GB memory.

4.1. Selection Effect of SeedNode. 0is section mainly verifies
the effect and accuracy of the node importance ranking
algorithm. 0e experimental data set uses the social friendly
network (So-Colgate) [25] and the power grid network
(PowerGrid) [25]. Among them, the socially friendly net-
work consists of 3,482 nodes and 14,241 edges. 0e grid
network consists of 4,940 nodes and 6,595 edges. For these
three networks of different sizes, the node importance is
calculated separately, and the ranking results and the
ranking results calculated by the SIR propagation model are
combined to determine each method (ControlRank [26],
MBA [27], NIBNA [28], ODEF [28], CRRank [28]) accuracy.

Table 1 shows the experimental results. It can be found
that the accuracy of the seed algorithm proposed in this
paper in the So-Colgate network and PowerGrid network is
slightly better than other algorithms within a given part of
the propagation probability range. In terms of propagation
probability, the MBA algorithm is also better, but overall it is
lower than the algorithm proposed in this article. In terms of
its average accuracy, the advantages of this article are even
more obvious. On the network So-Colgate, compared to the
ControlRank, MBA, NIBNA, ODEF, and CRRank algo-
rithms, the algorithm proposed in this paper has an average

increase of 18.4%, 34.5%, 37.1%, 31.5%, and 20.3%. On the
network PowerGrid, compared to the ControlRank, MBA,
NIBNA, ODEF, and CRRank algorithms, the algorithm
proposed in this article has increased by an average of 10.4%,
4.8%, 24.4%, 22%, and 2.1%.

4.2. Community Detection Results. 0is section tests the
performance of OCDIF on synthetic networks and real
networks. We select the overlapping community detection
algorithms based on the global structure and local structure
of the static networks as the comparison objects of OCDIF
(CLPA [29], GREESE [30], ILPA [31], LMD [32], McFFMM
[33], MCMOEA [34], MPEA [35], and SSLPA [36]). We use
the following two common indicators to evaluate the quality
of the community detection: (1) F1-Score (average F1 value)
and (2) NMI (normalized mutual information).

(1) F1-Score: this standard measures the accuracy of
algorithm community detection by quantifying the
degree of correspondence between the algorithm
detection community and the real community.
Given two community structures of a network P1 �

C1, . . . , C2 and P2 � C1′, . . . , Cn
′, the average F1 value

is defined as follows:

1
2

1
P1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
Ci

F1 Ci, Cf(i)
′􏼐 􏼑) +

1
P2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

Ci
′∈P2

F1 Cf(i)
′, Ci
′􏼐 􏼑,⎛⎜⎜⎝

(14)

Input: local subgraph LC
Output: community detection results OC

(1) ♯ Community merging
(2) OS � calculateAvgOS(LC)
(3) OC� []
(4) for i in LC do
(5) j� i+ 1
(6) for j in LC do
(7) if OSij >OS then
(8) OC.append(i ∪ j)
(9) end if
(10) end for
(11) end for
(12) ♯ Isolated nodes adjustment
(13) for i in OC do
(14) if len(i)� � 0 and otherSide(i[0]) then
(15) v � i[0]
(16) neighbors[v]� findeNeighbors(v)
(17) S � calculateAvgS(neighbors[v], v)

(18) for w in neighbors[v] do
(19) if Svw > S then
(20) addIsolateNode(v, w,OC)
(21) end if
(22) end for
(23) end if
(24) end for

ALGORITHM 2: Community merging and isolated nodes adjustment.
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where F1(Ci, Cj
′) is the harmonic average of the

Precision and Recall between the two communities:

precision Ci, Cj
′􏼐 􏼑 �

Ci ∩Cj
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

recall Ci, Cj
′􏼐 􏼑 �

Ci ∩Cj
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Cj
′

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

f(i) � argmaxF1 Ci, Cj
′􏼐 􏼑,

f′(i) � argmaxjF1 Cj, Ci
′􏼐 􏼑.

(15)

(2) Generalized standard mutual information NMI
(normalized mutual information): this standard is
proposed to measure the accuracy of overlapping
community detection algorithms. NMI evaluates the
algorithm’s accuracy by quantifying the similarity
between the community discovered by the algorithm
and the real community. 0e value range of NMI is
[0, 1]. 0e larger the value, the higher the quality of
the detection community.

4.3. Real Network. 0is paper uses the benchmark data set
provided by SNAP [37] to conduct experiments. 0e net-
work provided by this data set contains a real community
structure, which is convenient for testing the algorithm.
Table 2 shows the data of the four large-scale networks
selected in this article. Next, we will briefly introduce these
four networks:

DBLP: it is a collaborative network of authors. Each
node in the network represents an author. If two au-
thors have published at least one article together, then
there is an edge connection between them. A journal or
conference represents a community, and the com-
munity is composed of authors who have published
articles in the journal or conference.
Amazon: it is a commodity network. Each node in the
network represents a commodity. If two commodities
are frequently purchased at the same time, there is an
undirected edge between them. Each product category
provided by Amazon corresponds to a real community.
YouTube: it is a YouTube social network. Each node
represents a user of the network. If two users establish a
friendship, then there is an edge connection between
them. In this network, a community refers to a group
created by users, and a community is a collection of
users who join the group.
Orkut: It is a Orkut social network. Similar to the
YouTube network, the nodes in this network represent
users, and the edges represent the friendship between
users. A community also refers to a group created by a
user, and a community is a collection of users who have
joined the group.

Figures 6 and 7 show the average F1 value andNMI value
of the test algorithm on networks. Experimental results show
that, in terms of the accuracy of community detection, the
OCDIF algorithm outperforms all overlapping community
detection algorithms based on global information and local
information. On both networks, the OCDIF algorithm
obtained the highest average F1 value and NMI value. Our
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Figure 6: Average F1 value on networks.
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Figure 7: NMI value on networks.

Table 1: Comparison of the algorithm’s accuracy in So-Colgate network and PowerGrid network.

Network Node Edge OCDIF ControlRank MBA NIBNA ODEF CRRank
So-Colgate 3482 14 241 0.812 0.797 0.784 0.511 0.556 0.647
PowerGrid 4940 6595 0.704 0.631 0.67 0.532 0.549 0.689
0e significance for bold values in Table 1 is that the results of OCDIF are better than those of other algorithms.
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Figure 8: Experimental results on the synthetic network (N1, N2, N3, N4).
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algorithm is also the only local algorithm that exceeds all
global algorithms in the test algorithm. 0e ILPA algorithm
performed the worst, and the CLPA algorithm performed
close to the OCDIF algorithm. On the DBLP network, the
average F1 value of the OCDIF algorithm is 22.2% higher
than ILPA, 20% higher than MOEA, and 6.6% higher than
CLPA. On the Amazon network, the average F1 value of the
OCDIF algorithm is 18.2% higher than ILPA, 17.3% higher
than MOEA, and 6.4% higher than CLPA. On the DBLP
network, the NMI value of the OCDIF algorithm is 27.8%
higher than ILPA, 5.6% higher than MOEA, and 11.1%
higher than CLPA. On the Amazon network, the NMI value

of the OCDIF algorithm is 24.2% higher than ILPA, 6.1%
higher than MOEA, and 9.1% higher than CLPA. 0erefore,
compared to these overlapping community detection al-
gorithms for large-scale networks, the OCDIF algorithm can
obtain a more accurate community structure in real net-
works.MCMOEA and SSLPA algorithms are relatively good,
close to the algorithm’s accuracy proposed in this article.0e
worst performing is GREESE andMOEA algorithms. On the
YouTube network, the average F1 value of the OCDIF al-
gorithm is 30.8% higher than MOEA, 7.7% higher than
MCMOEA, and 15.4% higher than SSLPA. On the Orkut
network, the average F1 value of the OCDIF algorithm is
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Figure 9: Experimental results on the synthetic network (N1, N2, N3, N4).

Table 2: Characteristics of the test network.

Network Node Edge Community
DBLP 317,080 1,049,866 13,477
Amazon 334,863 925,872 75,149
YouTube 1,134,890 2,987,624 16,386
Orkut 3,072,441 117,185,083 15,301,901

Table 3: Data information of LFR network.

Network om mu on

N1 2 0.1 0–5000
N2 2 0.3 0–5000
N3 4 0.1 0–5000
N4 4 0.3 0–5000
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20.8% higher than MOEA, 12.5% higher than MCMOEA,
and 6.25% higher than SSLPA. On the YouTube network, the
average NMI value of the OCDIF algorithm is 11.1% higher
than MOEA, 16.7% higher than MCMOEA, and 10% higher
than SSLPA. On the Orkut network, the average NMI value
of the OCDIF algorithm is 18.2% higher than MOEA, 19.1%
higher than MCMOEA, and 26.4% higher than SSLPA.
0erefore, compared to these overlapping community de-
tection algorithms for large-scale networks, the OCDIF
algorithm can obtain a more accurate community structure
in real networks. 0e experimental results show that,
compared to the current mainstream overlapping com-
munity detection algorithms, the OCDIF algorithm can
quickly and with high quality complete large-scale network
overlapping community detection.

4.4. Artificial Synthetic Network. In this section, the LFR
overlapping benchmarks proposed by Lancichinetti and
Fortunato are selected to generate the experimental network.
0is overlap benchmark is widely used to evaluate the
performance of overlapping community detection algo-
rithms. 0e degree of generated network nodes and com-
munity size conform to a power-law distribution. In the
previous chapter, we have introduced the parameters in-
cluded in the LFR benchmark network. 0is chapter uses
this overlapping benchmark to generate 4 groups of net-
works, which have the same parameter values as follows:
N� 10 000, k� 15, maxk � 50, minc � 10, maxc � 50, and
other parameter values are shown in Table 3. Each group of
networks contains 6 types of networks, in which the value
range of on is [0, 0.5N]; om is set to 2 and 4, respectively; mu

is set to 0.1 and 0.3, respectively, representing a low-mix
network and a high-mix network.

0is section also chooses the average F1 value and the
generalized standard mutual information NMI (normalized
mutual information), two evaluation indicators, to analyze
the accuracy of the OCDIF algorithm community detection.

Figures 8 and 9 show the results of the NMI value and the
average F1 value on a given artificial synthesis network.With
the increase of overlapping nodes between communities, the
community structure becomes more ambiguous, and the
difficulty of finding the community increases. On the four
groups of networks, each test algorithm has a different
degree of reduction in the accuracy of finding the com-
munity. It can be seen from the data that the seed selection
method proposed in this chapter is more stable when dealing
with networks with fuzzy community structures. In addi-
tion, in the comparison algorithm, it can be seen that the
seed selection method is superior to other algorithms in
terms of the accuracy of expanding the community and the
stability of dealing with networks with fuzzy community
structure. 0e seed selection method proposed in this paper
can get a more precise community structure.

5. Conclusion

We propose an information fusion overlapping community
detection algorithm. 0e method is divided into four steps:

seed node selection, local community expansion, commu-
nity merging, and isolated nodes adjustment. Considering
the local nature of network nodes, different nodes with the
same direct neighbor degree may have different influences.
We propose a seed selection method based on the degree of
fusion and clustering coefficient, which ensures that the
seeds have a large total node influence and also ensures that
the internal nodes of the seeds have a high degree of sim-
ilarity. 0e experimental results show that the algorithm
greatly improves the efficiency of community detection and
obtains more accurate results.

Most networks in real life are not static and will change
over time, such as the removal and increase of edges between
nodes in the network. As the nodes and edges in the network
change, the community structure in the network will change
accordingly. However, most of the existing community
detection algorithms study static networks, and the research
on dynamic networks is necessary and has great practical
significance.
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Data will be available at http://snap.stanford.edu/data.
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