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Distinguishing target object under occlusions has become the forefront of research to cope with grasping study in general. In this
paper, a novel framework which is able to be utilized for a parallel robotic gripper is proposed. (ere are two key steps for the
proposed method in the process of grasping occluded object: generating template information and grasp detection using the
matching algorithm. A neural network, trained by the RGB-D data from the Cornell Grasp Dataset, predicts multiple grasp
rectangles on template images. A proposed matching algorithm is utilized to eliminate the influence caused by occluded parts on
scene images and generates multiple grasp rectangles for objects under occlusions using the grasp information of matched
template images. In order to improve the quality of matching result, the proposed matching algorithm improves the SIFT
algorithm and combines it with the improved RANSAC algorithm. In this way, this paper obtains suitable grasp rectangles on
scene images and offers a new thought about grasping detection under occlusions. (e validation results show the effectiveness
and efficiency of this approach.

1. Introduction

Robotic grasping has been a hot-spot topic and drawn in-
creasing attention from researchers. With the growing de-
mand of intelligent robot, robotic grasping technique has
been extensively adopted in our daily life, such as workshop
assembly, service robotic grasping, and agricultural robotic
grasping [1–5]. However, compared with human beings,
robots still have great limitations in grasping, such as
grasping in occlusion case. Meanwhile, manipulating objects
in occlusion occasion is an inevitable application for robots,
like grasping under household [5] and industrial [6] scenes.
Consequently, improving the ability of grasping objects in
the case of occlusion and overlap is a difficult but necessary
work for robotic manipulation.

Many works focus on predicting grasp rectangles on
single-object scene [1, 7–9]. Nevertheless, robots usually face
the scenes of grasping target frommultiple objects. (is type
of problem is also called “bin picking.” Some works [10–13]
offer solutions to such problem, and they settle multiple
objects grasp detection to a certain extent. However, they

pay no attention on overlapped situations and may predict
grasp rectangles in the overlapping areas. It can cause
collision between objects and the robotic manipulator. Other
works [14, 15] consider the occlusions of objects and work
out such problem in their own way but cause high cost of
dataset acquisition.

(e proposal method in this paper divides such question
into two main stages and predicts suitable grasp configu-
rations (grasp configuration will be shown in Section 3)
using an RGB input image. Inspired by [1], the first stage
predicts multiple grasp rectangles on template images using
the neural network ResNet-50. Each template image is taken
in advance and contains only one object. Template images
and the corresponding grasp rectangles are integrated into
the template information; the second stage utilizes the
proposed matching algorithm to connect the scene infor-
mation with the template information and decreases the
influence caused by occluded parts on scene images. (en,
several grasp rectangles are predicted using the template
information and connection between the template infor-
mation and the scene information. A matrix M is used to
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represent scaling, translation, and rotation information of a
same object between two images. (e proposal matching
algorithm consists of the scale-invariant feature transform
(SIFT) algorithm and random sample consensus (RANSAC)
algorithm and connects two images based on SIFT features.
In order to obtain a better connection, this paper improved
the SIFT algorithm and RANSAC algorithm, respectively,
and received a more accurate transformation matrix M

between the template image and the scene image. (e
proposed grasp detection algorithm predicts multiple grasp
rectangles with corresponding quality scores for objects
under occlusions.

(e main contributions of this paper are as follows:

(1) A novel grasp detection algorithm is proposed to
predict grasp configurations for objects under oc-
clusions. (is algorithm, which is composed of a
grasp rectangle predicting neural network and our
key-point matching algorithm, predicts multiple
grasp configurations on template images and gen-
erates several grasp configurations for objects on
scene images using the connection between scene
information and template information, rather than
using an end-to-end network.

(2) (e paper proposes a new way to predict grasp
rectangles under occlusions by matching template
images with scene images using our matching al-
gorithm.(ematching algorithm combines the SIFT
algorithm and RANSAC algorithm and improves the
two algorithms in order to receive a better matching
result.

(e rest of the paper is organised as follows. Related
work about grasp detection is presented in Section 2.
Problem formulation and a brief introduction to the SIFT
algorithm are provided in Section 3. (e detail of the
proposed algorithm is discussed in Section 4. Section 5
provides the description of our experiment setup and val-
idation results, respectively. (e conclusion part can be
found in Section 6.

2. Related Work

2.1. Grasp Detection Using Neural Network. In previous
works like [16–18], model-based methods have played a
primary position in solving the grasp detection problem.
Such method uses the complete 3D model of the target
object to define the grasp operation. However, robots face
different environments, and obtaining the accurate 3D
model in advance seems to be impossible [19]. On the
contrary, it is more convenient to capture RGB images than
reconstructed 3D models. Meanwhile, the learning-based
method offers a strong generalization ability over object
classification, target detection, and regression [10, 20]. Many
works about object grasp detection have been done using the
learning-based method. Early research studies focus on
solving grasp detection problem in single-object scenes.
(ese works pay no attention on multiobject, occluded cases
and instruct the robot to grasp objects only under ideal
circumstances [19]. Lenz et al. [21] connected two single

neural networks in series in order to detect grasp positions in
an RGB-D image. Similarly, Guo et al. [22] considered grasp
detection using multiple sensors and proposed a hybrid deep
architecture fusing the visual and the tactile information for
grasp detection. (e author collected a THU grasp dataset
with visual, tactile, and grasp configuration information for
network training. Reference [1] proposed a deep learning
architecture to predict graspable locations using an RGB-D
image for robotic manipulation. Different from some pre-
vious works, the paper considered to define the angle
learning problem as classification with null hypothesis
competition rather than regression and detected multiple
grasp candidates for each object in a single shot with the
input of RGB-D image.

(e above works are all single-object scenes with objects
in Cornell Grasp Dataset. However, grasping in multiobject
scenes is inevitable in reality. Guo et al. [23] proposed a
convolutional neural network to detect the target object and
its optimal grasp configuration simultaneously on a fruit
dataset. However, this model can just predict the grasp
rectangle information of the most exposed object, without
considering about partially visible objects. Vohra et al. [24]
proposed a real-time grasp pose detection strategy for novel
objects in our daily life. (e proposed technique predicts the
contour of the object in the point cloud and detects the grasp
configurations along with the object skeleton in the image
plane. Reference [25] explained a robotic grasp detection
algorithm named ROI-GD to detect objects and their
possible grasp configurations at the same time based on
region of interest (ROI). (e experiment results showed that
this algorithm solved grasp detection problem of the object
in the case of contact to some extent but did not offer the
results of occluded cases.

Employed the neural network in [1], this paper trains a
model using the Cornell Grasp Dataset and succeeds to
obtain multiple grasp rectangles on the template image
containing only one object. (en, these template images and
relevant grasp configurations are used to generate grasp
configurations for the target objects under occlusions during
experiments. In order to build the connection between scene
images and template images, this paper adopts a matching
algorithm based on SIFT features to realize image matching
task.

2.2. SIFT-BasedMatching Algorithm. SIFT is a feature point
extraction and matching algorithm proposed by Lowe in
1999 and perfectly improved in 2004 [26–28]. SIFT is
proposed to extract distinctive invariant features from im-
ages in order to perform reliable match between different
views of an object or a scene [27]. SIFTfeatures are invariant
to rotation and scale and can match robustly across affine
distortion, change in 3D viewpoint, disturbance of noise,
illumination variation, and even partial occlusion [29].
However, the original SIFTalgorithmmatches the key points
by comparing the distance of the closest neighbor and the
second-closets neighbor, and that method makes the
detecting quality of the SIFT algorithm sensitive to the
threshold. Duo to the requirements of different works,
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researchers improved the performance of the SIFTalgorithm
in many ways. Dellinger et al. [30] proposed a new algorithm
named SAR-SIFT based on the SIFTalgorithm to reduce the
influence caused by speckle noise on synthetic aperture
radar (SAR). In [31], Alhwarin et al. improved the original
SIFT algorithm for the purpose of providing a more reliable
object recognition. Before matching the features, they di-
vided the features of both test and template images into
several subcollections according to the different octaves.
Compared with the original SIFT algorithm, the processing
time of the improved SIFT algorithm reduced 40% for
matching the stereo images. Reference [32] utilized the
improved RANSAC algorithm to realize a better SIFTfeature
point matching result and received an obvious promotion.
(e paper eliminated the mismatches using the improved
RANSAC algorithm and obtained a more accuracy con-
nection between images, also improved efficiency of pro-
cessing. Other works like [33, 34] also proposed algorithms
based on the SIFT algorithm to realize better results.

3. Preliminaries

3.1. Problem Formulation. Given an RGB scene image
containing several arbitrarily placed objects, the objective of
this paper is to identify the suitable grasp configurations for
the target object even the target object is occluded by other
objects. Inspired by [21], a grasp configuration of the target
object can be represented using a six-dimensional vector:

g � (x, y, w, h, θ, s), (1)

where the grasp configuration g describes the grasp location,
orientation information, and approximate opening distance
of a parallel plate gripper. As shown in Figure 1(a), point G is
the gripper’s location and also the center of grasp rectangle,
(x, y) is the coordinate of point G, angle θ is the orientation
information, it represents the angle of rotation of the gripper
in a certain direction, w and h represent the width and
opening size of parallel plate gripper, respectively, and s

represents the grasp quality score of the grasp configuration
and is used to be the criterion of selecting the best grasp
configuration. For each object, there may have several
possible grasp configurations, and a set of proper grasp
configurations S(g) is obtained; each element of S(g)

represents a proper grasp configuration information for the
target object in the scene:

S(g) � g1, g2, . . . , gn , (2)

where n represents the number of grasp configurations we
predict for the target object. We choose the best one for
robotic manipulation depending on the quality scores of
these grasp configurations.

Note that, this paper only predicts such grasp configu-
rations for template images; each template image contains
only one object we want to grasp and then generating grasp

configurations for scene images using our matching
algorithm.

3.2. Introduction of SIFT Algorithm. SIFT features are in-
variant to rotation and scale and can match robustly across
affine distortion, change in 3D viewpoint, disturbance of
noise, illumination variation, and even partial occlusion
[29]. (e original SIFT algorithm includes four main parts.
(e detail of the SIFT algorithm can be obtained from [27].

3.3. Scale Space Extrema Detection. (e SIFT algorithm se-
lects the extreme points of scale space as candidate feature
points. (e scale space of an image I(x, y) is defined as
follows:

L(x, y, δ) � G(x, y, δ)∗ I(x, y), (3)

where L(x, y, δ) defines the convolution of original image
I(x, y) and a Gaussian function. ∗ presents two-dimen-
sional convolution, and δ is the standard deviation of normal
Gaussian distribution.

(e SIFT algorithm uses scale space difference-of-
Gaussian (DoG) function to generate a large number of
extremas. (e DoG image D(x, y, δ) is defined as follows:

D(x, y, δ) � L(x, y, kδ) − L(x, y, δ), (4)

where k is a constant over all scales; thus, it does not in-
fluence extrema location [27].

3.4. Key-Point Localization. (is step is aimed to filter the
key points in order to only retain the stable key points. (e
Taylor expansion of DoG function is constructed in scale
space:

D(X) � D +
zD

T

zX
X +

1
2
X

Tz
2
D

zX
2 X,

X � (x, y, δ)
T

,

(5)

and then the stable key point is obtained by solving the
formula as follows:

X � −
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2
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− 1
z
2
X

zD

zX
,

D( X) � D +
1
2

zD

zX
X.

(6)

3.5. Orientation Assignment. In this step, every key point is
assigned an orientation to make the descriptor invariant to
rotation. Every direction contains gradient magnitude m(x,
y) and gradient direction θ(x, y) as follows:
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m(x, y) � (L(x, y + 1) − L(x, y − 1))
2

+(L(x + 1, y) − L(x − 1, y))
2

 
1/2

,

θ(x, y) � arctan
L(x, y + 1) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)
.

(7)

3.6. Key Point Descriptor. (e last step divides the image
region around the critical point to blocks; for each block, the
gradient histogram of it is calculated, and then a 128-di-
mensional key point descriptor is generated.

In order to decrease the disturbance caused by occluded
parts of scene images, this paper improves the original SIFT
algorithm and receives fewer mismatches. Several matched
SIFT features are extracted by the improved SIFT algorithm
and fed into the remaining matching algorithm to build a
more robust connection between the scene image and the
corresponding template image.

4. Approach

(e proposed algorithm can be divided into two stages
(Figure 2): template generation and image matching. Firstly,
before predicting grasp configurations during experiments
with robotic gripper, several template images are taken in
advance. Each template image contains only one object and
performed grasp detection using neural network proposed
in [1]. (en, a matching algorithm matches the target object
in a scene image with template images and generates several
grasp configurations for the target object under occlusions
using the connection between the scene image and the
template images.

(e next three subsections describe the whole system
in detail. It includes the architecture of the network and
generates template information using the network, a
description of obtaining connection between template
images and scene images using the proposed matching
algorithm, and a strategy of generating grasp configu-
rations on scene images using the information of tem-
plate images and connection.

4.1. Template Generation Using Neural Network.
Currently, convolutional neural networks (CNNs) receive
great performances on classification, detection, and

regression problems. We use modified ResNet-50 with 50
layers to solve grasp detection problem. ResNet overcomes
the challenge of learning mapping function by its residual
learning concept. Every residual block is designed to be an
incorporation which is a skip connection with the standard
CNN. Meanwhile, ResNet can avoid time-consuming slid-
ing-window approach shown in [8, 22] by utilizing the
capacity of neural networks to execute bounding box re-
gression and predict candidate regions on the whole image
directly. (e structure of our network is shown in Figure 3;
we adopt the architecture proposed in [1] and train a model
on Cornell Grasp Dataset.

(e network takes RG-D images as input.(e RG-D image
is composed of the RGB image and corresponding depth image.
(us, the original dataset contains RGB images and depth
images. (en, the data preprocessing part combines RGB
images with the corresponding depth images to obtain RG-D
images and crops them. After that, every cropped RG-D image
is sent to intermediate convolutional layers (1–40 layer of
ResNet-50). (e intermediate convolutional layer extracts a
common feature map with the size of 14 × 14 × 1024. (e
feature map with r anchors is then sent to section Grasp
Proposal Network. (e Grasp Proposal Network slides a mini-
network of 3 × 3 over the feature map and generates 9 possible
grasp boxes with 3 aspect ratios and 3 scales for each anchors
(Figure 1(b)).(us, there are r × 9 possible grasp boxes for each
feature map. (e Grasp Proposal Network outputs a 1 × 1 ×

512 feature map and then sends it into two sibling fully con-
nected layers. Afterwards, the outputs of two layers represent
the probability of grasp proposal and bounding box for each of r

anchors on the feature map. (e feature of each proposal
bounding boxes is extracted by the ROI layer and sent to the
remaining layers of the ResNet-50. Let ti be the i-th grasp
configuration with the form of (x, y, w, h) and pi be the
probability of the corresponding grasp proposal. In is an index
set of all proposals; we use the formulation as follows to define
the loss of grasp proposal net (gp).

θ

h
G (x, y)

W

(a) (b)

Figure 1: (a) Grasp configuration for parallel robotic gripper. Each grasp configuration contains the position information, orientation
information, and grasp quality score. (b) Each anchor is corresponded to 9 possible grasp boxes with 3 scales and 3 aspect ratios (here only
shows 3 of the possible grasp boxes of a same scale).
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(8)

where Lgp c denotes the cross entropy loss of grasp proposal
classification and Lgp r denotes the l1 regression loss of grasp
proposal with weight λ. p∗i is an index with only two values.
p∗i � 0 represents no grasp, and p∗i � 1 shows that a grasp is
specified. c∗i is the coordinate of ground-truth grasp cor-
responding to p∗i .

As for θ, the orientation of each grasping configu-
ration, we consider it as a classification task. (e mul-
tigrasp detection pipeline quantizes θ into R equal-length
intervals and generates multiple possible grasp configu-
ration for each possible grasp proposal using θ. If none
score of the possible grasp configuration is higher than
the threshold we set, then we abandon the corresponding

possible grasp proposal. In this paper, the total classes
C � R + 1 and R � 19.

After the above processing, the last stage of the
network classifies the grasp proposals into R regions and
refines every proposal grasp bounding box to a bounding
box (x, y, w, h) without orientation. A ROI pooling layer
is added into ResNet-50 and shares the common feature
map extracted by intermediate convolutional layer. (us,
it reduces the recomputation of feature extraction. All the
features of the proposal grasps are stacked by ROI pooling
layer and then fed into two sibling fully connected layers
for the classification of orientation parameter l and re-
gression of bounding box (x, y, w, h). (e loss function of
predicted grasp configuration (gc) is defined to be

Lgc ρl, βl( 
C

c�0  � 
c

Lgc c ρl(  + λ2 
c

Lgc r βc, β
∗
c( , (9)
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Figure 2: System diagram of our grasp detection algorithm.(e template generation stage uses the network and template images to generate
template information. For each scene image, the algorithm connects the scene image with template information in matching stage using a
matching algorithm and obtains grasp rectangles for the target object in occluded condition.

ResNet-50 (1 to 40)

7×7 covn 64 (1)
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3×3 maxpool 64
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Input
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Residual block_2 (12)
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Output

fcti pi
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ρi

Figure 3: (e structure of our network. (e network uses RG-D images as inputs and predicts multiple grasp rectangles which contain
position information, orientation information, and grasp quality score for each object.(e data preprocessing part fuses the RGB image and
the corresponding depth image to be the RG-D image and crops the RG-D image into a given size. (e 1–40 layers of our network extract a
feature map, the feature map is then fed into the Grasp Proposal Network and the ROI pooling. (e rest of the network (41–50 layers)
receives the output of the Grasp Proposal Network and generates several grasp rectangles.
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where ρi is the probability of class l, βl is the corresponding
grasp bounding box prediction, Lgc c denotes the cross
entropy loss of the angle classification, Lgc r denotes the l1
regression loss grasp bounding boxes with weight λ2, and β∗c
is the ground-truth grasp bounding box. (e total loss is
defined to be

Ltotal � Lgp + Lgc. (10)

(e ROI layer generates grasp proposals, and grasp
bounding boxes and orientations are received using the
additional neurons of two sibling layers. Finally, we obtain
the grasp configurations S(g) of the target object on the
template image. As mentioned above,

S(g) � g1, g2, . . . , gn ,

g � (x, y, w, h, θ, s).
(11)

4.2. Connect Images Using SIFT Features. Using the pro-
posed deep network, multiple grasp bounding boxes are
obtained on the template images. Every template image
contains a single object, and the predicted grasp bounding
boxes show the suitable grasp configurations of the object.
However, as it is described earlier, grasp detection may
obtain some unsuitable grasp configurations in the occluded
parts. In order to abandon the unsuitable grasp bounding
boxes from all predicted grasp rectangles, we try to cut the
occluded parts of scene image using our matching algorithm
rather than predicting grasp rectangles on scene image using
an end-to-end network.

SIFT features are invariant to rotation and scale and can
match robustly across affine distortion, change in 3D
viewpoint, disturbance of noise, illumination variation, and
even partial occlusion [29]. (e original SIFT algorithm
matches the key points by comparing the distance of the
closest neighbor and the second-closets neighbor, and that
method makes the detecting quality of the SIFT algorithm
sensitive to the threshold. Correct matching happens when
the ratio is less than the threshold. (us, as the threshold
raises, the matching points increase, but mismatch increases
too. Usually we want to generate more correct feature points
and decrease the mismatches. Only by raising the threshold
cannot solve such conflicting problem. Inspired by [32], we
propose a matching algorithm which combines the im-
proved SIFT algorithm with the improved RANSAC algo-
rithm to improve the quality of matching. Our matching
strategy is shown in Figure 4.

Firstly, we extract images SIFT feature points using the
improved SIFT algorithm; this algorithm contains three
parts: SIFT algorithm, crop images, and sliding-window
SIFT. We utilize the SIFT algorithm to each pair of images
and obtain many SIFT feature points of the two images. In
order to decrease the influence of occluded parts, this paper
uses the original matched SIFT features to detect the oc-
cluded parts. Our method divides the scene image into some
patches and judges whether a patch is the occluded part by
connecting it with template image using the SIFTalgorithm.
Note that the original matched SIFTfeatures have proved the

approximate position of the object on images; thus, un-
necessary computation can be avoided by cropping the
images. (e crop image part crops images based on original
matched SIFT features and obtains cropped parts of the
images that contain the target object. (en, the sliding-
window SIFT part slides the cropped scene image into
several patches and judges whether a patch is the occluded
part by the number of matched SIFT features. If a patch
contains SIFT features, which are matched with template
image, more than a given count (in this paper is 2), it is
considered to be a part of the target object; otherwise, we
classify it as occluded part and delete the corresponding
SIFT features. After the improved SIFT algorithm, many
matched SIFT features are obtained. (e SIFT algorithm
matches two images’ SIFT feature points based on calcu-
lating the Euclidean distance between the two 128-dimen-
sional key point descriptor. Such matching strategy makes
the matching quality sensitive to the given threshold of the
SIFT algorithm and cannot solve the trade-off between
obtaining more matches and decreasing mismatches while it
has to calculate the transformation matrix between two
images, and mismatches may influence the accuracy of the
result. In order to get a better result, we decide to eliminate
some of the mismatches in advance and utilize the RANSAC
algorithm to calculate a more accurate result afterwards.

Inspired by [32], this paper considers the cross points as
mismatches. Generally speaking, the size of same object is a
constant. (e transformation of the same object in two
images can be considered as rotation and scaling.(us, there
should be no crossover between two correctly matched
images. So, the proposed algorithm can eliminate part of the
mismatches by abandoning the feature points which cause
cross line with other lines. (e main function of mismatches
processing part is to delete such mismatches. After the

Pattern
Information

Scene
Information

Improved SIFT
Algorithm

SIFT Features

Improved RANSAC
Algorithm

Connection
Information

Grasp
configurations

RANSAC
Algorithm

Matching
Algorithm

Input

Output

SIFT
Algorithm

Mismatches
Processing

Sliding-
window

SIFT

Crop
Images

Figure 4: (e diagram of our matching algorithm. (e matching
algorithm combines the improved SIFT algorithm and the im-
proved RANSAC algorithm to connect the template information
and the scene information. (e connection information generated
by our matching algorithm contains the transformation relation-
ship between the matched pair of images. (e output of the
matching algorithm includes multiply grasp configurations of the
target object in the occluded condition.
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processing of the SIFT feature points, the RANSAC algo-
rithm is used to calculate the transformation matrix M

between each pair of images using matching feature point set
F. F is defined as follows:

F � f1, f2, . . . , fN,

fk � tk, sk( ,
(12)

where N is the number of matching point pair, fk is the k-th
matching point pair in F, k is an integer between 1 and N,
and tk and sk are two corresponding feature points of
template image and scene image, respectively.

Each pair of matching images can be connected using the
corresponding transformation matrix M; the relationship
between two matching points’ coordinates and transfor-
mation matrix M is defined as follows:

Ps � MPt,

M �

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(13)

where Ps � x′ y′ 1 
T is the coordinate of any feature

point on scene image and Pt � x y 1 
T is the coordinate

of the corresponding feature point on template image. By
equation (13), we can connect two matched images at the
pixel level and match each point on the template image to
the pixel of the scene image. (e improved RANSAC Al-
gorithm 1 is described as follows.

4.3. Grasp Configurations Generating Strategy under
Occlusions. (rough the above steps, there obtains the grasp
configurations S(g) of the target object in the template
image and uses the matching feature point pair set F to
calculate the transformation matrix M between template
image and scene image. Note that, the occluded parts of
scene image cannot match with template image due to the
specialty of the SIFT algorithm. At this step, this paper
utilizes above information to generate grasp configurations
for target object in the case of occlusion.

For every grasp configuration g � (x, y, w, h, θ, s) of
S(g), we denote G � (x, y) as the grasp center point of g.
(us, we get a set S(G) of grasp center point as follows:

S(G) � G1, G2, . . . , Gn . (14)

Meanwhile, we denote S(t) and S(s) as the matching
feature point sets of template image and scene image,
respectively:

S(t) � t1, t2, . . . , tm ,

S(s) � s1, s2, . . . , sm ,
(15)

where n is the number of grasp center points of the target
object in template image and m is the number of matching
pairs which satisfy the transformation matrix M.

(e proposed strategy is using the points in S(G) to
replace the points in S(t) based on the Euclidean distance

of pixels. (us, for each g � (G, w, h, θ, s), we replace the
grasp center point G with the closets SIFT feature point p′;
the closets Euclidean distance is less than a given
threshold, and a new set of grasp configurations S(g′) is
created:

S g′(  � g1′, g2′, . . . , gr
′ ,

g′ � p′, w, h, θ, s( ,
(16)

and then for each p′, we have a corresponding SIFT feature
point s′ scene image, and the parameters of s′ are as follows:

s′ � p′, w, h, θ + β, s( , (17)

where β is the orientation transformation of the transfor-
mation matrix M. Finally, we obtain the grasp configura-
tions S(s′) � s1′, s2′, . . . , sr

′  of the target object in the case of
occlusion.

5. Experiment

5.1. Dataset and Implementation for Network Training. In
this paper, the goal is to predict grasp rectangles in oc-
cluded scenes. However, the proposed algorithm utilizes
the connection between template information and scene
information to obtain the grasp configurations in the
multiobject, occluded cases, rather than an end-to-end
deep neural network to predict grasp configurations on the
scene images directly. Hence, the function of our network is
to generate multiple grasp rectangles on the template image
which contains only one target object. Note that, in order to
increase the accuracy of detection, this paper stipulates the
template image with only one object intentionally, because
different matched objects between template image and
scene image correspond to different transformation ma-
trices in theory. On the basis of above condition, this paper
chooses Cornell Grasp Dataset (Figure 5) as the dataset of
our network.

(e Cornell Grasp Dataset contains 855 images (RGB
images and depth images) of 240 different objects [35]. Each
image contains several ground-truth grasp rectangles with
different orientations and positions. (is paper takes the
same procedure of data processing in [1, 8] and replaces the
blue channel of each image with the corresponding depth
channel. Because the data of blue channel are distributed
between 0 and 255, we normalize the depth data to the same
range. By combining RGB information and depth infor-
mation, RG-D images are obtained. In order to generate
plenty of training data and fit to the input size of ResNet-50,
each image is performed extensive data augmentation by
rotating randomly between 0 and 360 and resized to
227 × 227.

(e network is implemented on Tensorflow framework
and trained end-to-end on a single GPU of GTX1660Ti. We
set the initial learning rate of our network to 0.0001 and
divide it by 5 every 10000 iterations. We set the training
epochs as 5.
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5.2. Evaluation Metrics of Predicted Result. In this paper, we
take the metrics proposed in [21] to evaluate the grasp
detection ability of our network. A grasp is considered to be
a good grasp if it meets the following two criterions:

(1) (e difference of grasp orientation between pre-
dicted grasp rotation angle and the corresponding
grasp rotation angle of ground-truth is less than 30°.

(2) (e Jaccard index of the predicted grasp configu-
ration g′ and the ground-truth g is more than 25%.
(e Jaccard index is defined as follows:

J g, g′(  �
gA ∩gA
′

gA ∪gA
′
, (18)

where gA and gA
′ are the areas of predicted grasp rectangle

and ground-truth grasp rectangle, respectively. (e Jaccard
index is the ratio of intersection of the two rectangles to the
union of the two rectangles.

5.3. Validation Results on Cornell Grasp Dataset and
Household Objects. (ree main types of experiments are
performed to verify the ability of the proposed grasp de-
tection algorithm. (e first experiment makes a comparison
with other typical methods on Cornell Grasp Dataset. In
order to prove the validity of the proposed matching al-
gorithm, the second experiment predicts grasp rectangles for
objects under occlusions using the original SIFT algorithm
and the proposed matching algorithm, respectively. (e last
experiment predicts grasp rectangles for some household
objects under occlusions. (e results of all experiments
prove that the proposed grasp detection algorithm can
ensure the detection accuracy on Cornell Grasp Dataset and
solve the problem of grasp detection under occlusions to
some extent.

Experiment 1 tests the proposed grasp detection algo-
rithm on the Cornell Grasp Dataset andmakes a comparison
with prior works, and the result of comparison is shown in
Table 1. We compare these works in two ways: image-wise
split (IW) and object-wise split (OW):

(i) IW. (e dataset is divided based on image randomly.
Each image has an equal probability to be trained or
tested. (is is a common way to test the

generalization of the network to new orientation and
position about objects it has seen before.

(ii) OW.(edataset is divided based on object instances.
Objects in training set and test set can be different.
OW is used to test the generalization ability of a
network about new object.

(e performance of the proposed grasp detection al-
gorithm on Cornell Grasp Dataset is shown at the last
column of Table 1. For this grasp detection test on Cornell
Grasp Dataset, we choose the best grasp rectangle from all
the grasp candidates based on the corresponding output
scores. Our grasp detection algorithm receives the accuracy
of 97.2% on IW and 92.5% on OW, respectively. (e de-
tection accuracy is slightly inferior to the algorithm pro-
posed in [1], the possible reason is that our matching
algorithm may ignore some suitable grasp rectangles by
mistake, we use the same network to generate several
template images, but during calculating the transformation
matrix, our matching algorithm may cut the right patch
which contains the best grasp configuration, and the final
result is the best of the remaining. Figure 6 shows the results
of grasp detection on part of images of Cornell Grasp
Dataset. We only show the grasp rectangle with the highest
score.

Experiment 2 focuses on some household objects like
umbrella, scissor, remote control, and so on. In order to
validate the usefulness of our matching algorithm, we firstly
compare our matching algorithm with the original SIFT
algorithm. (e result of comparison can be seen in Figure 7.

Figure 7(a) is the result of the original SIFT algorithm; the
final prediction of grasp rectangle is at an occluded part. (e
original SIFT algorithm fails to decrease the influence of oc-
cluded parts and generates wrong grasp configurations. (e
reason may be that the position of grasp configuration with
highest score in the template image is one of the occluded parts
in the scene image; thus, without eliminating the influence of
occluded parts, some SIFT feature pairs choose such grasp
rectangle as the closest grasp position, and the result of
matching goes wrong. Our matching algorithm deletes the
occluded parts by combining the improved SIFTalgorithmwith
the improved RANSAC algorithm and matches SIFT feature
pair with the closest grasp position that is not in the occluded
parts.(e result is shown in Figure 7(b), and the robot can grasp
the umbrella without grabbing other objects.

Input: Input parameters set of SIFT matches F
Output: Output transformation matrix M

(1) Preprocessing: eliminate part of the mismatches by deleting the feature point pair that causes cross line. Denote the matching point
set after preprocessing as F′.

(2) Select 4 pairs of points from F′ randomly, and calculate transformation matrix M′, create a new point set O.
(3) Judge whether other matching pairs satisfy the transformation of M′ (a matching pair belongs to O if the error less than a given

threshold), record the number of satisfied matching pair (elements in O) as m.
(4) If current m is the biggest than before, retain the current M′; otherwise, abandon it.
(5) Repeat 2, 3, and 4 a given times (5 in this paper), and obtain a transformation matrix M.

ALGORITHM 1: Improved RANSAC algorithm.

8 Complexity



Experiment 3 is grasping some household objects in the
occluded case. Note that, our algorithm performs well when
there contains plenty of SIFTfeatures, and the degree of texture
richness and occlusion of the object determine the performance
of our algorithm. (ere are several randomly placed objects in
the grasp range of the robot, ourmatching algorithmgenerates a
certain number of matching points across two images, and the
blue lines show the connection of each pair of matching feature
points. From the matching feature pairs, we can obtain the

transformation matrix M′ using the feature points’ location
information of matching images, and finally we can get the
transformation between template images and scene images. Our
grasp detection algorithm can avoid the occluded parts and
predict a suitable grasp configuration for robot. (e results
reveal the usefulness of our algorithm (see Figure 8). Our al-
gorithm can predict suitable grasp configurations for the target
objects and help the robot to grab the target objects without
grabbing other objects.

Figure 5: Several objects of Cornell Grasp Dataset.

Table 1: Performance of different methods on Cornell Grasp Dataset.

Approach Algorithm
Accuracy (%)

IW OW
Jiang et al. [36] Fast search 60.5 58.3
Lenz et al. [21] SAE, struct. 73.9 75.6
Redmon and Angelova [8] AlexNet, MultiGrasp 88.0 87.1
Guo et al. [22] ZF-net, hybrid network 93.2 89.1
Chu et al. [1] ResNet-50 FCGN 97.7 94.9
Li et al. [19] Key point-based scheme 96.05 96.5
(is paper (e proposed algorithm 97.2 92.5
Bold values indicate the performance of our algorithm on Cornell Grasp Dataset. IW: image-wise. (e dataset is divided based on image randomly. Each
image has an equal probability to be trained or tested. (is is a common way to test the generalization of the network to new orientation and position about
objects it has seen before. OW: object-wise. (e dataset is divided based on object instances. Objects in training set and test set can be different. OW is used to
test the generalization ability of a network about new object.

Figure 6: (e results of grasp detection on several images of Cornell Grasp Dataset.
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6. Conclusion

(is paper proposes a grasp detection algorithm to predict
grasp rectangles for objects in occluded cases, which trains
the model based on Cornell Grasp Dataset and obtains grasp
rectangles for scene images using our matching algorithm.
Every image in the dataset contains only one object, but our
algorithm can predict grasp configurations for images with
multiple objects. Experiment results demonstrate the im-
provement of our algorithm. We evaluate our algorithm on
Cornell Grasp Dataset and receive the accuracy of 97.2% on
image-wise and 92.5% on object-wise, respectively. In order
to verify the effect of our algorithm in occluded cases, we
preform experiment in multiobject, occluded condition. (e
outcome shows that this is a feasible method to utilize our
grasp detection algorithm to obtain grasp rectangles in

occluded condition; this is the advantage over [1]. (e
disadvantage of this method is that the result of thematching
algorithm influences the final prediction and reduces the
detection accuracy on Cornell Grasp Dataset in comparison
to [1]. Future work will focus on improving the robustness of
the matching algorithm while ensuring the detection ac-
curacy of network.
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(e data used to support this study are available upon
request.
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(a) (b)

(c) (d)

Figure 8: Grasp detection results on household objects under occlusions: (a) detection results of a garage kit, the first row of (a) is the input
information and template information, the target object on scene image is occluded by other objects, and the template image only contains
the target object and its grasp configurations; the second row shows the SIFT feature pairs obtained by our matching algorithm, and we
connect each matching SIFT features using a blue line; and the last row is the detecting results with multiple-rectangle above and most
suitable rectangle below, and all the results avoid the occluded parts. (b), (c), and (d) have the same layout.We connect the matching features
using blue lines.

(a) (b)

Figure 7: Comparsion of our matching algorithm with the original SIFT algorithm on household objects: (a) the result generated by the
original SIFT algorithm; (b) the result obtained by our matching algorithm. Our matching algorithm decreases the influence of occluded
parts and predicts a more suitable grasp configuration than the original SIFT algorithm.
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