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Traffic flow prediction plays an important role in intelligent transportation system (ITS). However, due to the randomness and
complex periodicity of traffic flow data, traditional prediction models often fail to achieve good results. On the other hand,
external disturbances or abnormal detectors will cause the collected traffic flow data to contain noise components, resulting in a
decrease in prediction accuracy. In order to improve the accuracy of traffic flow prediction, this study proposes a mixed traffic flow
prediction model VMD-WD-LSTM using variational mode decomposition (VMD), wavelet threshold denoising (WD), and long
short-term memory (LSTM) network. Firstly, we decompose the original traffic flow sequence into K components through VMD
and determine the number of components K according to the sample entropy of different K values. ,en, each component is
denoised by wavelet threshold to obtain the denoised subsequence. Finally, LSTM is used to predict each subsequence, and the
predicted values of each subsequence are combined into the final prediction results. In addition, the performance of the proposed
model and the latest traffic flow prediction model is compared on the several well-known public datasets. ,e empirical analysis
shows that the proposed model not only has good prediction accuracy but also has superior robustness.

1. Introduction

With the rapid development of cities and the rapid increase
of urban population, the number of vehicles on urban roads
is also increasing.,erefore, the increased traffic pressure on
urban roads has caused more and more serious problems,
such as traffic accidents and traffic pollution, and road
congestion has become an important factor affecting the
quality of daily life of residents. Faced with this situation, the
development and application of ITS has been recognized as
an effective way to solve or alleviate traffic problems.
,erefore, on the basis of obtaining accurate future traffic
data through historical data, the intelligent transportation
system can perceive future traffic conditions and traffic
conditions of each section. ,en, the system can formulate
effective traffic organization and guidance strategies to re-
duce the probability of road congestion, so as to achieve the
purpose of improving road traffic efficiency [1]. However,
due to the complexity of road traffic or the environment,

different unexpected situations often occur, resulting in the
traffic flow data measured by the detector to be interfered,
which will affect the regularity of daily traffic flow and thus
affect the traffic flow data. Data fluctuations caused by such
interference factors are called noise.

Wavelet denoising is a commonly used denoising
method in the field of traffic flow prediction. ,e Kalman
filter model based on wavelet decomposition has been used
for short-term traffic flow prediction. ,e empirical results
show that the combination of wavelet decomposition and
Kalman filter can reduce the impact of noise on prediction to
a certain extent [2]. Peng and Xiang proposed a traffic flow
prediction method based on phase space reconstruction and
wavelet denoising, in which wavelet denoising was used to
preprocess the original traffic flow data [3]. In the fuzzy
neural network prediction model proposed by Xiao et al.,
wavelet decomposition was used to smooth historical traffic
flow data, and the results show that wavelet denoising can
significantly improve the prediction accuracy [4]. Tang et al.
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compared the denoising performance of four wavelet
functions, coif (coiflet), db (daubechies), haar, and sym
(symlet), on the original traffic flow data.,e analysis results
show that the db wavelet function has the best denoising
performance [5].

In order to further improve the denoising performance,
an empirical mode decomposition (EMD) denoisingmethod
was proposed that has been widely used so far [6]. EMD
decomposes a complex signal into a finite number of in-
trinsic mode functions (IMFs), and each of the decomposed
IMF components contains local characteristic signals of
different time scales of the original signal. ,e high-fre-
quency IMF component contains noise, and the low-fre-
quency IMF component contains the characteristics of the
original signal, that is, denoising is achieved by processing
high-frequency signal. EMD has the advantages of being
simple, intuitive, and efficient, but the disadvantage is that it
is prone to modal aliasing. In order to make up for the
disadvantages of EMD, integrated empirical mode decom-
position (EEMD) was proposed [7]. Because EEMD intro-
duces white noise on the basis of EMD to supplement the
missing scale, the phenomenon of modal aliasing can be
overcome to a certain extent. In 2020, Chen et al. proposed a
traffic flow prediction model called EEMD-ANN using
EEMD and artificial neural network (ANN) [8]. In 2021,
Chen et al. compared the performance of EMD, EEMD, and
wavelet in traffic flow data denoising, and the results showed
that EEMD has the best performance [9].

Variational mode decomposition (VMD) is a signal
processing method proposed in recent years [10]. Different
from the principle of EMD, VMD uses completely non-
recursive modal variation to process the signal, and it de-
termines the optimal center frequency and bandwidth of the
component by solving the constrained variational problem,
so it basically overcomes the end effect and modal aliasing of
EMD. At present, VMD has been applied in many fields and
achieved good results. Liu et al. proposed a wind speed
prediction model using VMD and singular spectrum
analysis (SSA) [10]. In this model, the original data were
decomposed by VMD, and then SSA was used to extract the
low-frequency components of the decomposed data for
prediction. In [11], VMD was used to process the original
streamflow data, and then LSTM was employed to predict
the streamflow [12]. ,e comparison result illustrated that
performance of VMD is better than that of EEMD and
discrete wavelet transform (DWT). Shi et al. proposed a
hybrid prediction model for network traffic based on VMD
and extreme learning machine (ELM) [13], and empirical
analysis results showed that VMD denoising can effectively
improve prediction accuracy. Due to the good performance
of VMD in other prediction fields, we have reason to believe
that VMD also has great potential in traffic prediction.

After the original traffic flow data are denoised, the
selection of the prediction model is very important. In order
to improve the prediction accuracy, a large number of
models with different data characteristics and calculation
processes have been proposed for traffic flow prediction,
including traditional statistical models, such as autore-
gressive integrated moving average (ARIMA) model [14, 15]

and Kalman filter model (Kalman filter) [16, 17], and ma-
chine learning-based models, such as support vector ma-
chine (SVM) [18–20] and artificial neural network (ANN)
[21, 22]. In recent years, deep learning has attracted much
attention in traffic flow prediction because of its superior
performance. As a variant of recurrent neural network
(RNN), LSTM improves the shortcomings of gradient dis-
appearance and gradient explosion. At present, LSTM is
widely used in many prediction fields, including traffic flow
prediction. Tian et al. proposed a traffic flow prediction
model based on LSTM, and empirical analysis showed that
the prediction accuracy of LSTM is higher than that of SVM
and feedforward neural network (FFNN) [23].

In [24], convolutional neural network (CNN) was first
used to extract daily features of traffic flow, and then LSTM
was used to predict traffic flow. Ma et al. pointed out that bi-
directional long short-term memory (BiLSTM) is more
effective in short-term traffic flow prediction [25]. ,e
empirical results in [26] show that the performance of LSTM
for traffic speed prediction is better than other comparative
parametric and nonparametric methods. In [27], the at-
tention mechanism was introduced in LSTM to improve the
accuracy of the model predicting traffic speed, which can
properly assign weights to distinguish the importance of
traffic speed time sequences. In view of the excellent per-
formance of LSTM in traffic flow prediction, LSTM is se-
lected as the prediction model and its parameters are
optimized.

Many related studies in the field of transportation show
that the subsequence obtained by signal decomposition of
the original measured signal data is more conducive to
showing the irregular periodic variation characteristics of
the signal than the original data. In the study of predicting
the missing measurement signal data of SHM systems, Li
et al. [28] decomposed the original signal data into multiple
subsequences by the empirical mode decomposition (EMD)
method and then used ARIMA, ANN, LSTM, and SVR
models to predict different subsequences. ,e final pre-
diction results show that the prediction performance of the
hybrid model after signal decomposition is better than that
of the original data directly, which proves the superiority of
signal decomposition in the field of traffic data prediction. In
2021, Huang et al. [29] used EMD to extract the intrinsic
mode function (IMF) in order to make full use of the time
characteristics of traffic flow. ,e original traffic flow data
were decomposed into three components according to their
own characteristics: trend component, residual component,
and residual component. ,ese three components were
analyzed and predicted, respectively, and the accuracy of the
prediction results was higher than that of the single method
for direct prediction of the original data. ,is study shows
that the decomposed signals are more likely to show
characteristics through the prediction model.

In addition, Li et al. [30] used the ensemble empirical
mode decomposition method for travel time prediction in
2018. ,ey first decomposed the original travel time data
series into multiple functions with different characteristics
through the ensemble empirical mode decomposition
method and then expressed these functions with the random
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vector function chain network. Finally, the output results of
different networks were combined to obtain the final pre-
diction results. ,e results show that the effect of ensemble
empirical mode decomposition is better than that of em-
pirical mode decomposition. ,e above studies show that
the signal decomposition method for original data can
improve the prediction performance of the model to a
certain extent if it can overcome the mode mixing phe-
nomenon in the empirical mode decomposition.

To sum up, traffic flow prediction mainly faces the
following two problems. One is how to reduce the influence
of noise contained in the original traffic flow data on the
prediction results. ,e other is how to accurately show the
irregular periodic variation characteristics of traffic flow
data. In view of the obvious improvement of traffic flow
data prediction performance by the data denoising method
and signal decomposition method, this paper proposes a
WD-VMD-LSTM hybrid model for traffic flow prediction.
,is method first decomposes the complex original traffic
flow data into multiple subsequences containing more
prominent features through the variational mode de-
composition method and then performs wavelet denoising
on several subsequences, respectively. Finally, the long
short-term memory network model is used to predict the
denoised subsequences, respectively, and the final pre-
diction results are obtained by combining the results of
different subsequences. Compared with the empirical mode
decomposition, the variational mode decomposition
method can effectively avoid the phenomenon of mode
mixing and boundary effect. ,e decomposed subsequence
contains the data characteristics in the original signal. At
the same time, the VMDmethod also has the advantages of
anti-noise interference, so it is not easy to be affected by
noise in the process of signal decomposition. On the other
hand, the above research shows that the wavelet denoising
method can effectively reduce the influence of noise on
traffic flow prediction.,e data characteristics contained in
the original traffic flow data are difficult to identify, and the
denoising processing will affect the characteristics of the
original signal. ,erefore, the wavelet denoising of the
subsequence obtained by the variational mode decompo-
sition can highlight the characteristics of the original signal
and avoid the denoising method to suppress the useful
signal. In addition, this paper compares LSTM with arti-
ficial neural network in the part of result discussion. ,e
long short-term memory network model is more suitable
for predicting complex time series data as a deep learning
method.

,e main contributions of this paper are summarized as
follows:

(1) A denoising method combining variational mode
decomposition and wavelet threshold denoising is
proposed to process the original traffic flow data. At
the same time, this paper compares the prediction
performance of different prediction models before
and after data processing.

(2) In order to avoid the phenomenon of modal aliasing
and the increase of data complexity, the number of

components K is determined according to the
sample entropy with different K values.

(3) ,is study compares the denoising effects of different
signal decomposition methods combined with the
wavelet threshold denoising model.,e advantage of
variational mode decomposition in dealing with
traffic flow data is discussed.

(4) Adam (its name is derived from adaptive moment
estimation) optimizer is used to obtain a better
model when training LSTM.

(5) In this study, two different public datasets are used to
comprehensively compare different prediction
models, and it is proved that the proposed model has
better prediction performance than other compari-
son models.

,e rest of this paper is organized as follows. ,e
methods of WD, VMD, and LSTM are briefly introduced,
and the process of the proposed VMD-WD-LSTM model is
listed in Section 2. Section 3 demonstrates experiments
where the prediction results of the proposed model and
comparisonmodels are evaluated. Finally, Section 4 provides
conclusion of this research andmakes the next research plan.

2. Methodology

2.1. Variational Mode Decomposition. Variational mode de-
composition (VMD) is a method of signal processing using
completely nonrecursive modal variation. Compared with
traditional empirical mode decomposition (EMD), this tech-
nology can artificially determine the number of modal de-
compositions and then realize the frequency-domain
decomposition and effective separation of IMF according to the
best center frequency and limited bandwidth of each compo-
nent after decomposition. In this way, the effective decompo-
sition component of the target signal is obtained, and the
optimal solution of the variational problem is realized. Varia-
tional mode decomposition has a solid theoretical foundation,
and there is no end effect of traditional empirical mode de-
composition and the problem of modal component aliasing.
,is method can reduce the complexity and nonstationarity of
nonlinear time series and can decompose multiple stationary
subsequences with different frequency scales.

,e first step of variational mode decomposition is to
construct the variational problem and solve the constrained
variational problem:

min
uk{ } wk{ }


k

zt δ(t) +
j

πt
 ∗ uk(t) e
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s.t. 
k

uk(t) � f(t),

(1)

where uk (t) is input signal modal function, {uk} is the k-th
modal component with limited bandwidth after decompo-
sition, {wk} is the center frequency corresponding to the k-th
modal component of the input signal, δ (t) is the Dirac
function, ∗ represents the convolution operator, and f (t) is
the input signal.
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,en, introduce the Lagrangian multiplication operator
λ and the quadratic penalty factor α to rewrite formula (1) to
transform the constrained variational problem into an
unconstrained variational problem.,e rewritten formula is
as follows:

L uk , wk , λ(  � α
k

zt δ(t) +
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 ∗ uk(t) e

− jwkt
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+ λ(t), f(t) − 
k

uk(t)⎡⎣ ⎤⎦.

(2)

Use the alternating direction multiplication algorithm
(ADMM) to solve equation (2) and obtain the optimal
solution of the respective center frequencies of a group of
modal components, that is, alternately update uk, wk, and λ
to obtain the minimum point of the extended Lagrangian
expression, and the formula is as follows:
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(3)

After dividing the frequency band according to the
characteristics of the original signal, continuously update the
center frequency of each inherent modal component and the
corresponding component, and finally, realize the adaptive
decomposition of the target signal according to the
constraints.

2.2. Wavelet 0reshold Denoising. ,e noise in the original
data is usually a high-frequency signal, and the useful data
are regarded as a low-frequency signal. Wavelet decom-
position decomposes the signal into approximate com-
ponents containing low-frequency signals and detailed
components containing high-frequency signals. ,e part
containing low-frequency signals can be further decom-
posed, as shown in Figure 1. Figure 1 is a three-layer
wavelet decomposition diagram, cA1, cA2, and cA3 rep-
resent the low-frequency signal part of the original signal,
while cD1, cD2, and cD3 represent the high-frequency
signal part of the original signal. ,e cD1, cD2, and cD3
contain noise. In this study, cD1, cD2, and cD3 are pro-
cessed by wavelet threshold denoising, and then we re-
construct the signal by wavelet transform. Finally, the
denoising results are obtained.

Wavelet threshold denoising uses the continuity char-
acteristics of the original signal in the time series, and the
wavelet coefficient of noise is smaller than the wavelet co-
efficient of the useful signal. Select an appropriate threshold

through this feature, quantize the wavelet coefficients, and
then reconstruct the wavelet coefficients to obtain the
denoised data.

Wavelet threshold denoising can be divided into hard
threshold denoising and soft threshold denoising in selecting
threshold function. In terms of the effect of signal denoising,
the signal after soft threshold denoising is smoother, but it is
easy to remove some useful signals. ,e signal after hard
threshold denoising will oscillate and there will be jumping
points, but the error should be lower than the soft threshold.
Denoising does not affect the degree of approximation
between the denoised signal and the original signal.
,erefore, from the perspective of ensuring the accuracy of
the prediction result, this study chooses to perform hard
threshold denoising. Hard threshold denoising is when the
wavelet coefficient is greater than the threshold, it is de-
termined to be generated by the signal, and it is retained after
processing. When the wavelet coefficient is less than the
threshold, it is determined to be noise generated and
replaced with 0, as shown in the following equation:

wλ �
w, |w|≥ λ,

0, |w|< λ,
 (4)

where wλ represents the new wavelet coefficient and λ
represents the set threshold.

2.3. LSTMNetwork. At present, the deep learning model has
been widely used in the research of time series data. As a
kind of neural network model, the deep learning model can
extract the characteristics of the input signal and obtain the
law of the complex signal. Among the deep learning models,
the recurrent neural network (RNN) shows good adapt-
ability when performing time series data analysis. Long
short-term memory (LSTM) network is a variant of cyclic
neural network, which improves the problems of gradient
explosion and gradient disappearance in cyclic neural net-
work and performs better in analyzing time series data.

,e LSTM network is composed of an input layer, a
hidden layer, and an output layer. Compared with the
traditional RNN, the hidden layer of the LSTM is a unit
with a unique memory mode. Figure 2 shows the hidden
layer structure of the RNN and the hidden layer structure of
the LSTM.

cD1

cA1

X (t) cD2

cD3

cA2

cA3

Figure 1: Wavelet decomposition process (cA is low-frequency
information; cD is high-frequency information).

4 Complexity



,e memory unit is the core of the LSTM unit structure
(see Figure 3). ,e memory unit at the current time t is
marked as ct. ,e memory unit can delete or add infor-
mation through input gates, forget gates, and output gates.
Specifically, the workflow of the LSTM unit is as follows:

(1) ,e LSTM unit receives the current state xt, the
hidden state ht−1 of the LSTM at the previous mo-
ment, and the state ct−1 of the internal memory unit
through the input gate, forget gate, and output gate at
each moment.

(2) After receiving the information, each gate performs
operations on the information from different sources
and decides whether to activate it.

(3) After the information received by the input gate is
transformed by a nonlinear function, it is combined
with the state of the internal memory unit processed
by the forget gate to form a newmemory unit state ct,
and then the newly formed memory unit state is
formed by the dynamic control of the output gate.
,e output information ht outputs the LSTM unit.

,e calculation relationship between various variables is
as follows:

it � σ Wxixt + Whiht−1 + Wcict−1 + bi( ,

fi � σ Wxfxt + Whfht−1 + Wcfct−1 + bf ,

ct � ftct−1 + ittanh Wxcxt + Whcht−1 + bc( ,

ot � σ Wxoxt + Whoht−1 + Wcoct + bo( ,

ht � ottanh ct( .

(5)

In the above equation, i, f, c, and o are input gate, forget
gate, cell state, and output gate, respectively. Wxi, Wxf, Wxc,
and Wxo are all weight coefficient matrices linking the input
signal xt, and Whi, Whf, Whc, Who are the weight coefficient
matrices of the input signal ht of the link hidden layer, and
Wci, Wcf, Wco are the diagonal matrices to link neuron
activation function of the output vector ct with the gate
function. bi, bc, bf, and bo are bias vectors, σ is the sigmoid
activation function, and tanh is the hyperbolic tangent ac-
tivation function.

2.4. 0e Proposed Model (VMD-WD-LSTM). ,e frame-
work of the VMD-WD-LSTM-based traffic flow prediction
model is shown in Figure 4. ,e main steps of the
VMD-WD-LSTM model are as follows:

(1) ,e original traffic flow data are decomposed into
multiple eigenmode functions (IMFs) by VMD, and the
number of IMFs is determined by the sample entropy of
the reconstructed data under different K values.

(2) Each IMF is processed by the hard threshold function
denoisingmethod of wavelet threshold denoising, and
the denoised subsequences are obtained.

(3) LSTM is employed to predict each subsequence, and
the predicted value of each subsequence is synthe-
sized into the final prediction result.

3. Experiments

,is section provides a concise and precise description of the
experimental results, their interpretation, and the experi-
mental conclusions that can be drawn.

3.1. Data Description. ,e open-source data used are se-
lected from the PeMS database, which collects traffic data
from more than 39,000 individual detectors. ,e sensor
layout covers the highway system in all metropolitan areas
in California. Specifically, the experimental data of this
paper are collected from the Kumeyaay Highway in Cal-
ifornia. ,is paper selects three detectors from many de-
tectors (see Figure 5). We took the complete traffic flow
data for five consecutive days from Monday to Friday from
these three detection points for analysis. In addition, in
order not to affect the accuracy of the prediction results, the
dates we selected do not include holidays. ,e time period
is from 14 September 2020 to 18 September 2020, the time
interval of traffic flow is 5minutes, and the number of
samples is 1440 data. All the data obtained are divided into
training set and testing set. From Monday to ,ursday,
1152 (80% of all data) data are used as training set, and 288
(20% of all data) data on Friday are used as testing set. ,e
three detectors are represented by A, B, and C, respectively.
Figure 5 gives the location of each detector, and the detailed
information of each detector is shown in Table 1. In this
experiment, the traffic flow data of the three detectors are
all used to test and analyze the performance of the proposed
model. Limited to the length of the paper, the traffic flow
data of detector A are taken as an example to illustrate the
specific operations and results of each step of the proposed
model.

,e original traffic flow data of the three detectors are
illustrated in Figure 6. It can be seen that the traffic flow from
Monday to Friday has obvious periodicity, and the char-
acteristics of the daily traffic volume change are obvious, but
there is obvious nonlinearity and volatility. Part of the
reason is due to the presence of noise.

As mentioned in the experiment, the traffic flow data
obtained from the detector are easily affected by various
unexpected factors, and there is a certain degree of abnormal
fluctuations. ,erefore, the abnormal value of the data is
suppressed through the variational mode decomposition
and wavelet threshold denoising, so as to obtain reliable
traffic flow data.

Xt

yt

htht-1

RNN

+ +f

Figure 2: RNN architecture.
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3.2. Evaluation Indexes. ,e experiment uses three com-
monly used standards to evaluate the advantages and dis-
advantages of the model. ,e three standards are the root
mean square error (RMSE), the average absolute error
(MAE), and the average absolute percentage error (MAPE),
which are defined as follows:

RMSE �

�������������

1
n



n

i�1
fi − fi 

2




,

MAE �
1
n



n

i�1
fi − fi ,

MAPE �
1
n



n

i�1

fi − fi

fi




× 100%,

(6)

where fi represents the real traffic flow data, fi represents
the predicted data, and n is the number of samples.

3.3. VMD Results of Traffic Flow Data. ,e original traffic
flow data of detector A are decomposed using VMD. And it
is important to determine that original traffic flow data

should be decomposed to how many IMFs (each IMF
corresponds to a reconstructed component). On the one
hand, too few IMFs may not be able to extract the features
hidden in the original data. On the other hand, too many
IMFs may lead to a poor prediction result because of
prediction error accumulation in the ensemble step. In this
study, the optimal number of IMFs is determined
according to the sample entropy values corresponding to
the reconstructed component with different number of
IMFs. ,e greater the sample entropy, the greater the
complexity of the sample sequence, which makes data
prediction more difficult. ,erefore, the number of IMFs
corresponding to the minimum sample entropy is the
optimal number of decompositions. ,e greater the sample
entropy, the greater the complexity of the sample sequence,
which makes data prediction more difficult. ,erefore, it is
necessary to select the K value that minimizes the entropy
of the sample as the decomposition number. ,e sample
entropy values corresponding to the number K of IMFs are
shown in Figure 7. It can be seen from Figure 7 that when
K � 3, the obtained sample entropy is the smallest, and the
optimal number of IMFs is 3. ,e three IMF components
obtained by VMD are shown in Figure 8.

ct-1

ct-1ht-1

ht-1

ht-1

ht-1

x

c

xt

xt

ht yt

xt

+ +

+

+

+

σ

σo

σ

f

c

i

tanh

tanh

LSTM

Figure 3: LSTM neural network architecture.
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3.4. Wavelet Denoising of Each IMF. In order to further
reduce the influence of noise on the prediction results,
wavelet transform is used to denoise each IMF. In order to
ensure amore impressive result in terms of root mean square

error, a hard threshold function is selected. ,e result of
wavelet denoising can be seen from Figure 9. It can be seen
that the data curve after wavelet denoising is smoother and
the data features are more obvious.
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3.5. Results andDiscussion. ,e LSTMmodel is employed to
predict each subsequence obtained by VMD-WD, and then
the predicted value of each subsequence is synthesized into
the final prediction result. ,e LSTM model is composed of
an input layer, a hidden layer, and an output layer. ,e
hidden layer contains 200 neural units. ,e input feature
dimension and the output feature dimension are both 1. In
terms of options for training deep learning neural networks,
the LSTM model uses the Adam optimizer. Specifically, the
maximum number of training epochs is 250, and the initial
learning rate is 0.005. In order to avoid the problem of
gradient explosion, when the training reaches 125 epochs,
the global learning rate is reduced by a multiplier factor
(which is set to 0.2).

Figures 10–12 show the prediction results of IMF1
component, IMF2 component, and IMF3 component, re-
spectively. It can be seen intuitively that the predicted curves
and observed curves of IMF1, IMF2, and IMF3 components
are highly fitted. Moreover, RMSE of the prediction results
of the IMF1, IMF2, and IMF3 components is 1.8089 veh/
5min, 2.1161 veh/5min, and 1.7235 veh/5min, respectively,
which also illustrate that the proposed model has superior
performance. ,e characteristics of each IMF component
can also be seen from these three figures. IMF1 represents
the high-frequency component obtained from the original
data, which shows the randomness of the original traffic flow
data. IMF2 and IMF3 both represent low-frequency com-
ponents, which show the regularity of the original traffic flow
data. In summary, it is easier to capture the different features
contained in the original signal by separately predicting each
IMF component obtained by VMD. ,e final step is to
accumulate the prediction results of each IMF component to
get the final prediction result. Figure 13 shows the

cumulative prediction results. It can also be seen intuitively
that the predicted curve and the observed curve are highly
fitted.

In order to prove the influence of the VMD-WD hybrid
denoising method on the final prediction results and to
prove the prediction performance of LSTM model, this
paper sets up a comparative study. Firstly, the prediction
results of detector A are predicted by the traditional dif-
ferential autoregressive integratedmoving average (ARIMA)
model, artificial neural network (ANN) model, and LSTM
model, respectively, and the root mean square error and
mean absolute error of the three models are compared (see
Figure 14). ,en, the original traffic flow data of detector A
are denoised by the VMD-WD hybrid method in this study.
Finally, the denoised data are predicted by ARIMA, ANN,
and LSTM models, respectively, and RMSE and MAE are
calculated for comparison. ,e final results are shown in
Figures 14 and 15. It can be seen from the image that the
prediction performance of LSTM model is significantly
better than that of the ARIMA model and ANN model.
Similarly, from the data denoised by the VMD-WD hybrid
denoising method, the prediction results of the LSTMmodel
are still the most accurate. On the other hand, the prediction
performance of the hybrid prediction model combined with
VMD-WD denoising method is better than that of the single
prediction model. ,e prediction performance of the LSTM
model is obviously improved. Compared with the LSTM
model, the RMSE and MAE of the VMD-WD-LSTM model
are reduced by 37.8% and 38.2%.,e above results show that
VMD-WD denoising method can improve the prediction
performance of prediction model, and the prediction ac-
curacy of the LSTM model based on deep learning is higher
than that of traditional methods.

Figure 5: Location of the three detectors.

Table 1: Detailed information for the three detectors.

Location Freeway Detector number Max cap Lane point
A I8 1113028 68.2 2
B I8 1115407 161.0 5
C I8 1115549 162.6 5
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In order to further prove the prediction performance of
the hybrid prediction model proposed in this study, seven
different prediction models are introduced in this paper.
,e prediction results of the seven models are compared
with those of the VMD-WD-LSTM method. ,e com-
parison methods include the prediction model without
denoising steps, the model with signal decomposition by
other methods, the models with different prediction
methods, and the latest methods proposed in this research
field in recent two years. ,e RMSE and MAE of the WD-
LSTM method were 10.85 and 8.066, respectively, which
were compared with the prediction results of the LSTM
method. MAE and MAPE are reduced by 2%, 2.6%, and
28.9%, respectively. It can be seen that the prediction
performance of the prediction model after wavelet
threshold denoising is improved because the wavelet
threshold denoising method can remove the noise signal in
the original signal to a certain extent and retain the
characteristics of the original signal, which reduces the
interference of noise on traffic flow prediction. However,
due to the complex time characteristics of the original
signal, the denoising effect still has room for improvement.
,en, this study compares the EMD-WD-LSTM method
with the WD-LSTM method. It can be seen from the
evaluation index that the RMSE and MAE of the EMD-

WD-LSTM method are further reduced compared with the
latter. ,is is because the signal after the EMD method
decomposes the original signal containing complex char-
acteristics into simpler subsequences, which is not only
conducive to the wavelet threshold method to identify
high-frequency noise but also conducive to the LSTM
model for prediction. However, the MAPE of EMD-WD-
LSTM method is higher than that of the latter. ,is study
believes that this is due to the limitation of EMD method
itself. ,e IMF components obtained by EMD decompo-
sition will have the phenomenon of modal mixing. When
there are abnormal events and other disturbances in the
signal, each IMF will contain more than one frequency
component, which will affect the prediction performance of
the prediction model to a certain extent. In the third step,
this paper compares the prediction results of VMD-WD-
LSTM method with the LSTM method, WD-LSTM
method, and EMD-WD-LSTMmethod. It can be seen from
the prediction indicators (Table 2 and Figure 16) that the
prediction performance of the VMD-WD-LSTM method
proposed in this study has been significantly improved
compared with the above three methods. Compared with
the EMD-WD-LSTMmethod, RMSE, MAE, andMAPE are
increased by 32.5%, 32.9%, and 34.5%, respectively. ,is
result is consistent with the description in the first part of

Variational Mode Decomposition
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Figure 8: VMD result of detector A.
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this paper. Compared with EMD, the VMD method
overcomes the problem of modal aliasing, so the decom-
posed subsequence is more conducive to denoising and
prediction. On the other hand, the prediction performance
of the VMD-WD-LSTM method is better than that of the
VMD-WD-ANN method, which indicates that the LSTM
model is more suitable for time series prediction than the
traditional artificial neural network model. Finally, this
paper selects the method proposed in the field of traffic flow
prediction in the past two years to compare it with the
VMD-WD-LSTM method proposed in this study. ,ese
methods are the EEMD-ANN model proposed by Chen
et al. [8] in 2020, ARIMA-LSTM model proposed by Lu
et al. [31], and TSD-BiLSTM model proposed by Huang
et al. [29] in 2021. ,e operation steps and parameter

selection of the above model are strictly consistent with the
literature, and the model parameters are shown in Table 3.
Comparing the prediction results of the four models for
detector A traffic flow data, it can be seen that the RMSE,
MAE, and MAPE of the VMD-WD-LSTM method are the
lowest among the four models. As shown in Figure 16, the
prediction image of the VMD-WD-LSTM model is closest
to the real data. ,is shows that the VMD-WD-LSTM
model proposed in this study still has practical value
compared with the new methods in this field.

,e boxplots of the absolute errors of the different models
are shown in Figure 17. For each boxplot, the central mark
(red line) is the median; the edges of boxes are the 25th (Q1)
and 75th (Q3) percentiles, and the interquartile range
(IQR�Q3−Q1) is used for evaluating the degree of
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concentration to median; the whiskers extending to the most
extreme data points are not considered as outliers (abnormal
data points). It can be seen from Figure 17 that the IQR of the
absolute error of the VMD-WD-LSTM model is the smallest
(that is, the fluctuation of the absolute error is the smallest),
indicating the outstanding stability of this prediction model.

We continue to compare and analyze the performance
of the proposed model on the traffic flow data of detectors B
and C to analyze whether the model can maintain good

prediction performance on different traffic flow data.
Figures 18 and 19 show the prediction curves of different
models for detector B and detector C data, respectively. It
can be clearly seen from Figures 18 and 19 that the pre-
dicted and observed values of the VMD-WD-LSTM model
have achieved good fitting results on the traffic flow data of
detector B and detector C. Tables 4 and 5 illustrate RMSE,
MAE, and MAPE for different models with data from
detectors B and C, respectively. Specifically, the RMSE,
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Figure 12: Prediction results of IMF3 (detector A).
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Table 2: ,e prediction errors of different models using the traffic flow data of detector A.

Prediction models RMSE (veh/5min) MAE (veh/5min) MAPE (%)
LSTM 11.077 8.285 15.360
WD-LSTM 10.850 8.066 10.912
EMD-WD-LSTM 10.217 7.626 14.227
VMD-WD-ANN 21.092 15.498 20.030
EEMD-ANN 22.305 16.936 25.391
TSD-BiLSTM 16.448 11.877 17.247
ARIMA-LSTM 12.138 8.846 12.612
VMD-WD-LSTM 6.888 5.116 9.313
Bold indicates the best value of each evaluation index.

25

20

15

10

5

0

M
A

E

ARIMA ANN LSTM

single method
VMD-WD method denoising

method

Figure 15: Comparison of hybrid VMD-WD methods.

14 Complexity



0 50 100 150 200 250 300
0

100

200

300
tr

af
fic

 fl
ow

(V
eh

/5
 M

in
ut

es
)

LSTM

Observed
Predicted

WD-LSTM

EMD-WD-LSTM VMD-WD-ANN

EEMD-ANN TSD-BiLSTM

ARIMA-LSTM VMD-WD-LSTM

time (t/5min)

0 50 100 150 200 250 300
0

100

200

300

tr
af

fic
 fl

ow
(V

eh
/5

 M
in

ut
es

)

Observed
Predicted

time (t/5min)
0 50 100 150 200 250 300

0

100

200

300

tr
af

fic
 fl

ow
(V

eh
/5

 M
in

ut
es

)

0

100

200

300
tr

af
fic

 fl
ow

(V
eh

/5
 M

in
ut

es
)

0

100

200

300

tr
af

fic
 fl

ow
(V

eh
/5

 M
in

ut
es

)

Observed
Predicted

time (t/5min)

0 50 100 150 200 250 300
0

100

200

300

tr
af

fic
 fl

ow
(V

eh
/5

 M
in

ut
es

)

Observed
Predicted

time (t/5min)

0 50 100 150 200 250 300
0

100

200

tr
af

fic
 fl

ow
(V

eh
/5

 M
in

ut
es

)

Observed
Predicted

time (t/5min)
0 50 100 150 200 250 300

Observed
Predicted

time (t/5min)

0 50 100 150 200 250 300
0

100

200

300

tr
af

fic
 fl

ow
(V

eh
/5

 M
in

ut
es

)

Observed
Predicted

time (t/5min)
0 50 100 150 200 250 300

Observed
Predicted

time (t/5min)

Figure 16: Predicted curves of different models using the traffic flow data of detector A.

Table 3: Parameter configuration of different models.

Model Primary parameter Setting value

ARIMA
p 2
d 1
q 4

EEMD Added white noise 0.2
,e ensemble number 1000

LSTM
Learning rate 0.005

,e number of training epochs 250
Number of hidden units 288

BiLSTM
Learning rate 0.005

,e number of training epochs 50
Number of hidden units 32

ANN
Learning rate 0.005

,e number of training epochs 250
Number of hidden units 288
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MAE, and MAPE of the VMD-WD-LSTM model on the
detector B data are 10.304, 7.984, and 5.979%; the RMSE,
MAE, and MAPE of the VMD-WD-LSTM model for de-
tector C data are 13.980,10.965, and 5.268%. It can be seen
that RMSE and MAE on detector B data of the VMD-WD-
LSTM model and RMSE, MAE, and MAPE on detector C
data are the smallest, while detection point B and detection
point C have more lanes and larger traffic flow than de-
tection point A, indicating that the method proposed in this
study can maintain excellent performance in dealing with
different types of road sections and different scales of traffic
flow. We further analyze the comparison methods one by
one. First, from the traffic flow prediction results of the two
detection points, the prediction results of the method after
signal decomposition and denoising are more accurate
than the results obtained by a single prediction model.
From the evaluation indicators RMSE and MAE, it can be
seen that the VMD-WD-LSTM method proposed in this
study still shows the best prediction performance, but the
MAPE of the VMD-WD-LSTM model (5.979%) is slightly
higher than that of the EMD-WD-LSTM model (5.208%).
,is shows that the error of the results predicted by the
EMD-WD-LSTM method is smaller than that of the
original data. In this case, we believe that the traffic flow has
obvious cyclical characteristics and is affected by various
external factors. However, the external factors are difficult
to predict. ,e difference in the error between the predicted
flow and the actual flow in a small enough range does not
mean that there is a significant difference in the prediction

performance. On the other hand, this paper also recognizes
that the VMD-WD-LSTM model still has room for im-
provement, and different types of external factors should be
considered as important factors affecting traffic flow pre-
diction in future research. ,e RMSE, MAE, and MAPE of
the VMD-WD-LSTM model are much smaller than those
of the VMD-WD-ANN model, which further proves that
LSTM has better prediction accuracy due to its advantages
in long-term dependence of capturing time series. ,e
RMSE, MAE, and MAPE of the VMD-WD-LSTM model
on the three detector data are smaller than those of the
WD-LSTM model, indicating that the wavelet threshold
denoising method combined with VMD can not only ef-
fectively improve the prediction accuracy but also show
good robustness. In addition, the RMSE and MAE of the
WD-LSTM model and the EMD-WD-LSTM model on the
data of detector B and detector C are slightly smaller than
those of the single LSTMmodel, while the MAPE is slightly
larger, indicating that only the wavelet threshold denoising
method cannot stably maintain the effect of reducing the
noise data interference when dealing with the traffic flow
data with complex characteristics. ,e number of IMF
components obtained by EMD is uncertain. When re-
moving high-frequency components for EMD-based
denoising, the direction of the original signal will be af-
fected. ,erefore, it is difficult for the EMD-WD-LSTM
model to maintain stable prediction accuracy on different
datasets. ,e prediction errors of the VMD-WD-ANN
model and EEMD-ANN model are generally large. ,e
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Figure 17: Boxplots of absolute error of different models (detector A).
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reason may be that the ANNmodel can predict the trend of
traffic flow sequence but cannot capture the time-varying
characteristics of traffic flow (see Figures 16, 18, and 19). In
addition, compared with several new methods, the VMD-
WD-LSTM method has maintained a good prediction
effect as always. In summary, the VMD-WD-LSTM model
has the highest prediction accuracy and the strongest ro-
bustness in different comparison methods.

Figures 20 and 21 are boxplots of the absolute errors of
different models using the traffic flow data of detector B and
detector C, respectively. It can be seen that the VMD-WD-
LSTMmodel has the smallest IQR on the detector B data and
the detector C data, although it is not as obvious as on the
detector A data. ,is result is sufficient to demonstrate that
the VMD-WD-LSTM model not only has the smallest MAE
but also has the smallest fluctuation range of the absolute
error. In addition, compared with the absolute error of

detector A data, the absolute error of the VMD-WD-ANN
model and the EEMD-ANN model on the detector B data
and detector C data has increased significantly, which also
shows that the performance of the ANN model is not stable
enough. ,e reason for this phenomenon may be caused by
the large traffic flow of detector B and detector C during peak
hours. On the traffic flow data of the three detectors, the
absolute error of theWD-LSTMmodel is more concentrated
than that of the single LSTM model, which also proves the
effectiveness of WD-based preprocessing of the traffic flow
time series.

Based on the previous analysis results, it can be seen that
the VMD-WD-LSTMmodel is able to predict the traffic flow
collected from different detectors with a smaller absolute
error than that of the comparison model. ,e results ob-
tained are encouraging.
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Figure 18: Predicted curves of different models using the traffic flow data of detector B.
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Figure 19: Predicted curves of different models using the traffic flow data of detector C.

Table 4: ,e prediction errors of different models using the traffic flow data of detector B.

Prediction models RMSE (veh/5min) MAE (veh/5min) MAPE (%)
LSTM 18.711 14.094 6.320
WD-LSTM 17.969 13.538 6.457
EMD-WD-LSTM 13.220 9.817 5.208
VMD-WD-ANN 49.357 37.466 13.365
EEMD-ANN 51.022 38.303 13.557
TSD-BiLSTM 18.765 13.664 6.531
ARIMA-LSTM 20.234 15.220 7.173
VMD-WD-LSTM 10.304 7.984 5.979
Bold indicates the best value of each evaluation index.

Table 5: ,e prediction errors of different models using the traffic flow data of detector C.

Prediction models RMSE (veh/5min) MAE (veh/5min) MAPE (%)
LSTM 18.248 13.444 6.137
WD-LSTM 16.939 12.442 5.885
EMD-WD-LSTM 17.157 13.071 6.620
VMD-WD-ANN 60.737 49.949 17.915
EEMD-ANN 61.205 51.208 15.970
TSD-BiLSTM 20.801 15.161 6.616
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Figure 20: Boxplots of absolute error of different models (detector B).
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Figure 21: Boxplots of absolute error of different models (detector C).

Table 5: Continued.

Prediction models RMSE (veh/5min) MAE (veh/5min) MAPE (%)
ARIMA-LSTM 22.969 17.244 9.057
VMD-WD-LSTM 13.980 10.965 5.268
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Finally, in order to further verify the prediction per-
formance of the proposed method in this study in the
prediction of traffic flow and show the prediction effect of
the VMD-WD-LSTM method on different datasets, this
paper selects a section of traffic flow data from the public
dataset provided by Minnesota Department of Trans-
portation (Mn/DOT) and Transportation Research Data Lab
(TDRL).,e traffic flow data are obtained by a loop detector
(denoted as detector D) of Minnesota Expressway. ,e
traffic flow time interval of this data sample is also 5 minutes,
and a detection point is selected in Rochester, Minnesota.
,e data collection period is from September 14, 2020, to
September 18, 2020. ,e location of the detection point is
shown by the blue marker in Figure 22. Table 6 shows the
relevant information of the road section.

For the traffic flow data of detector D, we use the same
method as detector A, detector B, and detector C to denoise
and predict and then compare the prediction performance
of different prediction models by evaluating RMSE, MAE,
and MAPE. ,e prediction results of eight prediction
models are shown in Figure 23. It can be seen from the
predicted image that the prediction results of the EMD-
WD-LSTM method and EMD-WD-LSTM method have
obvious fluctuations. ,is is because the traffic flow of

detection point D is smaller than that of the three detection
points in the PeMS dataset, and the uncertainty of traffic
flow is enhanced. Any traffic flow change caused by external
factors will interfere with the periodic change of traffic flow
to a greater extent, which will make the process of iden-
tifying noise data more difficult. However, it can be seen
from Table 7 that the RMSE, MAE, andMAPE of the VMD-
WD-LSTM method are still reduced by 51%, 48%, and 45%
compared with the single LSTM model, and it still has
better prediction performance than the seven comparison
methods. Compared with the data of several other detec-
tion points, the RMSE and MAE of the traffic flow pre-
diction results of detection point D are significantly less
than those of the other three detection points. ,is situ-
ation is due to the differences in road types and temporal
and spatial correlation between different detection points.
On the other hand, it shows that the proposed method will
get more accurate prediction results when the traffic flow is
small. In addition, in the image shown in Figure 24, the
absolute error of the VMD-WD-LSTM method is the
smallest, which is consistent with the previous analysis
results. ,is shows that the prediction model proposed in
this study also has excellent performance and good ro-
bustness on other datasets.

Figure 22: ,e location of the detection point (marked blue).

Table 6: Detailed information for detector D.

Detector Freeway Detector number Number of main lanes
D US-52 3891 3
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Figure 23: Predicted curves of different models using the traffic flow data of detector D.

Table 7: ,e prediction errors of different models using the traffic flow data of detector D.

Prediction models RMSE (veh/5min) MAE (veh/5min) MAPE (%)
LSTM 11.462 8.290 22.69
WD-LSTM 9.795 7.382 21.316
EMD-WD-LSTM 13.976 10.824 32.833
VMD-WD-ANN 9.909 7.702 20.667
EEMD-ANN 9.688 7.546 20.461
TSD-BiLSTM 14.898 10.929 27.831
ARIMA-LSTM 10.269 7.936 28.417
VMD-WD-LSTM 5.623 4.301 12.500
Bold indicates the best value of each evaluation index.
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4. Conclusions

,e randomness and complex periodic characteristics of
traffic flow make it difficult to predict traffic flow. To solve
this problem, this study proposes a VMD-WD-LSTM pre-
diction method, which includes data denoising, signal de-
composition, and data prediction. Specifically, this model
first decomposes the original traffic flow data into multiple
subsequences by the variational mode decomposition
(VMD) method. Since the VMD method can control the
number of decompositions, we determine the appropriate
number of decompositions by sample entropy. ,e subse-
quences obtained by these decompositions can reflect dif-
ferent characteristics of the original signal.,e second step is
to conduct wavelet threshold denoising for each decom-
posed subsequence. Compared with the denoising method
for original data, denoising multiple IMFs can better reduce
the impact of noise on prediction results. Finally, the
denoised IMF component is predicted by the LSTM model,
and the final prediction results are obtained by combining
the predicted values of each component.

In order to evaluate the denoising effect and prediction
performance of the VMD-WD-LSTMmodel, this study first
compares the results obtained by direct prediction of the
original data with the results predicted by the VMD-WD
method after denoising. From the prediction results of the
three prediction models of ARIMA, ANN, and LSTM, the
denoising of the original signal by the VMD-WD method
can improve the prediction performance, and the im-
provement effect on the LSTMmodel is the most obvious. In

addition, the performance of the proposed model is also
compared with LSTM, WD-LSTM, EMD-WD-LSTM,
VMD-WD-ANN, EEMD-ANN, TSD-BiLSTM, and
ARIMA-LSTM methods on four detectors in two different
open-source datasets. ,e results show that the VMD-WD
denoising method can better reduce noise pollution. On the
basis of data denoising with VMD-WD method, the LSTM
model can accurately predict the characteristics of traffic
flow data and obtain excellent prediction results.

In summary, the VMD-WD-LSTM model proposed in
this study can realize the feature decomposition of the
original traffic flow data and the prediction of the traffic flow
on the working day. Accurate prediction of traffic flow can
effectively avoid traffic congestion. In the face of the up-
coming congestion, we can make early warnings and take
evacuation measures. At present, the method proposed in
this paper still has some shortcomings. First, this study only
analyzes the traffic flow of working days in terms of data
selection and does not analyze the changes in traffic flow at
weekends, holidays, and special periods. In addition, dif-
ferent weather conditions, road conditions, and spatial-
temporal correlation will affect the prediction results. ,e
method proposed in this study only analyzes the traffic flow
changes during the nonholiday period and does not consider
the special weather and road conditions. Obviously, it is not
feasible to predict the traffic flow affected by other factors by
traffic flow in general. ,erefore, in the future work, this
study will focus on the analysis of traffic flow changes in
different scenarios and study the impact of different external
factors on traffic flow. Another future research direction is
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Figure 24: Boxplots of absolute error of different models (detector D).
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the analysis and prediction of traffic flow changes in specific
periods of the day, especially in the morning or evening
when traffic pressure increases. It is also important to predict
traffic flow in this period alone.
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