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*is article presents the problem, in which we study the unsteady double convection flow of a magnetohydrodynamics (MHD)
differential-type fluid flow in the presence of heat source, Newtonian heating, and Dufour effect over an infinite vertical plate with
fractional mass diffusion and thermal transports. *e constitutive equations for the mass flux and thermal flux are modeled for
noninteger-order derivative Caputo–Fabrizio (CF) with nonsingular kernel, respectively. *e Laplace transform and Laplace
inversion numerical algorithms are used to derive the analytical and semianalytical solutions for the dimensionless concentration,
temperature, and velocity fields. Expressions for the skin friction and rates of heat and mass transfer from the plate to fluid with
noninteger and integer orders, respectively, are also determined. Furthermore, the influence of flow parameters and fractional
parameters α and β on the concentration, temperature, and velocity fields are tabularly and graphically underlined and discussed.
Furthermore, a comparison between second-grade and viscous fluids for noninteger and integer is also depicted. It is observed that
integer-order fluids have greater velocities than noninteger-order fluids. *is shows how the fractional parameters affect the
fluid flow.

1. Introduction

*e interest in fluid mechanics is truly significant within the
sight of transport phenomena, which is a critical element in
thermal, chemical, and mechanical engineering science. A
few actual systems exist which can be utilized to move
thermal energy and compound species through a phase and
across limits of the phase. *e three mechanisms for heat
transfer are diffusion, convection, and radiation. *e clas-
sification of convection of heat transfer into three conse-
quent branches are natural (free), forced, and mixed
convection, which is essential for the physical system that
takes up the motion of the fluid. Free convection flows
ensuing from the heat and mass transfer directed by the
combined buoyancy effects because of temperature and

concentration variations have been widely studied due to
their applications in geotechnical engineering and chemical
and bioengineering and in industrial activities [1]. Usually,
the mass transfer due to the concentration disparity influ-
ences the rate of heat transfer. *e driving force for the free
convection is buoyancy, so its effects cannot be neglected
whether the velocity of the fluid is small and change in
temperature between the ambient fluid and surface is large
enough [2–4].

Electrically conducting fluids also have accepted enough
consideration from the researchers due to their extensive
applications in industrial appliances. *e MHD has its own
practical implication, such as the tumor treating fields and
power generation and earthquake assumption [5]. Parvin
and Nasrin [6] have presented the analysis of the flow and
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heat transfer characteristics for MHD-free convection in
inclusion with heated difficulties. *ey showed that the
influence of the magnetic parameter on streamlines and
isotherms is significant.

*e energy flux which is due to a composition gradient is
said to be the Dufour or diffusion-thermo effect. Such in-
fluences are significant when density differences occur in the
flow regime. Such as when species are introduced at a surface
in the fluid domain with different (lower) density than the
surrounding fluid, Dufour effects can be beneficial. Also,
when heat and mass transfers take place simultaneously in a
moving fluid, it has a relationship between the fluxes and the
driving potentials are of more twisting nature. It has been
analyzed that an energy flux can be generated not only by
temperature gradients but also by composition gradients as
well. *e diffusion-thermo effect was found to be of a
considerable magnitude such that it cannot be negligible [7].
Dufour effects are essential in geothermal energy, hydrology,
and nuclear waste disposal. In view of the importance of the
diffusion-thermo effect, Kafoussias andWilliams [8] studied
the effect of thermal diffusion and diffusion-thermo on the
mixed free forced convective and mass transfer boundary
layer flow with temperature-dependent viscosity. Babu et al.
[9] studied the diffusion-thermo and radiation effects on
MHD-free convective heat and mass transfer flow past an
infinite vertical plate in the presence of a chemical reaction
of the first order. *e dimensionless governing equations
were solved with the Laplace transform technique. Rajput
and Gupta [10] investigated the diffusion-thermo effect on
unsteady free convection MHD flow past an exponentially
accelerated plate through porous media with variable
temperature and constant mass diffusion in an inclined
magnetic field. Sharma and Buragohain [11] examined the
Soret and Dufour effects on unsteady flow past an oscillating
vertical plate with the help of numerical technique. Post-
elnicu [12] studied simultaneous heat and mass transfer by
natural convection from a vertical plate embedded in an
electrically conducting fluid saturated porous medium in the
presence of Soret and Dufour effects using the Dar-
cy–Boussinesq model. Gaikwad et al. [13] investigated the
onset of double diffusive convection in two component
couple of the stress fluid layer with Soret and Dufour effects
using both linear and nonlinear stability analysis. Prakash
et al. [14] considered the Dufour effects on unsteady MHD
natural convection flow past a spontaneously started infinite
vertical plate with variable temperature and constant mass
diffusion through a permeable medium, and the dimen-
sionless governing equations were solved in a closed form by
utilizing the Laplace transform technique. *ey tracked
down that the Dufour impact has critical effect on the ve-
locity and temperature fields.

Numerous fluids in practical developments show non-
Newtonian behavior because the consistent Newtonian
fluids do not explicitly clarify the attributes of real fluids.
Among non-Newtonian fluids, second-grade fluid is one of
the viscoelastic fluids which were introduced by Rivlin [15]
and Rivlin and Erickson [16]. Beard and Walters [17] are
considered the pioneer of viscoelastic fluids. *ey developed
the boundary layer theory for the second-grade fluids. *is

boundary layer theory for the second-grade fluids has
motivated many researchers to really explore this kind of
fluids with various conditions. Ariel [18] attained an in-
terpretive solution for an incompressible laminar second-
grade fluid between the plates. Kecebas and Yurusoy [19]
analyzed an unsteady two-dimensional power law fluid of
the second grade and used a finite difference approach to
solve reduced governing equations. Raftari [20] considered
the MHD steady flow and heat transfer of a second-grade
fluid and obtained an analytical solution. Aman et al. [21]
analyzed the unsteady heat and mass transfer in second-
grade fluid over a flat plate with wall suction and injection.

Recently, it has progressively been seen as a dynamic tool
through which a beneficial generalization of physical ideas
can be obtained. Most fractional derivatives used are the
Riemann–Liouville (RL) fractional derivative and the
Caputo fractional derivative [22, 23]. It is observed that these
operators exhibit obstacle in applications, such as the RL
derivative of a constant is not zero, and the Laplace
transform of the RL derivative involves terms which have no
physical signification. *e Caputo fractional derivative has
excluded these difficulties, but the kernel of the definition is a
singular function. Caputo and Fabrizio have introduced
recently a new definition of the fractional derivatives with an
exponential kernel without singularities [24]. *e results
that are been analyzed using these operators are expressed in
complicated forms involving some generalized functions
[25–34].

*e innovation of the present paper is to examine the
double convection flow of an incompressible differential-
type fluid near a vertical plate with heat source, Newtonian
heating, and diffusion-thermo effect. Fractional derivative
CF with nonsingular kernel is used in the constitutive
equations of the mass flux and thermal flux to describe the
diffusion and thermal processes, respectively. Semianalytical
solutions of the dimensionless problems are established by
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Figure 1: Flow geometry.
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virtue of the Laplace inversion numerical algorithm Gav-
er–Stehfest [35, 36]. Expressions of skin friction, Sherwood
and Nusselt numbers with fractional, and ordinary cases,
respectively, are also determined. *e results which we
attained here are new and can be applied to other viscoelastic
fluids. Applications of this research would be helpful in
magnetic material processing and chemical engineering
systems. At the end, the influence of flow parameters and the
fractional parameter on the temperature and concentration
field as well as on the velocity field are tabularly and
graphically analyzed.

2. Mathematical Model

Let us consider the double convection flow of an electrically
conducting incompressible differential-type fluid lying over
an infinite vertical plate occupying in the x ξ

︹

1-plane with
Newtonian heating as shown in Figure 1. Initially, the fluid
and the plate are at rest and its temperature is M (ambient

fluid temperature) and the concentration level on the plate is
L− 1 1/(s2 + b1s + b2)􏼈 􏼉 � (2/

�������

b21 − 4b2

􏽱

)sinh((
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/2)

t)e− (b1/2)t (ambient fluid concentration). After time t
︹

1 � 0+,
the heat transfer from the plate to the fluid is proportional to
the local surface temperature T

︹

1, and the concentration level
on the plate is C

︹

w (wall concentration) which is thereafter
kept constant. Presume that the influence of double con-
vection and viscous dissipation in momentum and energy
equations are insignificant, respectively. Also, the direction
of flow has no pressure gradient. We assume that the ve-
locity, temperature, and concentration are functions of ξ

︹

1
and t

︹

1 only. For such a flow, the constraint of incom-
pressibility is identically satisfied. Taking the consistent
Boussinesq approximation, the convection flow is governed
by the following set of partial differential equations
[32, 33, 37]:
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*e appropriate initial and boundary conditions are as
follows:
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On introducing the nondimensional quantities from
Appendix A into equations (1)–(8), we get the following
nondimensional partial differential equations:
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with the initial and boundary conditions
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To establish a model with time-fractional derivatives, we
assume a thermal process with memory illustrated by the
next generalized fractional constitutive equation for thermal
flux and mass diffusion, respectively [38, 39]:
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*e Laplace transform of the CF time derivative is as
follows:
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For the correspondence, it will be as follows:
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3. Solution of the Problem

3.1. Concentration Field. Applying the Laplace transform to
equations (12), (13), third equation in (15), third equation in
(16), and (17), keep in mind the initial condition (third
equation in (14)), and after simplification, we obtain the
transformed problem:
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*e differential equation (24) gives the solution with
respect to condition (24):
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where a0 �
��������
Sc(1 − α)

􏽰
and a � (a/1 − α).

*e inverse Laplace transform of the above equation is
perceived using equation (A.3) from Appendix C.
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*e local mass transfer coefficient from the plate to the
fluid, that is, Sherwood number, is taken by the subsequent
relation:
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*e obtained results in equations (26) and (27) identical
results exist in [29] (equations (3.9) and (3.22)).

3.2. Concentration Field for an Ordinary Case (α⟶ 0).
In special case when α⟶ 0, we obtain the ordinary
concentration field by means of the equation (A.4) from
Appendix C.
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number as follows:
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4. Temperature Field

Applying the Laplace transform to equations (10), (11),
second equation in (15), second equation in (16), and (18),
using the initial condition (second equation in (14)), after
simplification, we get the transformed problem:
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where bi, i � 0, . . . , 6 and ξ are constants given in Appendix B
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To find the inverse Laplace transform, equation (34) can
be written as follows:
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*e inverse Laplace transform of equation (35) is ob-
tained using (A.3), (A.5)–(A.11) from Appendix C, and by
taking convolution theorem, we will get the following
equation:
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*e local coefficient of heat transfer from the plate to the
fluid, in terms of the Nusselt number, is as follows:
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*e inverse Laplace transform of equation (39) is
established numerically and is described in Section 6 in the
tabular form.

4.1. Temperature Field for an Ordinary Case
(α⟶ 0, β⟶ 0). In special case, that is, α⟶ 0, β⟶ 0,
to obtain the ordinary temperature field by means of
equations (A.10) and (A.11) from Appendix C,
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0

1
���
πτ

√ e
− a1τ− Pry2/4τ( ) − ςe

��
Pr

√
ςy+ ς2− a1( )τerfc

��
Pr

√
y

2
�
τ

√ + ς
�
τ

√
􏼠 􏼡dτ

+
a2

2
􏽚

t

0
e

− a3τ− iy
��
Sc

√ ��
a3

√

erfc
y

��
Sc

√

2
�
τ

√ − i
���
a3τ

√
􏼠 􏼡 + e

− a3τ+iy
��
Sc

√ ��
a3

√

erfc
y

��
Sc

√

2
�
τ

√ + i
���
a3τ

√
􏼠 􏼡􏼢 􏼣dτ,

(40)

where ai, i � 1, . . . , 3 and ζ are constants given in Appendix
B.

*e above equation would be expressed as the Nusselt
number using (A.12) from Appendix C as follows:

Nuo � 1 −
ς

a1 − ς2
��
a1

√
erf

���
a1t

􏽰
( 􏼁 − e

− a1− ξ2( )t
erfc(ς

�
t

√
) − 1􏼒 􏼓􏼔 􏼕

+ a2
��
Sc

√
􏽚
∞

0

1
���
πu

√ δ(t − u) − a3e
− a3(t− u)

􏼐 􏼑du.

(41)

5. Velocity Field

Applying the Laplace transform to equation (9), with the
initial condition (first equation in (14)) and using the

expressions of equations (25) and (32), we obtain the fol-
lowing Laplace transform velocity:

z
2
u

zy
2 −

s + M

1 + cs
u(y, s) � −

Gr

1 + cs

1
s

1
��
b0

􏽰
1

�����
w1(s)

􏽰
+ ξ

e
− y

��
b0

√ ����
w1(s)

√

+
sb6

w2(s)

e
− ya0

���
s+a

√

s
+
1
s

1
��
b0

􏽰
e

− y
��
b0

√ ����
w1(s)

√

�����
w1(s)

􏽰
+ ξ

1 − a0b6
����
s + a

√
( 􏼁

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦

−
Gm

1 + cs

1
s
e

− ya0
���
s+a

√

.

(42)

Here, u(y, s) represents the function of the Laplace
transform and u(y, t) that has to satisfy the conditions.

u(0, s) � 0,

u(y, s)⟶ 0, asy⟶∞.
(43)
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*e ordinary differential equation (42) gives the solution
with subject to conditions (43):

u(y, s) �
1

s
3

+ d0s
2

+ d1s + d2
.

1
�����
w1(s)

􏽰
+ ξ

A1 + A2
s

w2(s)
􏼨 􏼩

1
s
e

− yc0

���������
(s+M)/ s+d3( )

􏽰

− e
− y

�����
b0w1(s)

√

􏼔 􏼕

+
A2

s
3

+ d0s
2

+ d1s + d2
.

s
����
s + a

√

�����
w1(s)

􏽰
+ ξ

.
a0

w2(s)

1
s
e

− yc0

���������
(s+M)/ s+d3( )

􏽰

+ e
− y

�����
b0w1(s)

√

􏼔 􏼕

+
1

s
2

+ a4s + a5
A3 + A4

1
w2(s)

􏼨 􏼩
1
s
e

− yc0

���������
(s+M)/ s+d3( )

􏽰

− e
− ya0

���
s+a

√

􏼔 􏼕,

(44)

where c0 � 1/ �
c

√
ai, i � 4, 5, Aj, j � 0, . . . , 4 and

dk, k � 0, . . . , 3 are all constants given in Appendix B.
*e skin friction coefficient corresponding to this mo-

tion is as follows:

τg �
zu(0, t)

zy
� L

− 1 zu(0, s)

zy
􏼨 􏼩

� L
− 1 1

s
3

+ d0s
2

+ d1s + d2
.

1
�����
w1(s)

􏽰
+ ξ

A1 + A2.
s

w2(s)
􏼨 􏼩

c0

s

�����
s + M

s + d3

􏽳

−

�������

b0w1(s)

􏽱
⎛⎝ ⎞⎠⎡⎢⎢⎣

+
A2

s
3

+ d0s
2

+ d1s + d2

s
����
s + a

√

�����
w1(s)

􏽰
+ ξ

.
a0

w2(s)

c0

s

�����
s + M

s + d3

􏽳

+

�������

b0w1(s)

􏽱
⎛⎝ ⎞⎠

+
1

s
2

+ a4s + a5
.

A3

w2(s)
+ A4􏼨 􏼩

c0

s

�����
s + M

s + d3

􏽳

− a0
����
s + a

√
⎛⎝ ⎞⎠⎤⎥⎥⎦.

(45)

*e inverse Laplace transform of equations (44) and (45)
will be found numerically in Section 6 by applying the
Stehfest’s algorithm [35].

5.1. Velocity Field for Fractional Viscous Fluid (c⟶ 0).

In this special case, that is, c⟶ 0, we will obtain the ve-
locity field for fractional viscous fluid from equation (44) as
follows:

u2(y, s) �
1

s
2

+ p1s + p2
.

1
�����
w1(s)

􏽰
+ ξ

A5 + A6
s

w2(s)
􏼨 􏼩

1
s
e

− y
���
s+M

√

− e
− y

�����
b0w1(s)

√

􏼔 􏼕 +
A6

s
2

+ p1s + p2
.

s
����
s + a

√

�����
w1(s)

􏽰
+ ξ

.
a0

w2(s)

1
s
e

− − y
��
s+M

√

+ e
− y

�����
b0w1(s)

√

􏼔 􏼕 +
1

s + p3
A7 + A8

1
w2(s)

􏼨 􏼩
1
s
e

− y
���
s+M

√

−
1
s
e

− ya0
���
s+a

√

􏼔 􏼕,

(46)

where Ai, i � 5, . . . , 8 and pj, j � 0, . . . , 3 are all constants
given in Appendix B.

*e Laplace transform of equation (46) is established
numerically and described in Section 6.

5.2. Velocity Field for Ordinary Second-Grade Fluid
(α⟶ 0, β⟶ 0). In this ordinary case, where α⟶ 0,

β⟶ 0, the expression of flow of velocity for the second-grade
fluid given in equation (44) would be illustrated as follows:
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u(y, s) �
A9

s
2

+ p4s + p5
.

1
�����
s + a1

√
+ ζ

.
1
s
e

− yc0

���������
(s+M)/ s+d3( )

􏽰

−
1
s
e

− y
��
Pr

√ ���
s+a1

√

􏼔 􏼕

+
1

s
2

+ p4s + p5

A10

s + a3
+ A11􏼨 􏼩.

1
s
e

− yc0

���������
(s+M)/ s+d3( )

􏽰

−
1
s
e

− y
��
Sc

√ �
s

√

􏼔 􏼕,

(47)

where Ai, i � 9, . . . , 11 and pj, j � 4, 5 are constants given in
Appendix B.

Equation (47) can be expressed as follows:

u(y, s) � u1(s) · u2(y, s) − u3(y, s)􏼂 􏼃 + u4(s) · u5(y, s) − u6(y, s)􏼂 􏼃. (48)

*e inverse Laplace transform of equation (48) using
equations (A.3), (A.4), (A.7), (A.9), and (A.13) from

Appendix C as well as the convolution theorem is given as
follows:

u(y, t) � u1(t)∗ u2(y, t) − u3(y, t)􏼂 􏼃 + u4(t)∗ u5(y, t) − u6(y, t)􏼂 􏼃, (49)

where ∗ denotes the convolution product.

u1(t) �
2A9�������

p
2
4 − 4p5

􏽱 e
− p4/2( )t

􏽚
t

0
sinh

�������

p
2
4 − 4p5

􏽱

2
(t − τ)⎛⎜⎜⎝ ⎞⎟⎟⎠

1
���
πτ

√ − ζe
ζ2τ

erfc(ζ
�
τ

√
)􏼨 􏼩e

p4/2( )− a1( )τdτ,

u2(y, t) � e
− yc0 −

yc0

������

M − d3

􏽱

2
��
π

√ 􏽚
∞

0
􏽚

t

0

1
�
t

√ e
− d3t− yc0( )

2/4τ( 􏼁− τ( 􏼁
I1 2

����������

M − d3( 􏼁τt

􏽱

􏼒 􏼓dtdτ,

u3(y, s) �
1
2

e
y

��
Pr

√ ��
a1

√

erfc

��
Pr

√
y

2
�
t

√ +
���
a1t

􏽰
􏼠 􏼡 + e

− y
��
Pr

√ ��
a1

√

erfc

��
Pr

√
y

2
�
t

√ −
���
a1t

􏽰
􏼠 􏼡􏼢 􏼣,

u4(y, t) �
2A10�������

p
2
4 − 4p5

􏽱 e
− p4/2( )t

􏽚
t

0
sinh

�������

p
2
4 − 4p5

􏽱

2
(t − τ)⎛⎜⎜⎝ ⎞⎟⎟⎠e

p4/2( )− a3( )τdτ

+ A11
2

�������

p
2
4 − 4p5

􏽱 sinh

�������

p
2
4 − 4p5

􏽱

2
t⎛⎜⎜⎝ ⎞⎟⎟⎠e

− p4/2( )t
,

u5(y, t) � u2(y, t),

u6(y, t) � erfc
y

��
Sc

√

2
�
t

√􏼠 􏼡.

(50)

5.3. Velocity Field for Ordinary Viscous Fluid
(α⟶ 0, β⟶ 0, c⟶ 0). In this special case where
α⟶ 0, β⟶ 0, and c⟶ 0, the velocity expression for
ordinary viscous given in equation (44), takes a form as
follows:

u4(y, s) �
A12

s + p6

1
�����
s + a1

√
+ ζ

1
s
e

− y
���
s+M

√

−
1
s
e

− y
��
Pr

√ ���
s+a1

√

􏼔 􏼕

+
1

s + p7

A13

s + a3
+ A14􏼨 􏼩

1
s
e

− y
���
s+M

√

−
1
s
e

− y
��
Sc

√ �
s

√

􏼔 􏼕,

(51)
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where Ai, i � 12, . . . , 14 and pj, j � 6, 7 are all constants
given in Appendix B.

Equation (51) can be expressed as follows:

u4(y, s) � u1(s) · u2(y, s) − u3(y, s)􏼂 􏼃 + u4(s) · u5(y, s) − u6(y, s)􏼂 􏼃. (52)

*e inverse Laplace transform of equation (52), using
(A.3), (A.4), and (A.9) from Appendix C, then by the
convolution theorem, is given as follows:

u(y, t) � u1(t)∗ u2(y, t) − u3(y, t)􏼂 􏼃 + u4(t)∗ u5(y, t) − u6(y, t)􏼂 􏼃, (53)

where

u1(t) � A12e
− p6t

􏽚
t

0
e

p6− a1( )τ 1
���
πτ

√ − ζe
ζ2τ

erfc(ζ
�
τ

√
)􏼨 􏼩dτ,

u2(y, t) �
1
2

e
yp0

��
M

√

erfc
yp0

2
�
t

√ +
���
Mt

√
􏼠 􏼡 + e

− yp0
��
M

√

erfc
yp0

2
�
t

√ −
���
Mt

√
􏼠 􏼡􏼢 􏼣,

u3(y, t) �
1
2

e
y

��
Pr

√ ��
a1

√

erfc
y

��
Pr

√

2
�
t

√ +
���
a1t

􏽰
􏼠 􏼡 + e

− y
��
Pr

√ ��
a1

√

erfc
ya2

2
�
t

√ −
���
a1t

􏽰
􏼠 􏼡􏼢 􏼣,

u4(t) � A13
e

− p7t
− e

− a5t

a3 − p7
􏼠 􏼡 + A14e

− a3t
,

u5(y, t) � u2(y, t),

u6(y, t) � erfc
y

��
Sc

√

2
�
t

√􏼠 􏼡.

(54)

6. Numerical Results and Discussion

*e MHD second-grade fluid on an infinite vertical plate is
considered with Newtonian heating, heat source, and dif-
fusion-thermo effects. Time-fractional derivative CF with a
nonsingular kernel is used in the constitutive equations of
the mass flux and thermal flux to describe the diffusion and
thermal processes, respectively. *e magnetic field is in-
troduced in the fluid flow which acts as opposing force to
fluid motion. *e expressions for dimensionless concen-
tration, temperature, velocity fields, skin friction, and
Sherwood and Nusselt numbers are obtained by means of
the Laplace transform technique. Solutions for the classical
model corresponding to the integer-order derivative are also
obtained as limiting cases. All the parameters and profiles
which are used here are dimensionless. It is observed initially
in a consequence of the fractionalize parameters α and β on
the concentration, temperature, and velocity of fluid flow.
Along with the effect of the absorption parameter S, the
Prandtl number Pr, Dufour number Du, and time t on the

temperature as well as the impact of Schmidt number Sc, and
Reynolds number Re on the concentration and fluid velocity
are studied. *e consequence of the thermal and mass
Grashof number Gr and Gm second-grade parameter c and
magnetic parameter Mfor velocity is also presented.

Figures 2(a) and 3(a) present the dimensionless temper-
ature and concentration profiles for distinct values of the
fractional parameters α and β. As probable, the fluid tem-
perature and concentration are decreasing functions with re-
spect to their fractional parameters.*eir values are maximum
near the plate and smoothly decrease to zero for increasing y.
Figure 4(a) was drawn to interpret the effect of the fractional
parameters α and β on the fluid velocity. If we give the same
values to fractional parameters, the fluid flow velocity raises by
increasing the values of α and β. *e influence of the Schmidt
number Sc on the fluid concentration is presented in
Figure 2(b). It can be clearly seen from the figure that the
concentration level of the fluid decreases whenever Sc is in-
creasing. By the increase in time t, we observed from
Figure 2(c) that the concentration profile is increasing.
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*e influence of the Prandtl number Prand absorption
parameter S is shown in Figures 3(b) and 3(c). It is noticed
that by increasing the values of Pr and S, the temperature
profile is decreasing while increasing corresponding to the
values of the Schmidt number Sc as presented in Figure 3(d).
Figures 3(e) and 4(e) illustrate the temperature and velocity
profiles for different values of the Dufour number Du. It is
observed that the thermal diffusivity as well as the velocity
profile both are increasing and the boundary layer thickness
gets maximized. In addition, by increasing in time t, the
temperature profile and velocity profile both are increasing
as shown in Figures 3(f ) and 4(j).

It is seen in Figures 4(b)–4(d) that by assigning the higher
values to Pr, S, Sc, and c, the fluid velocity profile decreases.
*eMHDprinciple is used for controlling the flow field in the

essential direction by changing the making of the boundary
layer.*e variation of the velocity profile with different values
of the magnetic parameter M is shown in Figure 4(i). Increase
in the values of M shows the reduction in velocity. We agree
with this result as expected that the magnetic field exerts a
retarding effect on the mixed convection flow. Figure 4(g) is
plotted to see the impact of thermal Grashof Gr. Gr is the ratio
of buoyancy forces to viscous forces on the motion of the
fluid, which stimulates free or inner convection. It is found
that the fluid flow velocity is increasing by increasing the
values of Gr. Figure 4(f) is plotted to allocated the influence of
the mass Grashof Gm. It generates due to the change in
concentration by a change in the density of a fluid, and it is the
ratio of buoyancy forces to viscous forces; we found that by
increasing Gm, the velocity profile increases.
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Figure 2: Concentration profiles vs. for y at α � 0.3, Sc � 4, t � 3.
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Figure 3: Temperature profiles vs. for y at α � 0.3, β � 0.3, Pr � 0.6, S � 3,Sc � 4, Du � 0.05, t � 2.
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Figure 4: Continued.
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*e impact of fractional parameters α and β is described
in Table 1. It is attained that the concentration, rate of mass,
temperature, rate of heat transfer, velocity, and skin friction
are decreasing for the large variation of fractional param-
eters α and β.

Furthermore, we have drawn a comparison between
fractional second-grade and fractional viscous fluids ordi-
nary fluid models in Figure 5. It is investigated that ordinary
fluids have higher velocities as compare to the fractional

fluids. It reveals in what way noninteger-order fractional
parameters influence the flow of fluid.

Furthermore, to see the validity of our results for
concentration, temperature, and velocity profiles graph-
ically, we plotted Figures 6(a)–6(c). It can be seen from
these figures that by ignoring the effects of Du andM, our
results are identical to those obtained by Vieru et al. [40],
Imran et al. [25], and Siddique et al. [33] for fractional
fluids.
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Figure 4: Velocity profiles vs for y at α � 0.3, β � 0.3, Pr � 0.6, S � 3, Sc � 4,Du � 0.05 Du � 0.05,Gm � 1, Gr � 2, c � 5, M � 1, t � 2.

14 Complexity



Table 1: Validation of the model for various values of fractional parameters.

Fractional parameters α and
β

Concentration
(α)

Sherwood
number

Temperature (α and
β)

Nusselt
number

Velocity
(α and β)

Skin
friction

0.0 1.000 3.950 4.444 2.459 45.583 1.196
0.1 0.753 1.142 3.468 2.414 155.188 1.010
0.2 0.567 0.757 2.706 2.307 215.824 0.824
0.3 0.426 0.570 2.112 2.153 245.001 0.646
0.4 0.321 0.453 1.648 1.967 254.274 0.482
0.5 0.241 0.371 1.285 1.761 251.246 0.337
0.6 0.181 0.310 1.002 1.548 240.903 0.216
0.7 0.135 0.263 0.782 1.341 226.490 0.121
0.8 0.101 0.225 0.609 1.001 210.100 0.054
0.9 0.075 0.194 0.475 0.829 193.064 0.015
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Figure 5: Comparison between ordinary and fractional fluids.
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Figure 6: Continued.
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7. Conclusion

In this paper, we analyzed the double convective flow of an
incompressible differential-type fluid near a vertical plate
with heat absorption, Newtonian heating, and diffusion-
thermo effect. Time-fractional derivative CF is used in the
constitutive equations of the mass flux and thermal flux to
describe the diffusion and thermal processes, respectively.
Semianalytical solutions of the dimensionless problems are
obtained by virtue of the Laplace inversion numerical al-
gorithm Stehfest’s. *e computations and discussion
graphically and numerically have formed to distinguish the
effect of CF time-fractional parameters and the second-grade
parameter c. From numerical simulation and graphical
interpretation, the findings are summarized as follows:

(i) For greater values of fractional parameter α and
flow parameter Sc, the concentration profile de-
creases, whereas it increases due to the increasing
values of time t

(ii) For larger values of fractional parameters α and β
and flow parameters Pr and S, the temperature
profile decreases, whereas it increases due to in-
creasing values of the Dufour number Du, Sc, and
time t

(iii) Fluid velocity increases with the increasing values
of fractional and flow parameters α, β,Du,Gm,Gr,
and time t, and it is observed that the boundary
layer thickness increases and velocity is maximum
near the plate

(iv) Velocity field as well as the boundary layer thick-
ness decreases near the plate as we increase the
values of flow parameters Pr, S, Sc, M, and c

(v) Ordinary fluids (Newtonian and second grade)
have greater velocities than fractional fluids

(vi) Skin friction, Nusselt numbers, and Sherwood
numbers decrease by increasing the fractional pa-
rameters α and β

(vii) *e solutions obtained by Vieru et al. [40], Imran
et al. [25], and Siddique et al. [33] for fractional fluids
are the particular case of our general results for
fractional second-grade fluid when Du � M � 0, and
they are in good agreement graphically

Appendix

A. Nomenclature

u
︹

1: velocity field of fluid in the x direction
ξ
︹

1: coordinate axis normal to the plate
y: dimensionless coordinate axis normal to the plate
t
︹

1: time
C
︹

∞: concentration of the fluid far away from the plate
T
︹

1: temperature of the fluid near the plate
T
︹

∞: temperature of the fluid far away from the plate
CP: specific heat at a constant pressure
j
︹
: mass flux diffusion

S: dimensionless heat absorption parameter
k1: thermal conductivity of the fluid
Dm: coefficient of mass diffusivity
Gr: thermal Grashof number
M: magnetic field parameter
Sc: Schmidt number
u: dimensionless velocity
C
︹

1: species concentration
C
︹

w: concentration of the plate
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Siddique et al. [33, Eq. (45) when Nr=0]
Present result with Du=M=0

α = 0.3, β = 0.3, Pr = 0.6, Sc = 4,
Gm = 1, Gr = 2, t = 2.

(c)

Figure 6: Comparison between the present results with the concentration, temperature, and velocity profiles of Vieru et al. [40], Imran et al.
[25], and Siddique et al. [33], respectively.
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t: dimensionless time
C: dimensionless concentration
θ: dimensionless temperature
B0: magnetic field parameter
q
︹
: heat flux

Q: heat absorption parameter
h1: heat transfer coefficient
Cs: concentration susceptibility
KT: thermal diffusion ratio
Gm: mass Grashof number
Pr: Prandtl number
Du: Dufour parameter
Greek symbols
]: kinematic viscosity
g: acceleration due to gravity
θ: dimensionless temperature
βT: volumetric coefficient of thermal expansion
βC: volumetric coefficient of expansion with concentration
μ: dynamic viscosity
ρ: fluid density
σ: electrical conductivity
α1: second-grade fluid parameter
c: second-grade coefficient

B. Nondimensional Quantities
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C. Some Constants Involved in the Text

a1 �
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D. Some Inverse Laplace Formulas
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