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Wireless sensor networks (WSNs) have been spawning many new applications where cooperative state estimation is essential. In
this paper, the problem of performing cooperative state estimation for a discrete linear stochastic dynamical system over wireless
sensor networks with a limitation on the sampling and communication rate is considered, where distributed sensors cooperatively
sense a linear dynamical process and transmit observations each other via a common wireless channel. Firstly, a novel dynamic
variance-based triggering scheme (DVTS) is designed to schedule the sampling of each sensor and the transmission of its local
measurement. In contrast to the existing static variance-based triggering scheme (SVTS), the newly proposed DVTS can lead to
the larger average intertrigger time interval and thus fewer total triggering number with almost approximate estimation accuracy.
Second, a new Riccati equation of the prediction variance iteration for each estimator is obtained, which switches dynamically
among the modes related to the variance of the previous step and the recently received measurements from other sensors.
Furthermore, the stability issue is also mainly investigated. Finally, simulation results show the effectiveness and advantage of the
proposed strategy.

1. Introduction

Wireless sensor networks (WSNs) are composed of a wealth
of low-cost tiny devices that integrate heterogeneous sensing
and wireless communication with limited processing and
power resources [1–3]. 'ey have spawned a wide range of
applications, including cooperative target localization and
tracking [4, 5], environment and health monitoring [6],
control and guidance of unmanned vehicles or mobile ro-
bots [7, 8], and smart grids [9].

In these applications, the nodes of sensor networks are
distributed in the determined areas or deployed randomly in
the unknown areas without power supplying to monitor
some specific targets and powered by independent power
resource such as onboard batteries. 'en, how to save power
energy of the WSNs to prolong its lifespan is a fundamental
issue we have to consider. Obviously, the lifespan of the
WSNs is directly related to the average amount of sensing,
processing, and communicating of each sensor node. Hence,
it is a direct and effective way of improving energy-efficiency

of the WSNs to reduce appropriately the average rate of
sensing, processing, and communication carried out by each
sensor node and also to maintain the acceptable overall
estimation performance in the meanwhile [10].

In addition, as the application of large-scale WSNs in-
creases, the cost of communication among the sensor nodes
becomes a pivotal factor that we have to pay attention to, in
that it is related to the overall performance of control sys-
tems. Clearly, it is an effective way of easing the excessive
concentration pressure of communication traffic degrading
the overall performance of control systems or estimators to
reduce the average communication rate of the large-scale
WSNs appropriately [11, 12].

'e abovementioned considerations have led to the great
development of sensor triggering or scheduling mechanisms
that can make a better tradeoff between the average rate of
communication and the overall estimation performance
related usually to the estimation error, usually known as
controlled communication [13, 14].'e tradeoff between the
average rate of communication and the overall estimation
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performance is explored in [15–18]. In the works of [15, 16],
the existence of a critical value of the observations loss rate
within bounded estimation error covariance has been
proved, which allows tradeoff between energy-efficiency and
estimation accuracy.

Event-triggered or data-driven framework is popular
one of improving energy-efficiency of the overall sensor
networks and ensuring use-efficiency of the communication
resource in WSNs [12, 19–22]. In contrast to the traditional
time-driven or time-triggered framework, the data-driven or
event-triggered one makes each sensor node communicate
or work only when some index data are required to meet the
specific constraint on the overall performance of control
system or estimator. For example, the WSNs-based state
estimation problem with deterministic event-triggering
scheme is studied in [18, 23–25], which has a common
disadvantage that Gaussian property of innovation process is
easily destroyed by intermittent measurement sequences,
but is easy to implement. 'en, to maintain the Gaussian
property of innovation process, the WSNs-based state es-
timation problem with stochastic event-triggering scheme is
studied in [19, 26–30].

In the abovementioned references on the WSNs-based
state estimation problem with deterministic event-trig-
gered or data-driven scheduling scheme, an event of ob-
servation transmission is usually triggered by some
specified conditions on real-time measurement or state,
and in the stochastic event-triggered scheduling scheme,
observation is usually transmitted to the base node in a
random triggering mode or observation transmission is
triggered by a random event. As opposed to the event-
triggered scheduling schemes, the variance-triggering
framework used herein depends on the prediction variance
at the current step, whose resulting variance iteration is
deterministic and only related to the available measure-
ments and the estimation variance [12, 31]. In the works of
[12, 31], each sensor node is regarded as an independent
estimator running a copy of the Kalman filter and transmits
its measurement to the base node only when the associated
measurement prediction variance of each sensor node
exceeds the allowable or tolerable upper bounds, which can
be categorized as static variance-based triggering scheme
(SVTS) as the thresholds are fixed all the time. Under
the SVTS, the sensor transmission event is triggered once
the prediction variance exceeds the static thresholds. In the
work of [32], a dynamic event-triggered transmission
scheme (DETS) is presented for distributed set-member-
ship estimation over wireless sensor networks, which can
result in larger interevent time interval in contrast to the
static event-triggered transmission scheme (SETS). Under
the DETS, each sensor node is also regarded as an inde-
pendent estimator running a copy of the set-membership
filter and transmits its local measurement to its nearby
sensors only when the deviation between its current
measurement and its last transmittedmeasurement exceeds
an auxiliary offset variable that can be adjusted real time in
accordance with the last deviation. In the DETS, the
auxiliary offset variable just is adjusted with the last

deviation, but not related with the last triggered status of all
sensors.

Hence, motivated partially by the SVTS proposed in [12]
and the DETS proposed in [32], we expect intuitively that if
the threshold could be adjusted dynamically to make the
prediction variance not easily surpass the dynamic thresh-
old, the total triggering number would be further decreased
than the one by using SVTS. 'us, it is the main motivation
of this paper to design and develop an efficient DVTS for
distributed cooperative estimation over wireless sensor
networks.

In this paper, we consider the remote cooperative state
estimation problem for a discrete linear stochastic dynamical
system over wireless sensor networks with a limitation on
the sampling and communication rate. 'e dynamical
system is observed by a group of spatially distributed or
deployed smart sensors with limited power resource, which
communicates each other via a common wireless network
channel. Each smart sensor can measure the output of the
plant, process its measurement, and transmit its processed
measurement to other nearby sensors, as shown in Figure 1.
'e main novelty and contributions of this paper are
summarized as follows:

(i) A new DVTS is designed and developed to deter-
mine when each smart sensor should sense the plant
and transmit its processed measurement to its
neighbors. In contrast to the SVTS, an auxiliary
dynamic offset variable with initial nonnegative
offset is introduced into the threshold, which is
analytically proved to be nonnegative all the time,
and it is also analytically proved that the intertrigger
time interval generated by the DVTS is no less than
the one caused by the SVTS. In this sense, the total
triggering numbers by the DVTS are no more than
the one by the STVS in the same time interval.

(ii) A novel type of Riccati equation, which dynamically
switches among the modes depending on the var-
iance of the previous step and the recently received
measurements from other nearby sensors, is derived
and obtained as a critical element or condition of
the DVTS for this remote cooperative estimator.

(iii) 'e stability properties of the proposed distributed
cooperative estimation method are analyzed and
studied, and we derive and prove that the estimation
error is asymptotically bounded under system
collective observability and controllability.

'e remainder of this paper continues as follows. In
Section 2, the distributed cooperative state estimator with a
DVTS is developed for a discrete linear stochastic dynamical
system over wireless sensor networks with a limitation on
the sampling and communication rate and the corre-
sponding dynamic iteration Riccati equation for the pro-
posed estimator is derived. 'e stability properties of the
proposed distributed cooperative estimator are analyzed and
studied in Section 3. Examples and simulations are provided
in Section 4 and Section 5 concludes this paper.
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1.1. Notations. Z+ denotes the set of nonnegative integer
numbers, k ∈ Z+ is the sampling time index, R denotes the
set of all real numbers, and Rn is the n-dimensional Eu-
clidean space. For a matrix X ∈ Rn×n and i, j � 1, 2, . . . , n,
X ≽ 0 denotes that the matrix X is a n × n semidefinite
matrix, X≻ 0 denotes that the matrix X is a n × n definite
matrix, (X)ij means to get the element at the i-th row and
the j-th column of the matrix X, and XT represents the
transposition of X. For positive-definite matrices A and B,

we define max A, B{ }≜ A if A − B≽ 0
B otherwise􏼨 , and diag(·, . . . , ·)

denotes the diagonal matrix whose diagonal elements are the
entries in (·). E[·] denotes the expectation of a random
variable, and E[·|·] is the expectation of a random variable
conditioned on another random variable. Var[·] is the
variance of a random variable, and Var[·|·] denotes the
variance of a random variable conditioned on another
random variable. For functions f, f1, and f2, f1f2(x)

means the function composition f1(f2(x)), and fn(x) �

f(fn−1(x)) with n ∈ Z+, f0(x) � x. δ function is defined as
δij � 1 if i � j; otherwise, δij � 0. 'e binary indicator
function 1F denotes that 1F � 1 if statement F is true, and
1F � 0 if statement F is false.

2. Variance-Based State Estimator

In this paper, the overall estimation framework of each smart
sensor, as shown in Figure 1, is studied. 'e model of each
system component is provided, and the sensor scheduling
strategy and estimation method are presented in this section.

2.1. Process and Sensors. We consider a single linear time-
invariant system with stochastic noises, whose states are
observed by a number of N ∈ Z+ distributed sensors

x(k) � Ax(k − 1) + ω(k − 1), (1)

yi(k) � Cix(k) + ]i(k), i � 1, 2, . . . , N. (2)

In the above equations, k denotes the discrete sampling
time index, x(k) ∈ Rn is the state vector of the system,
yi(k) ∈ Rmi is the observation taken by sensor i, and n ∈ Z+

and mi ∈ Z+ are the dimensions of the corresponding
matrices. 'e process noise ω(k) and the observation noise
]i(k) are mutually independent processes with
E[ω(k)]T

i (l)] � 0 and 0-mean white Gaussian processes
with E[ω(k)ωT(l)] � δklQ(Q≽ 0) and E[]i(k)]T

j (l)] �

δklδijRi(Ri ≻ 0); δkl and δij are the Kronecker delta. In ad-
dition, the initial state x(0) is a 0-mean Gaussian random
vector with E[x(0)xT(0)] � Π≻ 0 and is uncorrelated with
the process noise ω(k) and the observation noise ]i(k), ∀k, i.
We also assume that Ci is full row rank.

2.2. Estimation Process. As shown in Figure 1, each esti-
mator calculates the estimate of the system state x(k) with
the minimum mean-squared estimate error based on the
observations received recently from the distributed sensors
by using multisensor Kalman filtering. We define

􏽥y(k)≜ y1(k)( 􏼁
T
, y2(k)( 􏼁

T
, . . . , yN(k)( 􏼁

T
􏽨 􏽩

T
,

yi(k) � yi t
i
k􏼐 􏼑1k−ti

k
≤ 1, for i � 1, . . . , N,

􏽥Y(k)≜ 􏽥y(1), 􏽥y(2), . . . , 􏽥y(k)􏼈 􏼉,

(3)

where yi(ti
k) denotes the received measurement from the

smart sensor i, which is stored in the buffer, as shown in
Figure 1, and ti

k denotes the received time.

􏽢x(k|k − 1)≜E[x(k)|􏽥Y(k − 1)],

􏽢x(k|k)≜E[x(k)|􏽥Y(k)],

e(k|k − 1)≜ x(k) − 􏽢x(k|k − 1),

e(k|k)≜ x(k) − 􏽢x(k|k),

P(k|k − 1)≜E e(k|k − 1)e(k|k − 1)
T

|􏽥Y(k − 1)􏽨 􏽩,

P(k|k)≜E e(k|k[ )e(k|k)
T
|􏽥Y(k)],

(4)

where 􏽢x(k|k − 1) and 􏽢x(k|k) are called as a priori and a
posteriori MMSE estimate, and P(k|k − 1), P(k|k) are the
estimation error covariance matrices related to the priori
and posteriori MMSE estimate, respectively. At sampling
time k, the priori estimate state 􏽢x(k|k − 1) and corre-
sponding estimation error covariance matrix P(k|k − 1) are
first calculated as follows:

􏽢x(k|k − 1) � A􏽢x(k − 1|k − 1), (5)

P(k|k − 1) � AP(k − 1|k − 1)A
T

+ Q, (6)

where the recursion starts from the initial estimation state
􏽢x(0|0) and corresponding initial estimation error covariance
matrix P(0|0) � Π. Let us further define

􏽥C(k)≜ C
T
1 1k− t1

k
≤ 1, C

T
2 1k− t2

k
≤ 1, . . . , C

T
N1k− tN

k
≤ 1􏼒 􏼓

T

,

􏽥R(k)≜ diag R1 + Iσk−t1
k
≤ 1, . . . , RN + Iσk−tN

k
≤ 1􏼚 􏼛,

(7)

Sensing unit i

Processing unit i

From other sensors

Estimator i

To other
sensors

St
or

er
 i

Triggering unit i
with SVTS or DVTS

yi (k)

• • •

Figure 1: Typical scheduling architecture of a smart sensor with
SVTS or DVTS.

Complexity 3



where σk−ti
k
≤ 1 � 0 if k − ti

k ≤ 1 is true, and σk−ti
k
≤ 1 � +∞,

otherwise, for i � 1, 2, . . . , N, and the matrix I is the identity
matrix with appropriate dimension. At the sampling time k,
each estimator calculates 􏽢x(k|k) and P(k|k) as follows:

P( k|k ) � P(k|k − 1)
−1

+ 􏽘

N

i�1
C

T
i R

−1
i Ci1k− ti

k
≤ 1

⎛⎝ ⎞⎠

−1

, (8)

K(k) � P(k|k)􏽥C
T
(k)􏽥R

†
(k), (9)

􏽢x(k|k) � 􏽢x(k|k − 1) + K(k)(􏽥y(k) − 􏽥C(k)􏽢x(k|k − 1)),

(10)

where † denotes the Moore–Penrose pseudoinverse.

Remark 1. If the statements (k − ti
k ≤ 1, i � 1, . . . , N) are

always true for all time k, the recursion (5)–(10) is the well-
known standard Kalman filter for the processes (1) and (2),
which keeps track of the Gaussian conditional probability
distribution of the system state x(k) that is conditioned on
all observations from the distributed sensors up to time k. To
distinguish this well-known standard Kalman filter from our
proposed variance-triggered filter as well as the other event-
triggered or data-driven filters, we call it as the full com-
munication Kalman filter [12]. For the full communication
Kalman filter, the state prediction estimation error variance
Var[x(k)|Y(k − 1) � y1(k − 1), y2(k − 1), . . . ,􏼈

yN(k − 1)}] converges to P≻ 0 of the unique positive
semidefinite solution to the discrete algebraic Riccati
equation (DARE) for the processes (1) and (2):

P � APA
T

+ Q − APC
T

CPC
T

+ R􏼐 􏼑
− 1

CPA
T
,

C≜ C
T
1 , C

T
2 , . . . , C

T
N􏼐 􏼑

T
,

R≜ diag R1, R2, . . . , RN􏼈 􏼉.

(11)

For the notational simplicity and convenience, we use
P � DARE(A, C, Q, R) instead of equation (11).

2.3. Dynamic Variance-Based Triggering Scheme. It is
noteworthy that a process or plant is observed by many
distributed smart sensors with wireless communication unit,
such as target tracking and environment monitoring, where
sensing data redundancy should be considered besides
power and bandwidth resources due to various design and
implementation considerations. 'erefore, from the per-
spective of resource conservation and full utilization, it is
inappropriate and improvident to make each sensor observe
the plant and transmit its observation to its neighbors all the
time. So, it is indispensable to develop an effective triggering
scheme to reduce the average rate of sensor’s observations
and transmissions by taking full advantage of the redun-
dancy of all recently received broadcast data from other
sensors. Motivated by a static variance-based triggering
scheme proposed in [12] and a dynamic event-triggered
transmission scheme proposed in [32], a new dynamic

variance-based triggering scheme is presented in this
section.

With consideration of notational simplicity and con-
venience, we use Pk ≜P(k|k − 1) to denote the state pre-
diction variance. We know that the state prediction variance
Pk reflects the uncertainty of the prediction state 􏽢x(k|k − 1)

with all available observations 􏽥Y(k − 1) up to the previous
step time k − 1. Hence, the estimator can schedule the smart
sensor to observe the plant and transmit its observation
according to the difference between the prediction variance
of the dynamically variance-triggered Kalman filter and the
steady-state prediction variance of the full communication
Kalman filter Pk − P � Var[x(k)|􏽥Y(k − 1)]−

limk⟶+∞Var[x(k)|Y(k − 1)] .
'erefore, we define the triggering variable ci

k and the
dynamic auxiliary variable εi

k as follows:

c
i
k �

1, if εi
k > δ

i
k,

0, otherwise,

⎧⎪⎨

⎪⎩
(12)

εi
k � Ci Pk − P( 􏼁C

T
i − σi, (13)

δi
k+1 � ρi

k+1δ
i
k − ρi

k − ρi
k+1􏼐 􏼑εi

k, (14)

0< ρi
k �

1 + 􏽐
k−1
l�k−Lc

i
l

L
≤ 1, (15)

where δi
k denotes the auxiliary offset variable related to the

recent triggering frequency ρi
k of the sensor i with δi

0 rep-
resenting the initial offset of the auxiliary system, and L ∈ Z+

represents the time-window.

Remark 2. Compared with the static variance-based trig-
gering scheme proposed in [12],

c
i
k �

1, if Ci( Pk − P )C
T
i − σi > 0,

0, otherwise,

⎧⎨

⎩ (16)

where the design parameter σi is constant, and the intro-
ductions of δi

k and ρi
k are critical ingredients of the dynamic

variance-based triggering scheme (12)–(15), which is par-
tially motivated by the dynamic event-triggered transmis-
sion scheme proposed in [32] for distributed set-
membership estimation, whereas the dynamic event-based
triggering scheme in [32] required all smart sensors to
observe and measure the plant or process all the time, which
does not take advantage of the redundancy of sampling data
from other sensors. In contrast, the dynamic variance-based
triggering mechanism (12)–(15) is based on the recently
received sampling data from other sensors and the pre-
diction variance to schedule each sensor’s observation and
transmission. In the meanwhile, the dynamic auxiliary
variable εi(k) is delicately established such that the dynamic
variance-based triggering scheme (12)–(15) can dynamically
regulate the ratio of triggered sensors to all sensors, and the
auxiliary offset variable δi

k is also delicately constructed such
that the one can dynamically regulate the intertrigger time
interval. In this sense, the value of δi

k and ρi
k could be
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adaptively adjusted in real time according to the amount of
recently received observations from other sensors and its
latest triggered status.

Lemma 1. For given initial offset δi
0 ≥ 0 and time-window

L ∈ Z+ in the dynamic variance-based triggering mechanism
(12)–(15), the auxiliary offset variable 0≤ δi

k ≤ δ
i
0 always holds

for all k ∈ Z+.

Proof. Under the dynamic variance-based triggering scheme
(12)–(15), there are two cases including ci

k � 1 and ci
k � 0.

For the first case ci
k � 0, considering the worse situation

ci
l � 0 for all 1≤ l≤ k, we have that

εi
k ≤ δ

i
k. (17)

'en, (15) indicates that

ρi
k − ρi

k+1 ≤
1
L

, (18)

ρi
k+1 ≥

1
L

. (19)

Combining (18) and (19) means that

ρi
k+1 − ρi

k − ρi
k+1􏼐 􏼑 � 2ρi

k+1 − ρi
k ≥

1
L

−
1
L
≥ 0. (20)

According to (14), combining (17) and (20) leads to that

δi
k+1 � ρi

k+1δ
i
k − ρi

k − ρi
k+1􏼐 􏼑εi

k, (21)

≥ 2ρi
k+1 − ρi

k􏼐 􏼑δi
k ≥ · · · ≥􏽙

k

l�0
2ρi

l+1 − ρi
l􏼐 􏼑δi

0 ≥ 0. (22)

For the another case, ci
k � 1 and from (22), that means

εi
k > δ

i
k ≥ 0. 'en, we can have that ρi

k − ρi
k+1 ≤ 0 from (15).

'us, (14) indicates that

δi
k+1 � ρi

k+1δ
i
k − ρi

k − ρi
k+1􏼐 􏼑εi

k ≥ ρ
i
k+1δ

i
k ≥ 0. (23)

'us, combining two cases, we can conclude that the
auxiliary offset variable δi

k ≥ 0 always holds for all
k ∈ Z+. □

Lemma 2. Under the dynamic variance-based triggering
scheme (12)–(15), if ci

M � 1, ci
N � 1, and ci

k � 0 with
M< k<N, M, N, k ∈ Z+, then (i) the auxiliary offset variable
δi

k ≥ δ
i
k+1 always holds for all ε

i
k ≥ −δi

k, and (ii) the auxiliary
offset variable ρi

kδ
i
k ≤ δ

i
k+1 ≤ ρi

k+1δ
i
k + (σi/L) always holds for

all εi
k < −δi

k.

Proof. From (12) and (15), we have that

εi
k ≤ δ

i
k, ρi

k − ρi
k+1 ≥ 0. (24)

'us, for 0≤ εi
k ≤ δ

i
k, (14) and (24) indicate that

δi
k+1 � ρi

k+1δ
i
k − ρi

k − ρi
k+1􏼐 􏼑εi

k ≤ ρ
i
k+1δ

i
k ≤ δ

i
k. (25)

'en, for −δi
k ≤ εi

k < 0, (14) and (24) yield that

δi
k+1 � ρi

k+1δ
i
k − ρi

k − ρi
k+1􏼐 􏼑εi

k

≤ ρi
k+1δ

i
k + ρi

k − ρi
k+1􏼐 􏼑δi

k ≤ ρ
i
kδ

i
k ≤ δ

i
k.

(26)

Combining (25) and (26) gives δi
k ≥ δ

i
k+1 for εi

k ≥ −δi
k.

Finally, for εi
k < −δi

k, combining (14) and (24) yields

δi
k+1 � ρi

k+1δ
i
k − ρi

k − ρi
k+1􏼐 􏼑εi

k ≥ ρ
i
kδ

i
k. (27)

In addition, Ci(Pl − P)CT
i ≥ 0 always holds for all l ∈ Z+;

it leads to εi
k ≥ −σi. 'us, we have that

δi
k+1 � ρi

k+1δ
i
k − ρi

k − ρi
k+1􏼐 􏼑εi

k ≤ ρ
i
k+1δ

i
k +

σi

L
􏼒 􏼓. (28)

Combining (27) and (28) yields ρi
kδ

i
k ≤ δ

i
k+1 ≤ ρi

k+1δ
i
k +

(σi/L) for εi
k < −δi

k.

Lemma 1 shows that the auxiliary offset variable δi
k is

always nonnegative with initial offset δi
0 ≥ 0 for all k ∈ Z+,

which makes the triggering condition in the dynamic var-
iance-based triggering scheme (12)–(15) more stringent than
the one in the static variance-based triggering scheme (16),
and it is shown in Lemma 2 that the triggering condition in
(12)–(15) can be adaptively slightly relaxed as the recent
triggered frequency decreases, which makes the overall es-
timation accuracy be guaranteed to some extent. □

Lemma 3. Under the dynamic variance-based triggering
scheme (12)–(15), let ci

M � 1, ci
Nd

� 1, and ci
k � 0 for

M< k<Nd, M, Nd, k ∈ Z+ with initial offset δi
0 ≥ 0, and

under the static variance-based triggering scheme (16), let
ci

M � 1, ci
Ns

� 1, and ci
k � 0 for M< k<Ns, M, Ns, k ∈ Z+.

9en, we have that Ns ≤Nd.

Proof. Supposing Ns >Nd, from (16), we can have that

Ci PNd
− P􏼐 􏼑C

T
i − σi � εi

N d ≤ 0. (29)

In addition, from (12), we also have that

εi
Nd
> δi

Nd
. (30)

According to Lemma 1, we know that δi
k ≥ 0 always hold

for all k ∈ Z+ because of δ
i
0 ≥ 0.'en, from (30), we have that

εi
Nd
> δi

Nd
≥ 0, but from (29), we also have that εi

Nd
≤ 0, which

leads to contradiction. 'us, by contradiction, we have that
Ns ≤Nd, the proof has been completed. □

Lemma 3 shows that the intertrigger time interval
generated by applying the dynamic variance-based trig-
gering scheme (12)–(15) is no less than the one by using the
static variance-based triggering scheme (16), which indicates
that the total triggering number and totally released data
packets resulted by the dynamic variance-based triggering
scheme (12)–(15) will be no more than the ones resulted by
the static variance-based triggering scheme (16).

2.4. Dynamic Switching Riccati Equation. It is easy to obtain
that the update iteration equation of the state prediction
variance Pk for ith smart sensor can be written as follows:
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Pk+1 � A P
−1
k + 􏽘

N

i�1
C

T
i R

−1
i Ci1k− ti

k
≤ 1

⎛⎝ ⎞⎠

−1

A
T

+ Q. (31)

It is easy to see from equation (31) that the state pre-
diction variance Pk+1 is the function of the state prediction
variance Pk and the recently received measurements from
other smart sensors and itself. For notational simplicity and
convenience, let us define Pk+1 ≜H(Pk, 1k−ti

k
≤ 1), where

H(·, ·) denotes the map from (Pk, 1k−ti
k
≤ 1) to Pk+1. Since the

binary indicator function 1k−ti
k
≤ 1 related to the recently

received measurements equals to either 1 or 0, the update
iteration Riccati equation (31) varies dynamically with the
status of each binary indicator function.

As a consequence, the linear system (1) and (2) with
the dynamic variance-based triggering scheme (12)–(15)
can be regarded as a dynamic switching system with
modes depending on the binary indicator function 1k−ti

k
≤ 1

related to the most recently received measurements from
other smart sensors and itself. In other words, the system
could dynamically switch among the modes as the binary
indicator function 1k−ti

k
≤ 1, describing the status of the

recently received measurements from other smart sensors
and itself.

Among these modes, there exist two extreme cases. 'e
first extreme case is that all binary indicator functions from
1k−t1

k
≤ 1 to 1k−tN

k
≤ 1 equal to 0, which means that the sensor

has not received any measurements in the latest sampling
period from any nearby smart sensors including itself. For
this case, from (31), we have that

Pk+1 � APkA
T

+ Q≜H0 Pk( 􏼁. (32)

'e second extreme case is that all binary indicator
functions from 1k−t1

k
≤ 1 to 1k−tN

k
≤ 1 equal to 1, which means

that the sensor has received all measurements in the latest
sampling period from all nearby smart sensors including
itself. For this case, from (31), we have that

Pk+1 � A P
−1
k + 􏽘

N

i�1
C

T
i R

−1
i Ci

⎛⎝ ⎞⎠

−1

A
T

+ Q≜H1 Pk( 􏼁. (33)

To proceed with stability analysis in next section, we
present the following theorem.

Theorem 1. If Ri ≻ 0 for i � 1, . . . , N and P0 ≻ 0, then
H1(Pk)≺Pk+1 ≺H0(Pk) holds for all k ∈ N.

Proof. Because of Ri≻0 for i � 1, . . . , N, we have that

C
T
i R

−1
i Ci �

���

R−1
i

􏽱

Ci􏼒 􏼓
T ���

R
−1
i

􏽱

Ci􏼒 􏼓 ≽ 0. (34)

'en, combining the binary indicator function, 1k−ti
k
≤ 1,

and (34) yields

0≺ 􏽘
N

i�1
C

T
i R

−1
i Ci1k−ti

k
≤ 1 ≺ 􏽘

N

i�1
C

T
i R

−1
i Ci, (35)

which leads to

P
−1
k + 􏽘

N

i�1
C

T
i R

−1
i Ci

⎛⎝ ⎞⎠

−1

≺ P
−1
k + 􏽘

N

i�1
C

T
i R

−1
i Ci1k− ti

k
≤ 1

⎛⎝ ⎞⎠

−1

≺Pk.

(36)

'us, from (36), we have that

A P
−1
k + 􏽘

N

i�1
C

T
i R

−1
i Ci

⎛⎝ ⎞⎠

−1

A
T

+ Q≺A( P
−1
k +

􏽘

N

i�1
C

T
i R

−1
i Ci1k− ti

k
≤ 1 )

−1
A

T
+ Q≺APkA

T
+ Q.

(37)

According to (32) and (33), we have the result that
H1(Pk)≺Pk+1 ≺H0(Pk) holds for all k ∈ N. □

3. Stability Analysis

In this section, the stability properties of the estimator with
the dynamic variance-based triggering scheme are investi-
gated and analyzed.

Let us define

h(X)≜AXA
T

+ Q. (38)

'e sequence Gk is constructed as follows: G0 � P0|0 and
Gk+1 � h(Gk).

Lemma 4. Assuming that (A,
��
Q

√
) is controllable, a suffi-

cient and necessary condition for the sequence Gk to converge
is that ρ(A)< 1 or A is stable, where ρ(A) is the spectrum of
A, and the sequence Gk diverges if and only if ρ(A)≥ 1 or A is
unstable.

Proof. Assume that A is stable or ρ(A)< 1, and X � h(X)

has a unique positive-definite solution G � h(G) � 􏽐
∞
k�0

AkQ(AT)k since (A,
��
Q

√
) is controllable, then

lim
k⟶+∞

Gk � lim
k⟶+∞

A
k+1

G1 A
T

􏼐 􏼑
k+1

+ 􏽘
k

j�0
A

j
Q A

T
􏼐 􏼑

j
⎛⎝ ⎞⎠

� lim
k⟶+∞

􏽘

k

j�0
A

j
Q A

T
􏼐 􏼑

j
� G ≽ Q,

(39)

hence that the sequence Gk converges if ρ(A)< 1 or A is
stable has been proved. Moreover, if the sequence Gk

converges, because of

lim
k⟶+∞

Gk � lim
k⟶+∞

A
k+1

G1 A
T

􏼐 􏼑
k+1

+ 􏽘
k

j�0
A

j
Q A

T
􏼐 􏼑

j⎛⎝ ⎞⎠,

(40)

the right-hand side series denoted by G of the above
equation converges. It is easy to notice that G is the solution
to X � h(X). In addition, since the property of controlla-
bility and (A,

��
Q

√
) is controllable, G is the full-rank and

positive-definite matrix. 'e fact that G � h(G) and G≻ 0
leads to that the matrix A is stable or ρ(A)< 1. Hence, it is
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proved that the sequence Gk converges if and only if ρ(A)< 1
or A is stable. Furthermore, ρ(A)≥ 1 or that A is unstable
means that the sequence Gk does not converge, or means
that the sequence Gk is unbounded because it is mono-
tonically increasing. Consequently, it has been proved that
the sequence Gk diverges if and only if ρ(A)≥ 1 or A is
unstable. □

Lemma 5 (see [12, 33]). Assuming that all binary indicator
functions from 1k−t1

k
≤ 1 to 1k−tN

k
≤ 1 equal to 1 for all time

k ∈ Z+, the dynamic switching Riccati equation (31) becomes
the Riccati equation of the standard Kalman filter. 9en, the
prediction variance sequence Pk􏼈 􏼉 converges to P≽ Q of the
unique positive semidefinite solution to the discrete algebraic
Riccati equation (DARE), which is given by (11).

Theorem 2. Assume that (A,
��
Q

√
) is controllable, then there

exists a unique positive definite satisfying P � H1(P) and a
unique positive definite satisfying G � H0(G) � h(G) such
that

lim sup
k⟶∞

Pk ≺G

lim inf
k⟶∞

Pk ≽ P.
(41)

If A is stable or ρ(A)< 1, then G � AGAT + Q, and if A is
unstable, then G � limk⟶+∞(Ak+1G1(AT)k+1 + 􏽐

k
j�0 AjQ

(AT)j) � +∞.

Proof. From 'eorem 1, we have that, for all k ∈ Z+,

H1 Pk−1( 􏼁≺Pk ≺H0 Pk−1( 􏼁, (42)

and when k⟶ +∞, then we have

lim
k⟶+∞

H1 Pk−1( 􏼁≺ lim inf
k⟶∞

Pk ≺ lim
k⟶+∞

H0 Pk−1( 􏼁,

lim
k⟶+∞

H1 Pk−1( 􏼁≺ lim sup
k⟶∞

Pk ≺ lim
k⟶+∞

H0 Pk−1( 􏼁.
(43)

According to Lemmas 4 and 5, when A is stable or
ρ(A)< 1, we have

P≺ lim inf
k⟶∞

Pk ≺G � AGA
T

+ Q,

P≺ lim sup
k⟶∞

Pk ≺G � AGA
T

+ Q,
(44)

and when A is unstable, we have

P≺ lim inf
k⟶∞

Pk ≺G,

P≺ lim sup
k⟶∞

Pk ≺G,
(45)

where G � limk⟶+∞(Ak+1G1(AT)k+1 + 􏽐
k
j�0 AjQ(AT)j) �

+∞. 'is completes the proof. □

Theorem 3. Assume that (A,
��
Q

√
) is controllable and

1k−ti
k
≤ 1 � ci

k (meaning assume that there is no packet loss and
time-delay in wireless communications), then there exists a
positive-definite matrix S such that the prediction variance
P≺Pk ≺ S holds in (31) together with (12)–(15) for all k ∈ Z+.

Proof. Without loss of generality, for smart sensor i we can
assume that there exists a sequence of positive integers
mj|mj ≤mj+1, j ∈ Z+􏽮 􏽯 for such that ci

k � 0 for all k≠mj

and ci
mj

� 1 holds. 'en, for all k≠mj, we have that

Ci Pk − P( 􏼁C
T
i − σi ≤ δ

i
k, (46)

Ci Pmj
− P􏼒 􏼓C

T
i − σi > δ

i
mj

. (47)

In addition, from Lemmas 1 and 2, combining (25), (26),
and (28) yields that

δi
k ≤ δ

i
0 +

1
L
σi, (48)

which holds for all k ∈ Z+. Combining (46) and (48) leads to

Ci Pk − P( 􏼁C
T
i − σi ≤ δ

i
k ≤ δ

i
0 +

1
L
σi, (49)

which holds for all k≠mj. 'en, there exists a positive-
definite matrix 􏽥P≽ Pk such that

Ci(
􏽥P − P)C

T
i ≥ δ

i
0 +

L + 1
L

σi ≥Ci Pk − P( 􏼁C
T
i , (50)

which holds for all k≠mj.
On the other hand, Lemma 1 indicates δi

mj
≥ 0. From

(47), we have that

Ci Pmj
− P􏼒 􏼓C

T
i − σi > δ

i
mj
≥ 0, (51)

which holds for all k � mj, and from 'eorem 1, we have
that

Pmj
≺H0 Pmj−1

􏼒 􏼓 � APmj−1
A

T
+ Q≺A􏽥PA

T
+ Q, (52)

which holds for all k � mj.
Combining (50) and (52), we take the positive-definite

matrix S � max 􏽥P, A􏽥PAT + Q􏼈 􏼉, then we have that

Pk ≺ S � max 􏽥P, A􏽥PA
T

+ Q􏽮 􏽯, (53)

which holds for all k ∈ Z+, and'eorem 2 shows that P≺Pk

holds for all k ∈ Z+. 'us, P≺Pk ≺ S holds for all k ∈ Z+.
'is completes the proof. □

Notice that, in view of 'eorems 2 and 3, the DVTS-
based Kalman filter initialized at sampling time k � 0 with a
priori initial covariance matrix P0|0 � Π≻ 0 ensures that the
prediction variance matrix Pk is positive definite and uni-
formly bounded from both above and below for any sam-
pling time k, which ensures that the estimation error is also
uniformly bounded in mean square for any sampling time k.

4. Simulation Results

In this section, the developed distributed cooperative fusion
estimation approach with variance-based triggering scheme
is applied to a single-target tracking problem, where the
sensors are deployed to track the state of a moving target,
whose motion model is given as follows:

Complexity 7



x(k) �

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x(k − 1) + ω(k − 1),

yi(k) �
1 0 0 0

0 0 1 0
􏼠 􏼡x(k) + ]i(k),

(54)

where x(k) � [px(k), vx(k), py(k), vy(k)]T denotes the
position and velocity components along the x-axes and y-
axes, respectively; yi(k) is the observation of the target’s
position provided by the i-th sensor for i � 1, 2, . . . , N; T is
the sampling time interval; and ω(k − 1) is a zero-mean
Gaussian process noise with the covariance

Q � q

T
3

3
T
2

2
0 0

T
2

2
T 0 0

0 0
T
3

3
T
2

2

0 0
T
2

2
T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (55)

and q> 0; ]i(k) is the observation noise assumed be zero-
mean Gaussian process noise with the covariance Ri � rI2×2
and r> 0. To improve the reliability and the overall per-
formance of the estimation systems, a wireless network of
five smart sensors is deployed to cooperatively sense the
motion state of a moving target, and each smart sensor only
transmits or shares its processed measurement to its nearby
sensors.

In order to provide a quantitative comparison of what
the total triggering number is on each smart sensor, the same
problem setting with three different transmission scenarios
is considered.

(i) 'e periodic triggering scheme (PTS): this case can
be achieved by setting σi ≡ 0 and δi

k ≡ 0 in (12) and
(13).

(ii) 'e static variance-based triggering scheme (SVTS):
this case is presented in (16), and the threshold
parameters in (16) are selected as σ1 � 0.015, σ2 �

0.015, σ3 � 0.016, σ4 � 0.019, and σ5 � 0.016.
(iii) 'e dynamic variance-based triggering scheme

(DVTS): the threshold parameters in (12)–(15) are
selected as σ1 � 0.01, δ10 � 0.005(0.01 + 0.005 � 0.0
15), σ2 � 0.01, δ20 � 0.005(0.01 + 0.005 � 0.015), σ3
� 0.01, δ30 � 0.006(0.01 + 0.006 � 0.016), σ4 � 0.01,

δ40 � 0.009(0.01 + 0.009 � 0.019), σ5 � 0.01, δ50 � 0.

006(0.01 + 0.006 � 0.016), and L � 5.

'e system and noise parameters in above three scenarios
are chosen as r1 � 0.1, r2 � 0.2, r3 � 0.3, r4 � 0.4, r5 � 0.5,

and q � 1.0.
'e simulation results for the above single-target tracking

problem are shown in Figures 2–5. To facilitate comparison
analysis, we define a trigger ratio (TR) of each smart sensor as a
triggering performance index by Ji

tr � Ni
atr/Ni

ptr, where Ni
atr

denotes the actually total triggering number of smart sensor i

and Ni
ptr denotes the total triggering number of sensor i

computed by the PTS. Note that in the PTS case, the total
triggering number of each smart sensor is 100, which means
that the TR is Ji

tr � 100% for each sensor. However, in the STVS
case, we find that the TR of sensor 1 is 74%, sensor 2 is 74%,
sensor 3 is 73%, sensor 4 is 74%, and sensor 5 is 73%. In
contrast, implementing the DVST (12)–(15), the TR of each
sensor is significantly reduced to J1tr � 45%, J2tr � 48%,
J3tr � 47%, J4tr � 49%, and J5tr � 44%, respectively. A detailed
comparison of the triggering number of each sensor in different
cases is illustrated in Figure 2. 'erefore, we conclude that the
DVTS is more efficient in reducing the rate of sampling and
communication among sensors than the SVTS and the PTS,
thus has more potential to ease the continual occupancy of the
limited resources, and Figure 3 shows the specific triggering
instants of each sensor node in the SVTS case and the DVTS
case. We can see from Figure 3 that the average intertrigger
times generated by the DVTS are always no less or larger than
the ones generated by the STVS.

To facilitate comparison of the estimation performance
between different triggering schemes, the quadratic esti-
mation error (QEE) and average quadratic estimation error
(AQEE) are used and presented as follows, respectively:

QEE(k) �
1

LM

􏽘

LM

h�0
x(k) − 􏽢x

h
i (k|k􏼐 􏼑)

T
P

i
k/k􏼐 􏼑

h
x(k) − 􏽢x

h
i (k|k􏼐 􏼑),

AQEE �
1
St

1
LM

􏽘

St

k�0
􏽘

LM

h�0
x(k) − 􏽢x

h
i (k|k􏼐 􏼑)

T
P

i
k/k􏼐 􏼑

h
x(k) − 􏽢x

h
i (k|k􏼐 􏼑),

(56)

where LM is the total number of tests, St is the total steps of the
estimation, x(k) denotes the actual state of the moving target,
and 􏽢xh

i (k|k) and (Pi
k/k)h denote the estimation state and the

estimation error covariance of the moving target estimated by
the sensor i at the sampling time k in the h-th test.

'e simulation results between the SVTS case and the
DVTS case are analyzed by calculating the QEE and the AQEE
on each sensor and are demonstrated in Figures 4 and 5. It is
shown in Figures 4 and 5 that the SVTS and the DVTS provide
approximately the sameQEE, whichmeans that the DVTS does
not provide larger QEE than the ones by applying the SVTS
even through less total triggering number. In addition, Table 1
shows that the AQEE provided by the DVTS is slightly larger
than the one provided by the SVTS, which means that the
DVTSwith less total triggering number requires a small sacrifice
of the AQEE performance. To sum up, the overall superiority of
the developed DVTS over the PTS and the SVTS is verified.
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Figure 3: Specific triggering instants of each smart sensor in different cases of the SVTS and the DVTS: (a) straight trajectory; (b) sinusoidal
trajectory.
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Figure 2: Total triggering number of each smart sensor in different cases of the PTS, the SVTS, and the DVTS: (a) straight trajectory;
(b) sinusoidal trajectory.
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Figure 4: Actual trajectory of the moving target and its estimated trajectories on sensor i in different cases of the SVTS and the DVTS:
(a) straight trajectory; (b) sinusoidal trajectory.
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Figure 5: Quadratic estimation error εi
k of sensor i in different cases of the SVTS and the DVTS: (a) straight trajectory; (b) sinusoidal

trajectory.
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5. Conclusion

In this paper, the distributed cooperative estimation
problem for discrete linear stochastic dynamical systems
over resource-constrained wireless sensor networks has
been addressed. What time does each smart sensor need to
observe or sense the dynamical system and transmit its
local measurement to its nearby sensors, it is determined
by the DVTS. 'e distributed cooperative estimators with
SVTS and DVTS have been delicately established and a
new type of Riccati equation has been derived as a critical
element of the SVTS and the DVTS for these estimators.
'e stability and accuracy of the proposed estimation
method is investigated, and the boundedness of the ex-
pected estimation error covariance is analyzed. Finally, a
moving target tracking model has been employed to il-
lustrate the effectiveness and advantage of the proposed
approach, which can be also used in many other appli-
cations, especially in the field of the collaborative per-
ception of WSNs, such as cooperative target localization
and tracking, cooperative control and guidance of mobile
robots, and smart grids.
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