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�e consequence of periodic body acceleration and thermal radiation in the pulsating flow of MHD Casson nanofluid through
a porous channel is addressed. A flow of the nanofluid injected through the lower plate is considered while sucked out through the
upper plate with a similar velocity. �e thermal radiation term is incorporated in the heat transfer equation. �e governing
equations corresponding to velocity and temperature are converted from partial differential equations to a system of ordinary
differential equations by employing similarity variables. �e perturbation technique is applied to solve the governing flow
equations. �e impact of diverse parameters on flow features is graphically analyzed. �e result reveals that adding the
nanoparticle has enhanced the velocity profile of the base fluid. Moreover, an increase in the periodic body acceleration results in
enlarging velocity and temperature.

1. Introduction

�e foremost principle of MHD is that forces are formed
by the magnetic field, which stimulates a current through
a moving conducting fluid. �e importance of MHD in
various areas such as astrophysics, biomedical research,
and geophysics motivates us to investigate MHD flow.
Concerning the shear strain-stress relationship, Casson
fluid is a non-Newtonian fluid, which becomes firm when
the yield stress is more significant than shear stress.
However, it begins to deform when the yielded stress
becomes less significant than shear stress. �e MHD flow
of Casson fluid in a porous channel is a field of dynamic
research due to its applicability in industry and medical
technology such as paper production, condensation, and
blood flow in the human body. Due to its applications in
heat storage beds and fossil fuels, heat and mass transfer

through a porous medium have been developed into an
exciting topic for the most recent decades. Tamoor et al.
[1] focused on “MHD Casson fluid flow above a stretching
cylinder.” Reddy [2] examined the “MHD Casson fluid
flow over an exponentially inclined permeable stretching
surface with the influence of thermal radiation and
chemical reaction on the flow of the MHD Casson fluid
flow over an exponentially inclined permeable stretching
surface.”

Fluids with suspended nanoparticles have an exten-
sive range of applications in the heat transfer process
because an increment in thermal conductivity in fluids
was noticed while mixing nanoparticles. �is attempt
was taken first by Choi [3] subsequently succeeded by
Sandeep et al. [4] and Nisar et al. [5]. �ey suggested that
“the nanoparticle-containing gold can be used to treat
and trounce cancer.” Next, Abolbashari et al. [6]
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analyzed “the mass and heat transfer characteristics of
Casson nanofluid over a stretching surface.” Finally,
Tassaddiq et al. [7] analyzed “the Newtonian heating
effects for the generalized Casson fluid MHD flow with
porous effects.” �ey found that velocity augments with
escalating porosity and the Casson parameter control the
fluid flow. Menni et al. [8, 9], Khan et al. [10], and
Maouedj et al. [11] simulated the applicability of
nanofluid in the solar channels.

�ermal radiation has a crucial role in many
manufacturing processes. Irfan et al. [12] and Vellanki
[13] investigated the radiation effect on Casson nanofluid
and bio-nanofluid flow through a porous medium. MHD
flow across porous channel between two parallel plates has
vast application such as petrochemical engineering,
polymer technology, food production technology, and
biomedical research. Falede and Adensanya [14] explored
“the oscillatory flow of MHD fluid through a porous
channel.” “MHD flow through a vertical channel with
porous medium” was investigated by Dwivedi et al. [15].
“MHD nanofluid flow and heat transfer in rotating
horizontal annulus were numerically simulated with
thermal radiation” by Peng et al. [16]. �e important
visualization about the influence of magnetic field and
radiation with assorted flow geometries is established in
the literature [17–28].

�e importance of the pulsating flow in a porous
channel is well known, and it has many biological and
industrial applications. Srinivas et al. [29] considered the
MHD pulsating Casson fluid flow with chemical reaction
and magnetic field through a porous channel. Kumar et al.
[30] considered the “Joule heating and thermal radiation
effects on the pulsatile MHD flow of Casson nanofluid
through a vertical porous space.” �e study related to
periodic body acceleration has enormous applications,
particularly analyzing blood flow in the cardiovascular
system. In many situations, such as driving in a vehicle,
running, and jogging, the human body accelerates peri-
odically (vibration). �e sudden velocity change in the
human body disturbs the blood flow, which causes most
health problems. Vishali and Sarojamma [31] investigated
the “flow of a fluid through a catheterized artery with the
effect of a periodic body acceleration” in which they
concluded that “the body acceleration enhanced velocity.”
Sulochana [32] discussed “the influence of body acceler-
ation on an unsteady pulsatile flow of MHD couple stress
fluid.”

Over the years, nonlinear differential equations have
been solved by approximate analytical methods such as the
homotopy analysis method, weighted residual method,
differential transformation methods, perturbation method,
and so on. However, the non-perturbation approximate
analytical methods have operational limitations that fussily
tapered their performance domain, and they may some-
times lead to erroneous results while routinely imple-
mented. Moreover, the conversion of the nonlinear
equation and the evolution of corresponding recurrence
equations using differential transformation methods are
complex in some nonlinear systems. Consequently, the

demand for reasonably simple, flexible, standard, and high
precise total approximate analytical solutions is well ac-
knowledged. One of such techniques applied for the quest
is the perturbation method, which can solve nonlinear
problems with high precision, while the perturbation
method gives enhanced results for small perturbation
parameters, further having a useful mathematical formu-
lation with better accurateness, even for comparatively
huge values of the perturbation parameter. Due to its
unfussiness and high accuracy, the perturbation method
was applied for solving various heat transfer and fluid
mechanics problems [29–34].

To this extent, our literature review authenticates that
there are no existing papers for MHD pulsating Casson
nanofluid flow past a porous channel with periodic body
acceleration effect. An examination was made for “pulsating
Casson nanofluid flow through a porous channel with ra-
diation” [35]. However, similar research for Casson nano-
fluid with periodic body acceleration effects was not
investigated yet. Hence, we prolonged our effort to pulsative
Casson nanofluid that passes through a porous channel
between two parallel plates with periodic body acceleration
and magnetic field impacts. �e considered problem has
massive application in manufacturing and biological pro-
cesses. �e perturbation technique was employed to solve
the resulting similarity equations. �e velocity and tem-
perature fields are illustrated for several pertinent flow
parameters.

2. Mathematical Formulation

Consider the influence of uniform traverse applied magnetic
field on the pulsatile incompressible flow of a Casson
nanofluid in a porous channel between two parallel plates, in
which one plate is at rest and another plate moves in
a parallel direction.�e flow is driven by a pulsating pressure
gradient [29].

1
ρnf

zp
∗

zx
∗ � − A 1 + εeiωt∗

 , (1)

where ρnf is the “density of the nanofluid,” p∗ is the
“pressure,”ε≪ 1 is suitably chosen positive quantity, A is
a constant, and ω is the “frequency.” �e physical flow
system is noted in Figure 1.

We consider that X∗-axis is taken along the lower plate,
and the perpendicular axis is noted as Y∗-axis. �e lower
plate is at rest, maintaining the temperature T0. �e upper
plate is moving with the velocity U∗w � (A/ω) 1 + εeiωt∗ 

parallel to the X∗-axis and maintains the temperature
T1(T0 <T1). �e nanofluid is injected from the lower plate
into the porous channel with the velocity v0, and it is sucked
out from the porous medium via the upper plate with the
similar velocity. “Uniform magnetic field” (B0) is imposed
along the usual direction to the flow. �e periodic body
acceleration is assumed as G∗ � g0 cos ψ, where ψ is the
phase difference and g0 is the amplitude of the body
acceleration.

�e Casson nanofluid rheological equation is stated as
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where “πc” is the critical value of “π” based on the non-
Newtonian model, Tmn is the (m, n)-th stress tensor com-
ponent, π � emn with emn being the (m, n)-th deformation
rate, μBnf

is the plastic “dynamic viscosity” of the “non-
Newtonian” nanofluid, and py is the “yield stress” of the
fluid.

�e governing equations of the flow problem are stated
as follows:
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�e boundary conditions for the present analysis are

u
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∗

� 0,
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∗
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∗
w �

A

ω
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 ,

T
∗

� Tw, aty
∗

� L,

(7)

where Q0 is “heat source/sink parameter,” β is the “Casson
parameter,” u∗ is the “dimensional velocity in X-direction,”
k and Φ are the “permeability and porosity of the porous
medium,” σ is the “electrical conductivity” of the fluid, Cpnf

is the “specific heat at constant pressure of nanofluid,” μnf is
the “dynamic viscosity” of the nanofluid, ρnf is the “density”
of the nanofluid, (ρCp)nf is the “heat capacity of the
nanofluid,” ]nf is the “kinematic viscosity of the Casson
nanofluid,” κnf is the “thermal conductivity” of the nano-
fluid, K∗ is “Rosseland mean absorption coefficient,” and σ∗
is the “Stefan–Boltzmann constant” [16].

ρnf � (1 − φ)ρf + φρn,

μnf �
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(1 − φ)
2.5,

ρCp 
nf
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f

+ φ ρCp 
n
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,

κnf

κf

�
2κf + κn  − 2φ κf − κn 

2κf + κn  + φ κf − κn 
,

(8)

where φ is the nanoparticle volume fraction and the sub-
scripts nf, f, and n represent the nanofluid, base fluid, and
nanoparticles correspondingly. �e use of the above ex-
pression for (κnf/κf) is restricted to spherical nanoparticles
only.
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T1

0

B0

V0

x*
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y*

L

Uw

G’ = gcos ψ

Figure 1: Physical model and coordinate system.
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We assume that the temperature variation within the
fluid flow can be expanded in a Taylor’s series about T0. By
neglecting the higher-order terms, we obtain

T
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� 4T
3
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− 3T
4
0. (9)

We establish the dimensionless variables as follows:
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By applying equations (3), (5), (8), (9), and (10), in
equations (4), (6), and (7),
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(12)

�e new boundary conditions are

u � 0,

θ � 0, aty � 0,

u � Uw � 1 + εeit
 ,

θ � 1, aty � 1,

(13)

where Da � k/ΦL2 is the “Darcy number of the porous
media,” H � L

��
ω

√
/ ��]f

 is the frequency parameter, Ha �

B0L
��
σ

√
/ ���μf

 is the Hartmann number, Re � V0L/]f is the
cross-flow Reynolds number, Ec � ((A/ω)2/(Cp)f(Tw −

T0)) is the Eckert number, Q � (Q0L
2/(ρCp)f]f) is the “heat

source/sink parameter,” Rd � (4T3
0σ
∗/kfK∗) is the radiation

parameter, Pr � (μCp)f/kf is the Prandtl number, and G �

L2ωg0/A]f is the body acceleration parameter.

3. Method of Solution

�e velocity u and temperature θ can be supposed to have
the form:

u � u1(y) + ε u2(y)e
it

+ ε2u3(y)e
2it

, (14)

θ � θ1(y) + ε θ2(y)e
it

+ ε2θ3(y)
2it

. (15)

Now, substituting equations (1), (14), and (15) into
equations (11)–(13) and then equating the coefficients of
various powers of ε, we get
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ll
1 − Re u
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2
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2
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2
, (18)
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1 − β2θ

l
1 − Qθ1 � − β3u

l2
1 − β4u

2
1, (19)

β1θ
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2 − β2θ

l
2 − β5θ2 � − 2β3u

l
1u

l
2 − 2β4u1u2, (20)

β1θ
ll
3 − β2θ

l
3 − β6θ3 � − β3u

l2
2 − β4u

2
2. (21)

�e new boundary conditions are

u1 � 0,

u2 � 0,

u3 � 0,

θ1 � 0,

θ2 � 0,

θ3 � 0, aty � 0,

u1 � 1,

u2 � 1,

u3 � 1,

θ1 � 1,

θ2 � 0,

θ3 � 0, aty � 1.

(22)

Solving the six ODEs (16)–(21) with the boundary
conditions (22), we obtain
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(23)

where m’s, A’s, and B’s are constants given in Appendix.
�e dimensionless Nusselt number at the plates is given

by

Nu � −
zθ
zy

 
y�0,1

� − θ1′(y) + ε θ2′(y)e
it

+ ε2θ3′(y)e
2it

 
y�0,1.

(24)

4. Results and Discussion

�e effect of diverse material parameters on the non-di-
mensional heat transfer and velocity is discussed in this
section.�e values of the Nusselt number are compared with
previously available results obtained by Srinivas et al. [29] for
the various assumptions of the Hartmann number, Reynolds
number, radiation parameter, and heat source parameter to
assess the validity of the current results, and the outcome is
shown in Table 1. �roughout the computation, the pa-
rameters are taken as t � π/4, ε � 0.01,Re � 2, ϕ � 0.1,Ha
� 1, β � 5, Da � 0.2, Ec � 0.2, Q � 0.5,Rd � 3,Pr � 14,ψ �

60°, andG � 1 unless otherwise stated. Figures 2(a) and 2(b)
represent the effect of nanoparticle volume fraction (φ) and
Hartmann number (Ha) on the velocity distribution u(y). It
is noticed that u(y) improves with an escalation in φ.
Furthermore, the velocity is diminishing function of Ha
since the applied magnetic field generates the Lorentz forces,
which acts opposite to the flow direction. Figures 3(a) and
3(b) exhibit the effect of H and G on velocity distribution
u(y). It is noticed that u(y) improves with an escalation in
frequency parameter (H) and body acceleration parameter
(G). Figure 4(a) elucidates the effect of Da on velocity
distribution u(y). It is evident that u(y) improves with an
escalation in Darcy number (Da) because Da is inversely
proportional to the Darcy drag force. Figure 4(b) shows that
an augment in Casson fluid parameter (β) escalates velocity
distribution u(y).

Figures 5(a) and 5(b) show the influence of (Ec) and (G)

on the temperature distribution θ(y). �e observations
conclude that the temperature distribution θ(y) upsurges
with a rise in Ec. In addition, it is obvious that the escalating
periodic body acceleration slightly improves the temperature.

Figures 6(a) and 6(b) displays persuade of (Re) and
(Pr)on the temperature distribution θ(y). From Figure 6(a),
the observations show that the temperature distribution
θ(y) reduces with an upsurge in cross-flow Reynolds
number. Figure 6(b) depicts that the temperature di-
minished for increasing values of Pr. �e Prandtl number
diminishes the thermal boundary layer thickness. In addi-
tion, it controls the thickness of the thermal boundary layer.
Fluids with lower Prandtl number have higher thermal
conductivity so that the heat can diffuse from the plate faster
than higher Prandtl number fluids [29]. Figures 7(a) and
7(b) reveal the influence of Q and Rd on θ(y). Figure 7(a)
depicts that the temperature distribution boosts up with
a rise in the heat source/sink parameter (Q). From Fig-
ure 7(b), one can observe a rise in θ(y) with intensification
in Rd. �is is in agreement with the physical reality that the
thermal boundary layer thickness enhances with growing
Rd.

�e effect of Eckert number (Ec), Darcy number (Da),
body acceleration parameter (G), radiation parameter (Rd),
the nanoparticle volume fraction (φ), Hartmann number
(Ha), heat source/sink parameter (Q), and Prandtl number
(Pr) on unsteady temperature θt(y) is shown in
Figures 8–11. From Figure 8(a), it is observed that the en-
hancement in Eckert number (Ec) produces an increasing
tendency in unsteady temperature θt(y). Figure 8(b) depicts
that the unsteady temperature θt(y) is oscillating with in-
creasing Darcy number (Da). From Figure 9(a), it is ob-
served that the increase in body acceleration parameter (G)

produces an increase in unsteady temperature θt(y).
Figure 9(b) shows that the unsteady temperature θt(y) is
oscillating with increasing Hartmann number (Ha).

Figure 10(a) shows that the amplification in the nano-
particle volume fraction (φ) produces an insurgence in
unsteady temperature θt(y) at the lower half of the channel;
however, it begins osculating near the upper wall. From
Figure 10(b), it is evident that the increase in Pr escalates the
unsteady temperature.

From Figure 11(a), the influence of Q is minimal in the
lower part of the channel. However, the unsteady temper-
ature slightly decreases on the upper part of the channel for
the increasing values ofQ. From Figure 11(b), it is noticed

Complexity 5



that the increase in radiation parameter (Rd) produces
a diminishing tendency in unsteady temperature.

Figure 12(a) shows the influence of the nanoparticle
volume fraction (φ) on the Nusselt number (Nu) distribu-
tion. It is observed that a given rise in φ results in the de-
crease of Nusselt number (Nu) at the lower plate, although it
increases at the upper plate. Figure 12(b) shows the influence
of the body acceleration parameter (G) on the Nusselt

number (Nu) distribution. It is observed that a given in-
crease in body acceleration at the lower plate results in the
decrease of Nusselt number (Nu), while it increases at the
upper plate.

Figure 13 shows the influence of Rd on the Nusselt
number (Nu) distribution. It is observed that a given
increase in the Rd results in the decline of the Nusselt
number (Nu) at the upper plate, while it increases

Table 1: Comparison of Nusselt number for Newtonian and non-Newtonian fluids with Srinivas et al. [29] for the limiting case of
φ � 0, G � 0, ε � 0.01, H � 3, β � 2,Ec � 1,Da � 0.1,Pr � 21, and t � π/4.

Parameter Values
Nu � − (zθ/zy)y�0 Nu � − (zθ/zy)y�1

Newtonian Non-Newtonian Newtonian Non-Newtonian

[29] Present [29] Present [29] Present [29] Present

Ha
0 − 2.7033 − 2.7033 − 2.6361 − 2.6361 3.1771 3.1771 2.7457 2.7457
2 − 2.2726 − 2.2726 − 2.2307 − 2.2307 3.5754 3.5754 2.7261 2.7261
4 − 1.5615 − 1.5615 − 1.5380 − 1.5380 2.6740 2.6740 1.8116 1.8116

Re
0 − 7.6829 − 7.6829 − 7.1678 − 7.1678 6.1846 6.1846 5.6695 5.6695
1 − 2.2726 − 2.2726 − 2.2307 − 2.2307 3.5754 3.5754 2.7261 2.7261
2 − 1.1585 − 1.1585 − 1.2067 − 1.2067 − 1.9577 − 1.9577 − 2.8056 − 2.8056

Q
0 − 2.5506 − 2.5506 − 2.4868 − 2.4868 1.6763 1.6763 1.2142 1.2142
0.5 − 2.6712 − 2.6712 − 2.6064 − 2.6064 3.2306 3.2306 2.7556 2.7556
1 − 2.8333 − 2.8333 − 2.7671 − 2.7671 5.4356 5.4356 4.9425 4.9425

Rd
0 − 4.2702 − 4.2702 − 4.1034 − 4.1034 19.2777 19.2777 17.4188 17.4188
1 − 3.3850 − 3.3850 − 3.2904 − 3.2904 6.2590 6.2590 5.4984 5.4984
2 − 2.8333 − 2.8333 − 2.7671 − 2.7671 3.2303 3.2303 2.7556 2.7556
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(b)

Figure 2: (a) Effect of Ha on the “velocity distribution” when φ � 0.1. (b) Effect of φ on the “velocity distribution” when Ha � 1.
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Figure 3: (a) Effect of H on the “velocity distribution” when G � 1. (b) Effect of G on the velocity distribution when H � 5.
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Figure 4: (a) Effect of Da on the “velocity distribution” when β � 5. (b) Effect of β on the “velocity distribution” when Da � 0.2.
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Figure 5: (a) Effect of Ec on the “temperature distribution” when G � 1. (b) Effect of G on the “temperature distribution” when Ec � 0.2.

Re = 1
Re = 1.5

Re = 2
Re = 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

0.2 0.4 0.6 0.8 10
y

(a)

Pr = 1
Pr = 5

Pr = 10
Pr = 14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

0.2 0.4 0.6 0.8 10
y

(b)

Figure 6: (a) Effect of Re on the “temperature distribution” when Pr � 14. (b) Effect of Pr on the temperature distribution when Re � 2.
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Figure 8: (a) Effect of Ec on “unsteady temperature distribution” for Da � 0.2. (b) Effect of Da on “unsteady temperature distribution” for
Ec� 0.2.
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Figure 7: (a) Effect of Q on the “temperature distribution” when Rd � 3. (b) Effect of Rd on the “temperature distribution” when Q � 0.5.
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Figure 10: (a) Effect of φ on “unsteady temperature distribution” when Pr � 14. (b) Effect of Pr on “unsteady temperature distribution” for
φ � 0.1.
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Figure 9: (a) Effect of G on unsteady “temperature distribution” when Ha � 1. (b) Effect of Ha on “unsteady temperature distribution” for
G � 1.
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at the lower plate. �e greatest rate of change for Nu
in both the plates was seen near the null values of Rd
and Re.

Figure 14 illustrates the variation of the unsteady Nusselt
number (Nut) for Re with time variation in the upper plate.
It is observed that the unsteady Nusselt number upsurges

with increasing Re. �us, the unsteady Nusselt number
distribution is a periodic function of “t” with period 2π.

Table 2 shows the variations of the Nusselt number
(Nu)for the Casson nanofluid with and without body
acceleration. �e periodic body acceleration is taken as
the body acceleration parameter G � 1. From this table,
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Figure 11: (a) Effect of Q on “unsteady temperature distribution” when Rd � 3. (b) Effect of Rd on “unsteady temperature distribution” for
Q� 0.5.
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Figure 12: (a) Effect of φ on “Nusselt number distribution” when G � 1, Ec � 1,Ha � 0.5,Rd � 2, and Pr � 21. (b) Effect of G on “Nusselt
number distribution” for φ � 0.1, Ec� 1, Ha� 0.5, Rd� 2, and Pr� 21.

Complexity 11



the Nusselt number Nu enhances at the lower plate for
both the cases with the higher values of Re and Rd, while
the inverse trend is noticed for larger value of Q.
However, this behaviour is reversed at the upper plate for

Re,Rd, andQ, while it increases for enlarging values of
Ha at both the plates. It is also observed that with in-
creasing periodic body acceleration (G), the Nu de-
creases at the lower plate, while it increases at the upper
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Figure 13: Effect of Rd and Re on “the Nusselt number distribution” when Ec � 1,Ha � 0.5, and Pr � 21.

0
5

10
15

0
1

2
3

tRe

–0.2

–0.1

0

0.1

0.2

N
u t

Figure 14: Effect of Re over time variation on the “unsteady Nusselt number distribution” for Ec � 1,Rd � 2,Ha � 0.5, and Pr � 21.

Table 2: Comparison of Nusselt number for channel with and without periodic body acceleration, when
ε � 0.01, H � 3, β � 5,Ec � 1,Da � 0.2,Pr � 21, and t � π/4.

Parameter Values
Nu � − (zθ/zy)y�0 Nu � − (zθ/zy)y�1

Without body acceleration
(G� 0)

With body acceleration
(G� 1)

Without body acceleration
(G� 0)

With body acceleration
(G� 1)

Ha
0 − 5.0478 − 5.5719 6.2828 8.1745
1 − 4.7406 − 5.2344 8.7987 10.7217
2 − 3.9957 − 4.4158 15.0043 16.9792

Re
0 − 28.7997 − 31.2494 9.6086 10.7870
2 − 4.9676 − 5.4839 6.9407 8.8376
4 − 1.4012 − 1.5520 − 8.8930 − 7.7016

Q
0 − 4.8737 − 5.3805 4.0757 5.7305
0.5 − 4.9676 − 5.4839 6.9407 8.8376
1 − 5.0705 − 5.5971 10.4949 12.6975

Rd
1 − 5.3459 − 5.9066 13.2025 16.3828
2 − 4.9676 − 5.4839 6.9407 8.8376
3 − 4.6292 − 5.1053 4.0732 5.3677
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plate. �erefore, the body acceleration reduces the heat
conduction in lower temperature (T0), while it is en-
hanced at higher temperature (Tw).

5. Conclusion

�e present study addressed the influence of periodic body
acceleration and thermal radiation on the MHD flow of
Casson nanofluid through a porous channel. �e pulsating
flow is included in the flow problem. �e analytical tech-
nique (perturbation) is utilized to compute the physical
system. �e considered problem is essential as the study
related to periodic body acceleration in the porous channel
has enormous applications in industrial and biological
sectors. �e generalized solutions have been found for the
velocity and temperature distributions. Various graphs were
depicted to emphasize vivid effects of various parameters,
such as Reynolds number, frequency parameter, body ac-
celeration parameter, Casson fluid parameter, radiation
parameter, nanoparticle volume fraction, and the Darcy
number:

(1) �e fluid velocity increased for elevated values of
frequency parameter, Casson fluid parameter, body
acceleration parameter, nanoparticle volume frac-
tion, and the Darcy number. However, the reverse
effect was depicted for growing values of the Hart-
mann number.

(2) Diminishing behaviour of fluid flow is observed for
diverse values of cross Reynolds number and the
Prandtl number. Prandtl number has an essential
role in the heat transfer process.

(3) �e Nusselt number declines at the lower plate and
increases at the upper plate with the rise in the
nanoparticle volume fraction, Darcy number, and
body acceleration parameter.

(4) �e unsteady Nusselt number distribution is a pe-
riodic function of “t” with period 2π with its lowest
values near 2nπ and higher values near (2n + 1) π for
all integer values of n.

(5) �e body acceleration enhances the velocity at both
plates. However, it reduces the heat conduction in
lower temperature (T0), while it increases at higher
temperature (Tw).
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Nomencluature

Length: D, m (meter)
Mass: M, kg (kilogram)
Temperature: η, K (Kelvin)
Time: τ, s (second)
Electric current: I, A (ampere)

Symbol Physical quantity (Dimension)
A: Constant defined in equation (1) (D τ− 2)
B0: Uniform magnetic field (D τ− 1 I− 1)
Cpnf

: Specific heat at a constant pressure of nanofluid
(D2 τ− 2η− 1)

κnf: �ermal conductivity of the nanofluid (M
Dτ− 3η− 1)

p∗: Pressure (M D− 1 τ− 2)
k: Permeability of the porous media (D2)
Φ: Porosity of the porous medium
σ: Electrical conductivity of the fluid (M− 1 D− 3 τ3 I2)
μnf: Dynamic viscosity of the nanofluid (M D− 1 τ− 1)
ρnf: Density of the nanofluid (MD− 3)
]nf: Kinematic viscosity of the nanofluid (D2 τ− 1)
φ: Nanoparticle volume fraction
(ρCp)nf: Heat capacity of the nanofluid (M D− 1 τ− 2 η− 1)
ω: Frequency (τ− 1)
g0: Amplitude of the body acceleration (D τ− 2)
ψ: Phase difference of the body acceleration
K∗: Rosseland mean absorption coefficient (D− 1)
Q0: Heat source/sink coefficient (M D− 1 τ− 3 η− 1)
σ∗: Stefan- Boltzmann constant (M τ− 3η− 4)
u∗: Dimensional velocity in X-direction (D τ− 1)
T∗: Temperature of the nanofluid (Η)
T0: Temperature at the lower wall (Η)
Tw: Temperature at the upper wall (Η)
β: Casson parameter
Da: Darcy number of the porous media
Ec: Eckert number
H: Frequency parameter
Ha: Hartmann number
Nu: Nusselt number
Pr: Prandtl number
Q: Heat source/sink parameter
Re: Cross-flow Reynolds number
Rd: Radiation parameter
G: Body acceleration parameter
Subscripts
f: Fluid fraction
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n: Nanoparticle fraction
nf: Nanofluid.
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