
Research Article
Event-Tree Based Sequence Mining Using LSTM
Deep-Learning Model

János Abonyi , Richárd Károly, and Gyula Dörgö

MTA-PE Lendület Complex Systems Monitoring Research Group, Department of Process Engineering, University of Pannonia,
Egyetem u. 10, Veszprém H-8200, Hungary

Correspondence should be addressed to Gyula Dörgö; gydorgo@gmail.com

Received 10 June 2021; Accepted 31 July 2021; Published 16 August 2021

Academic Editor: Gonzalo Farias

Copyright © 2021 János Abonyi et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

During the operation of modern technical systems, the use of the LSTM model for the prediction of process variable values and
system states is commonly widespread. (e goal of this paper is to expand the application of the LSTM-based models upon
obtaining information based on prediction. In this method, by predicting transition probabilities, the output layer is interpreted as
a probability model by creating a prediction tree of sequences instead of just a single sequence. By further analyzing the prediction
tree, we can take risk considerations into account, extract more complex prediction, and analyze what event trees are yielded from
different input sequences, that is, with a given state or input sequence, the upcoming events and the probability of their occurrence
are considered. In the case of online application, by utilizing a series of input events and the probability trees, it is possible to
predetermine subsequent event sequences. (e applicability and performance of the approach are demonstrated via a dataset in
which the occurrence of events is predetermined, and further datasets are generated with a higher-order decision tree-based
model. (e case studies simply and effectively validate the performance of the created tool as the structure of the generated tree,
and the determined probabilities reflect the original dataset.

1. Introduction

Nowadays, uncovering possible frequent event sequence
scenarios has been a critical task across many disciplines. In
the age of big data, when an immense amount of data is
recorded into logs in the scope of the industry 4.0 trend, it is
important for engineers to acquire as much knowledge
about the industrial processes as possible [1, 2]. By using
frequent pattern mining algorithms on event logs, we are
able to identify sequences that can lead to given system
states. (is particular method has already proved its capa-
bility across numerous applications and industries. Taub
et al. use sequence mining to distinguish efficient and
nonefficient action patterns among their subjects in a game-
based learning environment [3]. A similar frequent pattern
identification method was used to give insight into suc-
cessful learning patterns using Betty’s brain computer-based
learning environment [4]. A universal (language indepen-
dent) algorithm was proposed for linguistical pattern

discovery, where special attention was paid to a clear, easily
understandable output [5]. Kant et al. proposed a new al-
gorithm (MCPRISM) to mine min-closed sequences to
identify comment section spam content on websites [6]. A
new framework called malicious sequential pattern-based
malware detection was developed by using a novel sequential
pattern mining algorithm (MSPE) to recognize new, unseen
malicious executables in computer systems [7]. Weiss uses a
genetic algorithm for analyzing the temporal patterns in the
alarm data of telecommunication systems to identify
equipment failure [8]. Sequential pattern mining has been
also used for event prediction in numerous applications
[9, 10].

Although these examples are perfectly capable of ful-
filling the sequential pattern mining task, traditional algo-
rithms suffer greatly with runtime and accuracy when
dealing with massive datasets [11]. Another drawback of the
frequent pattern mining solutions is that their output data
are proved to be challenging to interpret and

Hindawi
Complexity
Volume 2021, Article ID 7887159, 24 pages
https://doi.org/10.1155/2021/7887159

mailto:gydorgo@gmail.com
https://orcid.org/0000-0001-8593-1493
https://orcid.org/0000-0003-1864-7315
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7887159

handle—especially when the number of the mined se-
quences is high—often introducing a new problem to solve
[12]. To represent the yielded information, the frequent
pattern tree proved to be a much more compact and
workable data structure [13].

Machine learning techniques are excellent tools for
processing massive datasets. Learning patterns from ex-
emplary training sequences is a similar task as in the case of
learning languages and the identification of frequent event
sequences, where the use of long-short term memory
(LSTM) yields better results compared to that of traditional
recurrent neural networks (RNNs) [14]. (e reason why
LSTM is suitable for this application is the use of the forget
gate in its cell, which is able to reset the internal state of the
network [15]. (e algorithm known as the seq2seq learning
method was developed in 2014 by Sutskever et al. at Google
for frequent sequence learning using LSTM to improve
machine translation [16]. Ever since this method has been
used in numerous applications. Karatzoglou et al. used it to
improve location-based services by learning human se-
mantic trajectories and better predicting their upcoming
location [17]. (e method’s capabilities have also been
demonstrated in finances by Rebane et al. who analyzed the
performance for cryptocurrency price prediction [18]. A
seq2seq model-based approach was used to improve query
focused summarization performance [19]. Wu et al. de-
scribed a novel method to create, store, and convert logs of
Internet of (ings big data systems to be later processed
through their proposed seq2seq algorithm [20]. (e method
has also been applied in manufacturing systems. Hwang
et al. used the algorithm to predict a furnace temperature
based on other process variables with a very high accuracy
[21]. (e general application of this structure for event
prediction has been described in detail by Dörgő et al.
[22, 23].

Fundamentally, the output of a seq2seq approach is a
single sequence, which consists of the items that have been
found as the most probable at each prediction step. By using
a heuristic search algorithm during inference, further in-
formation can be retained from each prediction step. (is
information can aid us to understand better the black-box
model of the prediction [24].(is optimization is done using
beam search, which retains several best items—the number
usually referred to as beam width. Cohen and Beck studied
the performance degradation in neural sequence models
when an inappropriate beam width is chosen [25]. In recent
years, the use of beam search instead of the traditional
greedy search was favored because it usually provides much
better results, although it is taxing on runtime [26].Li et al.
used a seq2seq model with beam search decoder to realize a
dependency parser with a direct head prediction with
promising performance [27]. Williams et al. proposed the
use of beam search to build an end-to-end speech recog-
nition system, which is capable of adapting the inference
process based on contextual signals at each prediction step
[28]. Several different pruning strategies have been explored
to be used with beam search to improve runtime [29]. A
seq2seq model using the dynamic beam width was applied
by Jahier Pagliari et al. to an embedded translation system in

order to improve its efficiency [30]. A known drawback of
the beam search algorithm is that it produces pretty similar
output sequences in certain use cases. A solution for this
phenomenon was proposed for image captioning [31].

(is paper aims to create own implementation of the
seq2seq learning method with a beam search decoder, which
is referred to as the seq2probTree method later. (is method
will be realized in the Python environment, and it is able to
create a probability tree that describes the alternative net-
work of events based on a given input.(e implemented tool
is capable of displaying the output an easy to interpret,
structured probability tree, thus giving a visualization of the
prediction and aiding the debugging of seq2seq models, as
the fault analysis of deep neural networks is a task with
enormous importance, especially in the case of safety-critical
application [32].

First, in Section 2, the methodology will be explained.
Definitions will be given to the necessary expressions and
the prediction task at hand. (e LSTM deep-learning
model will be described along with the tree creation pro-
cess.(emetrics used for the evaluation will also be defined
in this section. In Section 3, the implementation process
and the used toolboxes will be presented briefly. (en, the
seq2probTree method will be put to the test by applying it
on a first-order Markov chain model and later on a higher-
order tree-based system, where the extent to which the
method is able to reconstruct the tree is checked, and the
necessary comparison score is defined. Finally, the real-life
practical applicability is confirmed by using it on the alarm
logs of a hydrofluoric acid alkylation production unit. Last,
in Section 4, the findings and experiences of using the
developed method will be summarized, and further steps in
the subject will be proposed.

2. Methodology

In this section, the previously defined task will be explained
in detail. (e definition will be given to an event sequence
and how its probability is calculated. (e peculiarity of the
seq2probTree method is explained, creating a whole se-
quence tree instead of only predicting the most likely sce-
nario. Here, in addition to the theory of prediction, its
extension to tree-based event-scenario generation is also
provided. (e metrics used for the evaluation of the pre-
dicted event scenarios are also explained in detail.

2.1. Sequences and the Prediction Task. Industrial processes
frequently generate event logs those are logically consisting
of events (denoted as ei) related to production, safety,
transportation, storage, sales, financial transactions, mar-
keting, etc. An event log defined asDT database is an ordered
list of these events, where the events are arranged according
to their start time in the ascending order.(e DT dataset can
be segmented into sequences (denoted as Φn), which are the
chronologically ordered lists of events Φk: �

e1⇒ e2⇒ · · · ⇒ ek. According to different aspects, this
segmentation can be carried out: causal connection of states,
temporal segmentation, periodicity, etc. (erefore, a

2 Complexity

sequence of k events is referred to as a k-length sequence and
is denoted byΦk. (ese events represent the occurrence of n

different states (type of events) of the set S � s1, s2, . . . , sn􏼈 􏼉.
(e sequence Φk: � e1⇒ e2⇒ · · · ⇒ ek can be divided
chronologically at any part as Φk � (Φk′ ⇒Φk″), where Φk′
and Φk″ are the antecedent and future sequence of states,
respectively (naturally, k � k′ + k″). Hereinafter, the “′” and
“″” symbols denote the past and future sequences or states,
respectively.

As single or multiple connected processes usually gen-
erate the data analyzed here, a causal flow connects the
individual temporal instances of states (regardless of the type
of the dataset, e.g., events, items, transactions, etc.), and the
number of occurrences of different states is not independent
of each other. (erefore, the probability of the occurrence of
the Φk sequence P(e1⇒ e2⇒ e3⇒ · · · ⇒ ek) can be calcu-
lated by the chain rule and the conditional probabilities of
transitions between the events according to the following
equation:

P Φk(􏼁 � P e1(􏼁 × P e2 | e1(􏼁 × P e3|e1⇒ e2(􏼁 × · · ·

· · · × P ek | e1⇒ e2⇒ · · · ⇒ ek−1(􏼁.
(1)

(erefore, according to the chain rule, the probability of
a k-length sequence can be calculated as the product of the
conditional probabilities of the step-by-step transition from
the sequence of antecedent events to the present one. A
conditional probability is the ratio of the number of oc-
currences of the more extended sequence and the shorter
one, denoted by the supp value of the sequence, according to
the following equation:

P ek |Φk−1(􏼁 �
P Φk(􏼁

P Φk−1(􏼁
�

supp Φk(􏼁

supp Φk−1(􏼁
. (2)

(is probability of transition reflects how confident is
the next state knowing the previous sequence of states in
Φk−1.

2.2. /e Network of Alternative Events: Sequence Trees.
(emethodology where the prediction of the following state
with the highest conditional probability is accepted was
described by Dörgő and Abonyi [22]. However, the un-
derlying processes and, hence, the resultant datasets can be
highly complex. (e ultimate goal of this method is being
able to create an event sequence tree that describes the
possible courses (all highly probableΦk″) of events based on
a given input sequence (Φk′). Figure 1 shows the idea in
detail. (e horizontal axis indicates the time and illustrates
how the possible future scenarios after k′ past events are
ordered in a tree structure. (e red branch of the tree in-
dicates the scenario if the predictions of the highest prob-
ability are accepted in every prediction step, namely, by
using the greedy search algorithm.(e EOS tag indicates the
end-of-sequence prediction.

So far, only the scenario with the highest probability has
been predicted, ignoring the possibility of the occurrence of
a less likely, however, highly informative and essential

subsequence, which can indicate a different scenario of
upcoming events. (e added feature of this method is to
uncover the information that these highly probable se-
quences may yield.

(erefore, accepting that the conditional probability-
based prediction model often predicts several events with
similar probability, here, the implemented beam search
algorithm is described, thus not just the future sequence with
the highest probability is accepted, but a scenario tree is
formalized accepting all the predicted events above a certain
probability threshold (Pthr). (erefore, after the occurrence
of the first k′ events, the prediction of the first future event e1″
is accepted if its confidence of transition is above a specific
Pthr limit as follows:

e1″|P e1″|Φk′
􏼒 􏼓>Pthr􏼚 􏼛. (3)

Applying equation (3) in every prediction step, not a
single future sequence but multiple sequences or possible
future scenarios are predicted as depicted in Figure 1. (us,
as it is described by the prediction task, the P(Φk″ |Φk′

)

conditional probability is to be determined among all
possible future Φk″ sequences.

In order to annotate the scenarios as well, a hierarchical
annotation was introduced in the superscript of the pre-
dicted event: the numbers divided by commas after the “″”
mark indicate the likeliness of the predicted event in the
prediction step as the number in order of the likeliness of the
prediction, where 1 indicates the most likely future state. For
instance, the tag e″

,1,3,1 shows that this is the third predicted
future event (three numbers are present after the “″” mark),
and this was the event with the highest probability for the
first predicted state e″

,1; then accepting this prediction, the
second predicted event has the third highest probability e″

,1,3

and accepting the first two predictions, the third predicted
event had the highest probability in the given prediction
step. Similarly, the e″

,2,1 future state is the prediction with
the second highest probability (e″,2) for the first future event
and accepting this prediction, this is the prediction with the
highest probability in the second prediction step. (erefore,
continuously accepting the most likely predictions, the se-
quence e″

,1⇒ e″
,1,1⇒ e″

,1,1,1⇒ · · · is predicted, highlighted
by the red arrow in Figure 1. However, in this sequence, the
predictions with the highest probability are accepted in every
step, the overall probability of the sequence is not maximal
in every situation, since after the acceptance of a less likely
prediction in a prediction step, the following predicted
events could be of a high probability and then the overall
probability of the occurrence of the sequence can be rela-
tively high (the overall probability of the occurrence of a
sequence is the product of the transition probabilities
according to equation (1)).

By repeating the prediction task at each node, the se-
quence tree explained in Figure 1 may be created. After each
prediction step, by meeting the confidence of all the possible
events to the previously defined Pthr probability limit, we can
make sure that we keep the complexity of the tree as low as
necessary for the given task.

Complexity 3

2.3./eLSTMDeep-learningModel. In the seq2seq machine
learning method, the so-called long-short term memory is
utilized as a recurrent neural network of choice. (is net-
work was specifically developed to deal with the problem of
vanishing gradients with the least possible computational
cost increase [33]. (e LSTM network is well-known for its
capability of classification, processing, and prediction
making on time series data due to its relative insensitivity to
gap length (lag) between discreet events, which property is
welcome in the given use case. (e LSTM structure is
depicted in Figure 2.

(e input of the model: Figure 2 highlights the
structure of the input sequences. First, an end-of-se-
quence (EOS) tag is appended to the end of every
sequence to indicate the end of the event series. (e
implemented EOS tag is added to the end of the se-
quences and handled similarly to all the other events in
the subsequent steps. Moreover, the order of the events
in the input sequence is reversed, since according to
Sutskever et al. [16], the prediction accuracy signifi-
cantly improves when the beginning of the input se-
quence is close to the beginning of the predicted
sequence.
Embedding layer: (e described sequence of input
events needs to be transformed into a mathematically
manageable vector of numerical values. (erefore, first,
the symbols are encoded as one-hot encoded vectors,
oht of binary values of length nd, where nd is the
number of one-hot encoded symbols. In the one-hot
encoded vectors, only one bit related to the encoded
symbol is fired. A detailed explanation and visualiza-
tion of one-hot encoding can be found in [34]. (en,
the embedding layer transforms the one-hot coded
vectors into a lower dimension (ne) of continuous
values using a xt � Wemboht linear transformation.
Note that, in Figure 2, the embedded forms of the EOS
symbol are denoted by the symbol EOS.

Encoder and decoder layers: (e encoder LSTM layer
processes the sequence of one-hot coded and then
embedded symbols. Instead of calculating its output
values, it maps the sequence into its internal states.
(ese internal weights of the encoder layer represent
the state of the process, which generated the events.
(ese weights are used to condition the decoder layer,
which means the transfer of information of that hap-
pened previously in the process and generally means
copying the encoder layer’s weights into the decoder
layer, obtaining the same structure (of nu LSTM units).
(ese weights indicate the prediction required from the
decoder layer. After the input of an (embedded) start-
of-sequence symbol, the decoder layer predicts the next
event of the predicted sequence iteratively, consistently
applying the previously predicted event as the input for
the prediction of the next event. (is procedure is
repeated until an end-of-sequence symbol is predicted
or the maximum sequence length is reached.
Dense layer: After the decoder layer maps the input
event x

k″
″ into a vector of real values h″ represented as

h″ � [h1″, . . . , hnU
″], these values are used to calculate

the probabilities of occurrence of the events using the
softmax activation function of the dense layer in
Figure 2,

P e(t+1)″ | xt″􏼐 􏼑 � P e(t+1)″ | ht″􏼐 􏼑 �
exp ht″(􏼁

Tws,j + bj􏼐 􏼑

􏽐
nd

j�1 exp ht″(􏼁
Tws,j + bj􏼐 􏼑

,

(4)

where ws,j represents the j-th column vector of the
weight matrix of the output dense layer of the network
Ws, and bj represents the degree of bias. Once the
probability of each state in our dictionary is deter-
mined, all the predictions above the defined threshold
Pthr is accepted as the next event of the related future
scenario,

Past Present Future

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

e″,1,1,2

e″,1,1,1

e″,1,1

e″,1,2

e″,2,1

e″,2e′k′e′1 e′2

e″,1

e″,3

Time

...

...

...

...

...

Figure 1: (e predicted scenarios ordered in a tree structure (the EOS tag indicates the end-of-sequence prediction).

4 Complexity

e(t+1)″ | P e(t+1)″ | ht″􏼐 􏼑>Pthr􏽮 􏽯. (5)

2.4. Creation and Traversal of the Probability Trees. Prior to
prediction, the sequence of events that defines the state of the
process is to be transformed to the internal state of the

encoder layer.(en, these internal states of the encoder layer
containing information on the history of the process are
transferred to the decoder layer. (e prediction starts with
the input of a start-of-sequence symbol (marked as StOS in
Figure 2). (e decoder network generates the prediction of
the next event, which is reintroduced into the input of the
decoder network and applied as the input in the next time

e″,3 ... EOS

…

…

Internal
LSTM
states
(h, c)

En
co

de
r

D
ec

od
er

Reinject
until EOS

or
maximum

lengthEO· S

Encoder Embedding Decoder Embedding

EOS … StOS … EOS

…

…

Dense

Φ′ Φ″

…

…

h″nUh″kh″2h″1

e″k″e″2e″1e′k′ e′2 e′1

x′k′ x′2 x′1 x″t″

e″,2

e″,2,1 EOS

EOS

EOS
EOS

EOS
EOS
...

...

EOS

e″,1,1

e″,1,1,1

e″,1,1,2

e″,1,2

e″,1

Figure 2: (e illustration of the structure of the sequence-to-sequence event-scenario prediction. (e encoder model maps the states of the
input sequence into a fixed-length vector-based representation. Using these vector-based representations of input events as the initial state,
the decoder model determines the next event. However, using the probabilities calculated by the dense layer, not just the event with the
highest probability is recorded, but event scenarios are predicted using every prediction above a predefined threshold. (e StOS and EOS
tags mark the start-of-sequence and end-of-sequence tags, respectively.

Complexity 5

step. By utilizing the original seq2seq learning method, the
generated events are continuously appended to the predicted
sequence of events. (e feature added by the seq2probTree
method is that after the first prediction step following the
start-of-sequence symbol, we do not simply accept an event
as the next with the highest probability. However, we take
the entire output vector and apply equation (3), thus
pruning the candidates for the next possible event. (en, we
further explore the network of alternative events during
which the probability of each upcoming event is determined
(and stored if that probability is adequate), thereby realizing
the beam search algorithm. (e prediction process is con-
tinued until the layer generates the end-of-sequence symbol
or reaches the previously set limit of the length of the
predicted sequence in the case of every scenario.

(e method results in a probability tree that is explored
and recorded in a depth-first manner (Figure 3). (e re-
source demand of this approach is significantly increased as
it is necessary to store all the internal LSTM states and the
previous prediction’s output for each step—depending on
the original number of the possible events—could be a
memory hog. In addition, an increase in the inference
runtime is expected as the time demand of the depth-first
search algorithm isO(|V| + |E|), whereV and E stand for the
number of vertices and edges in the tree, respectively. (e
pseudocode for the tree traversal and the recursive pre-
diction step is given below.

2.5.EvaluationandMetrics. (e evaluation of the model was
carried out using metrics that measure the potential ap-
plicability of the method. Since the focus is on the devel-
opment of a prediction system that draws attention to the
most possible outcomes of the process, three performance
metrics have been identified for characterizing the sequence
containing the events that are found suitable in every step by
using equation (3). (erefore, for easier notation, we in-
troduce 􏽢Φ, a sequence containing the events with only
adequate prediction probabilities in every step.

First, S1 is the percentage of the 􏽢Φ sequences that include
at least one well-predicted event. For mathematical for-
mulation,Φ is the sequence of events that we aim to predict,
while Φ″ is our prediction. N is the number of sequences in
the analyzed database, the cardinality of a set is marked with
|∗|, while the common elements in two sequences are
marked as their intersection. Mathematically, S1 is expressed
as follows:

S1 �
􏽐

N
n�1 Φn ∩ 􏽢Φn

″
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ 1􏼐 􏼑

N
. (6)

Second, S%, a set-based similarity measure that describes
the well-predicted events as a percentage of the length of the
target sequence has been defined. (e events do not have to
be in the order of occurrence, and S% measures how ac-
curately the type of events are predicted,

S% �
􏽐

N
n�1 Φn ∩ 􏽢Φn

″
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌/ Φn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N
. (7)

Finally, SED was proposed, which is an edit distance-
based similarity metric that provides the edit distance
between the actual (target) and predicted sequence as a
percentage of the length of the more extended sequence
among them. (e edit distance yields the minimum number
of elements that must be inserted or skipped in the com-
pared sequences in order to be identical. (e edit distance of
two sequences is marked with ED, and equation (8)
mathematically describes the SED edit distance-based simi-
larity metric,

SED �
􏽐

N
n�1 ED Φn, 􏽢Φn

″􏼐 􏼑

N
. (8)

(ese performance metrics are calculated for each se-
quence on the tree, whenever a leaf is found, that is, EOS is
predicted, or the maximum sequence length is reached.
However, in order to make the resulting sequences even
more comparable, their confidence is also calculated.
Confidence for each 􏽢Φ is defined as a product of the supports
of all the containing events in the sequence. (e support of
the event is the probability the LSTM calculated for that
item, given the sequence of the previous events. For the
events in the input sequence, the support is determined as a
value of 1,

confidence � 􏽙
k

i�1
P ei|

􏽢Φi−1􏼐 􏼑. (9)

3. Implementation and Results

In this section, a summary is provided on the imple-
mentation of the proposed method. (en, the used vali-
dation techniques are detailed, and the obtained results are
evaluated. Since the implemented tool is used for diagnostic
purposes, the results should be easily reproducible.(us, the
validation is performed by applying the proposed methods
on examples with different complexities. First, the realized
system is validated on a simple first-order Markov chain
where the method’s capability to reproduce the sequence
tree is examined. (en, to demonstrate the proposed
method’s capability to understand higher-order relation-
ships between events, a more complex benchmark dataset is
generated using a tree-based system. Finally, the method is
tested on a real-life production unit.

3.1. Realization of the seq2probTree Method. (e described
method was implemented in Python using the Spyder 4
Integrated Development Environment in the Anaconda
open-source data science development platform. (is
platform was ideal for the task as most of the necessary
libraries are included by default, thus minimizing the setup
process for development. (e LSTM RNN was implemented
using Keras, a deep-learning application programming in-
terface running on top of the TensorFlow end-to-end open-
source machine learning platform. Keras API is well-known
for its full-fledged documentation and high-quality example
codes, which are usually very well commented for easy

6 Complexity

adaptation. In order to decrease the runtime of the training
process of LSTM, the NVIDIA CUDA®Deep Neural Net-
work (cuDNN) library was utilized. Since Keras is built on
top of Tensorflow, which happened to be a cuDNN
accelerated framework after the initial setup, the time re-
quired by the LSTM training was reduced tenfold.(is speed
increase was provided by an NVIDIA Geforce GTX 1080 Ti
graphics processing unit.

(e probability trees presented in this paper were
generated using the ETE toolkit for Python, which provides a
wide range of tree-handling options and node annotation
features alongside a tree visualization system to output the
resultant trees. (e code of Markov chain models was
created in MathWorks MATLAB environment for the ease
of exporting the simulated data into .xlsx format and

importing it into Python using the pandas library. However,
due to the vast size of the training dataset for the third-order
Markov model, MATLAB’s .m format had to be utilized,
which can be handled by SciPy (conveniently included in
Anaconda).

(e finished implementation consists of two routines.
(e first contains the selection of the desired dataset, the
setup of the LSTM, the training procedure, and the creation
of the training history plots. After the training process has
been completed, the encoder and decoder models are saved,
thus eliminating the necessity of running the model training
with each subsequent session of the application of the tool.
(e second routine consists of loading the LSTMmodels, the
recursive decoding, and all the functions necessary for the
metric calculation and the tree generation and output.

C

A

B

E

JIH

D G

MLK

F

Figure 3: Depth-first traversal of a tree structure.

Require: modelLSTM, eventseqinput
Create root node for TreeEvent
Append events in eventseqinput to TreeEvent
inputLSTM � inputConversion (eventseqinput) \(⊳\) Conversion of input to match Encoder Embedding layer format
statesLSTM � encoderLSTM.prediction(inputLSTM)

RecursiveDecoding(inputLSTM, statesLSTM,TreeEvent)

ALGORITHM 1: Preprocessing before prediction.

Require: inputLSTM, statesLSTM, TreeEvent
outputLSTM, statesLSTM � decoderLSTM.prediction(inputLSTM, statesLSTM)

i� 0
While (ere is e″|P(e″)>Pthr in outputLSTM AND i<NThr do
Add e″ to Treeevent
Delete e″ from outputLSTM
if not(e″ is EOSOR sequencelengthMAX reached) then
RecursiveDecoding(inputLSTM + e″, statesLSTM,TreeEvent)

i� i+ 1

ALGORITHM 2: RecursiveDecoding function.

Complexity 7

3.2.Validation onFirst-OrderMarkovModel. In this section,
a brief summary will be given on how the proposed method
has been implemented. For the ease of validation, a simple
Markov chain is used. (e model consists of 12 states that
follow each other in a row as a rule of thumb. (e only 2
exceptions are state 4 and 7, which break this rule. While
transitioning from state 4, there is a probability of 0.35 that
the system will “reset,” thus returning to state 1. If the system
reaches state 7, there is a 30% chance that the system skips
the following 2 states and goes right to 10. (is behavior can
be observed in Figure 4.

(e dataset was established by creating 10000 sequences
utilizing the described Markov chain. Each sequence starts
from a randomly selected system state, and the length is also
randomly determined between 9 and 12. After the gener-
ation of the dataset, the LSTM model was trained by using
the following parameters:

(i) Embedding dimensions� 6
(ii) Latent dimensions� 15
(iii) Batch size� 256
(iv) Epochs� 70

(e training’s accuracy and loss can be observed in
Figure 5. In order to validate the model’s performance, a
cross-check wasmade by feeding each state as an input to the
encoder, thus initializing the internal LSTM states. It is
important to note here that to initialize the encoder for the
validation, not only the state from which the prediction
starts needs to be used as the input but also the previous two
states; as for the model training, each sequence in the da-
tabase was separated after the third state as input and output.
(en, one prediction step is completed, and the output of the
LSTM is recorded. (is is repeated for each state, creating
the validation transition matrix, which is then compared to
the transition matrix of the first-order Markov chain (part
(a) in Figure 4). In Figure 6, each predicted value is illus-
trated in function of the original transition probability. (e
calculated coefficient of determination for this simple ex-
ample is as high as 0.9994.

After the training was completed, the seq2probTree
method was utilized with Pthr � 0.2 and by giving the input
sequence of [1, 2, 3] to the taught LSTM model. (e max-
imum output sequence length was set to 12.

Figure 7 gives visual aid about the metrics placed at each
node on the probability tree, while the acquired results can
be observed in Figure 8. Each node on the tree has at least
three properties: name, support, and confidence (top and
bottom values, respectively). (e EOS nodes also have the
three performance metrics calculated for the given sequence:
S1, S%, and SED, values of which can be found in the right
column in the specified order from top to bottom. For
example, it can be observed from Figure 7 that the seq2-
probTree method predicted state 11 after the subsequence
ending with state 10 with a probability of 0.49. In addition,
the calculated probability of ending the sequence after state
11 is 0.5. We can also see that the confidence of Φk—thus,
the whole sequence ending with EOS—is 0.04. (e S1 value
also shows the highlightedΦk sequence that every entry (1.0)

in the input database starting with the given Φk′ sub-
sequence—in this case [1 2 3]—has at least one state that has
been predicted in Φk″ by the method. S% being 0.68 gives us
the idea that the states predicted in Φk″ occur in 68% of the
database entries starting with [1 2 3]. (e last metric of this
EOS node on the probability tree—SED—shows that the
average edit distance—thus the number of changes that need
to be made to match the sequence—is 4.49, given the
aforementioned Φk′ .

(e properties of the first-order Markov chain are ob-
servable in the results. Both of the distinguished transitions
are identifiable, and the predicted transition probabilities are
within a margin of error of the Markov chains. (e tree also
reflects all the different length variants of each possible
sequences.

3.3. Validation on Higher-Order Tree-Based System. As the
LSTM-based deep-learning networks are explicitly devel-
oped to capture the long-term relationship in datasets, a
higher-order system is used for further evaluation. (e
behavior of the system is based on a probability tree, which
was pseudorandomly generated. Each node on the tree may
have up to three children, with the system stating that it
represents and the probability that state occurs also gen-
erated randomly. (e sum of the probabilities of states
originating from the same node is normalized to 1. (e
depth of the tree was determined randomly between 8 and
9—without considering the root (StOS) and leaf (EOS)
nodes. (e number of applied states is set to 4 to facilitate
easier understanding and reconstruction of the results.
However, at this complexity, it is already a difficult task. (e
states are represented by letters A, B, C, and D. (e com-
plexity of the system can be observed in Figure 9, while the
inspected transition probabilities—thus the highlighted
areas—are visible more transparently in Figures 10–12.

To utilize the seq2probTree method, a training dataset
was created consisting of 10, 000 simulations of the system
starting from the root node and randomly determining the
path—based on the transition probabilities—until a leaf
node is reached. After the given amount of simulations were
concluded, the resultant dataset was copied six times, as
during the training, the sequences are split to input and
target and this position, where the sequences are separated.
as input and target is randomly selected. (e reason for the
six times multiplication is that the position of the cut is
varied between the 1 st and the 6 th state in the sequence
—separating the input and target after the selected state. (e
generated dataset was used for the training of the LSTM
model by using the following parameters:

(i) Embedding dimensions� 2
(ii) Latent dimensions� 15
(iii) Batch size� 64
(iv) Epochs� 25

During the training on the dataset produced by the
simulation of the proposed tree-based system, the ac-
curacy and loss functions were also recorded. (ey can be

8 Complexity

1

2

3

4

5

6

7

8

9

10

11

12 1 0 0 0 0 0 0 0 0 0 0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0.3 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0.35 0 0 0 0.65 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12

(a)

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0.7

7

6

1

5
0.65 4

0.35

1

8
0.3

9

1

1

1

10

11

1

1

12

1

3

2

1

1

1

(b)

Figure 4: (e transitional probabilities (a) and the directional graph (b) of the first-order Markov chain.

acc
val_acc

Model training accuracy

0.9

0.8

0.7

0.6

Ac
cu

ra
cy

0.5

0.4

0.3

0 10 20 30 40
Epoch

50 60 70

(a)

Model training loss
2.5

2.0

1.5

Lo
ss

1.0

0.5

loss
val_loss

0 10 20 30 40
Epoch

50 60 70

(b)

Figure 5: Training statistics on the first-order Markov chain.

1.0

0.8

06

0.4

0.2

0.0
0.0 0.2 0.4
1-order Markov model transition weights

M
od

el
 p

re
di

ct
ed

 tr
an

sit
io

n
w

ei
gh

ts

0.6 0.8 1.0

Figure 6: Crossvalidation of the transition probabilities of the first-order Markov chain.

Complexity 9

observed form Figure 13. It is important to note that
during the training, 20% of the dataset was used as
validation data, while dropout was not utilized in the
LSTM layer.

After the training of the LSTM model on the afore-
mentioned dataset, the seq2probTree method was applied
with input sequences leading to the highlighted areas in
Figures 14–16—[A D], [D D], and [B] respectively.

Figure 7: Explanation of the metrics located at the nodes of the probability tree.

Figure 8: Output of the seq2probTree learning method for the first-order Markov model.

10 Complexity

In order to generate the smallest possible trees, con-
sisting of only the states with the highest probability, the Pthr
was set to a higher value of 0.25. In addition, TopNthr
parameter was introduced as the beam strength with a value
of 2, which represents that only the two states with the
highest probabilities are taken into consideration during the
construction of the tree. With the maximal sequence length
set to 9, these measures made sure that the size of the re-
sultant tree is adequate and appropriate for evaluation.

By comparing the acquired probability trees to the tree
that is defining the system’s behaviour, it is observable that
the seq2probTree method based on the LSTM model can
capture the long-term relationship of the states of a system.
Given the training accuracy as 0.86, the acquired results
represent the original probability tree on which the system is
based quite accurately. A few prediction errors are ob-
servable in the results. (ese discrepancies could be
explained by pointing out that the input sequence is

Figure 9: (e state transition probabilities of the full tree-based system. (e complexity of the system is easily observable.

Complexity 11

relatively scarce; thus, shorter patterns with high confidences
can “mislead” the model.

As the seq2probTreemethod is proposed as a tool capable of
online dynamic process supervision, the visual information it
provides is crucial. While understanding the prediction tree
with sparse input is an overwhelming task, as the input sequence
expands with more system states, the less complex the prob-
ability tree structure becomes. Figures 16–21 represent the

method’s visual output, while step-by-step appending the input
sequence starting from [B] to [B A BADD] following themost
probable path shown in Figure 16 (also the path of the sequence
with the lowest SED metric). (e results clearly show how the
complexity of the acquired probability trees decreases by
expanding the input sequences.(e inferred state sequences are
diversified by providing scarce input for the LSTMmodel, and a
few erroneous conclusions are drawn. An excellent example for

Figure 10: (e state transition probabilities of the full tree-based system, assuming [D D] event history.

12 Complexity

this behavior is found in Figure 17, where after the [B A] input
sequence, state A was predicted with a probability that fit Pthr
along with state B, which should have been a sure transition.

To quantify the accuracy of the model for each afore-
mentioned input sequence, an average error has been cal-
culated and may be observable on Table 1. (e error—just

Figure 11: (e state transition probabilities of the full tree-based system, assuming [B] event history.

Complexity 13

like the S metrics—is calculated for each predicted event
sequence on the probability tree by simply counting how
many elements from the end of the sequence are not found
in the probability tree defining the system. (e determined
errors are then averaged out.

One question that arises during the utilization of the
seq2probTree method is regarding the necessary length of
the input sequence, after which the output is considered

reasonably accurate. Table 1 gives us the idea that if the input
sequence is at least four-element long, then the probability
trees generated by the seq2probTree method will show no
discrepancies when compared to the tree on which the
behavior of the system is based. (us, the probability trees
for every possible 4-length input sequence were generated,
and the aAverage errors were calculated. Since the same
accuracy cannot be expected for all the input sequences—for

Figure 12: (e state transition probabilities of the full tree-based system, assuming [A D] event history.

14 Complexity

the sake of comparison—an additional weighting was ap-
plied to the calculated average error.(e weight is calculated
by determining the confidence for each input sequence and
normalizing them based on the highest value. (e resultant
weighted average error values can be observed from Table 2.
Based on the obtained results, it can be stated that after the
4 th input element, the prediction is quite precise for this
example system. More significant discrepancies were ob-
served in low confidence sequences, where even after the
input sequence (several) diversions are possible.

By utilizing the seq2probTree method on this tree-based
system, the capability of the algorithm for predicting higher-
order event relationships has been verified with success. (e
average error value has been introduced to help the eval-
uation of the results when a direct comparison is possible
with an original probability tree.

3.4. Case Study: Alarm Scenarios of a Hydrofluoric Acid Al-
kylation Production Unit. (e proposed method has been
applied to an alarm log of a hydrofluoric acid alkylation
production unit to check the real-life performance. (e
process flow diagram of the technology can be observed in
Figure 22.

(e log used for this experiment was created by the
operation of the production unit over a four-month-long
(121 days) period, where all the incoming alarm and

other events have been recorded. (e unprocessed log
contains precisely 200, 802 entries of which 30, 168
messages are unsuppressed alarm events. 8, 721 of these
are alarms that were considered significant, thus were not
shelved by the operators. (e event sequences for the
input of the tool were created by grouping them based on
a time window while preserving their sequential tem-
poral property. (us, whenever a 600 sec gap is found
after the last event, the two events are not considered
related, and a new sequence is started. By using this
strategy, the significant alarms were separated into 3, 330
sequences. (en, by considering only the event sequences
with a minimum length of two, the number of valuable
sequences got further reduced to 762. It is also important
to note that this event database has a very high unique
state count compared to the previous examples—the
sequences are composed of 354 individual states. Due to
confidentiality reasons, the name (the meaning) of the
alarm tags has been removed.

(en, this sequence database was analyzed for fre-
quent events that start sequences. To carry out the
analysis for this case study, the four most frequent events
were selected to be utilized using the seq2probTree
method. (e name of the selected events and their
number of occurrence as the first in a sequence are
highlighted in Table 3.

acc
val_acc

Model training accuracy

0.80

0.75

0.70

Ac
cu

ra
cy

0.65

0.60

0.55
0 5 10 15 20 25

Epoch

(a)

Model training loss

1.05

1.00

0.95

0.90

Lo
ss 0.85

0.75

0.80

0.70

0.65

loss
val_loss

0 5 10 15 20 25
Epoch

(b)

Figure 13: Training statistics on the tree-based system.

Figure 14: Output of the seq2probTree method for the tree-based system with input sequence [A D].

Complexity 15

Figure 15: Output of the seq2probTree method for the tree-based system with input sequence [D D].

16 Complexity

After processing the event log, the seq2probTree method
has been applied to the database. (e training results from
Figure 23 have been acquired by using the following LSTM
and training parameters:

(i) Embedding dimensions� 5
(ii) Latent dimensions� 25
(iii) Batch size� 32
(iv) Epochs� 500

By using the aforementioned events as inputs for the
seq2probTree method, the probability trees in Figures 24–27
have been created. (e parameters of the beam search
algorithm—Pthr and TopNthr—were set as 0.065 and 3,
respectively. Analyzing the trees, it is clear that the seq2-
probTree method is capable of learning and identifying the
possible event scenarios. However, since the dataset is vastly
diverse—especially since the seq2probTree method is also
sequential position-sensitive—the probabilities of the indi-
vidual transitions are pretty low; thus, the shallow Pthr value

is justified. Moving lower with the probability threshold
would have resulted in immense trees; thus, only the most
frequent transitions are displayed in the figures. In Figure 27,
one drawback of the method is also observed: in the longer
sequences, which contain or start with [136711], often a
recurring [361835] is present.(is transition is so prominent
that the LSTM model keeps on predicting it with a high
probability. In these cases, only the defined maximal output
sequence length parameter kept the seq2probTree method
from creating an ever-growing branch on the tree.

Figure 24 illustrates well the different alarm sequences
related to the depropanizer. (e tree is initialized with the
alarmmessage of the depropanizer pressure [136769], which
can be followed by either the level alarm of one of the vessels
of the depropanizer [137161] or an alarm of a pump
[136711]. After the alarm on the depropanizer vessel, the
alarm of the depropanizer pressure [136769] or the
depropanizer feed can come in [353848].

(e alarm sequences in Figure 25 are related to another
scenario of the depropanizer. As can be seen, the alarm

Figure 16: Output of the seq2probTree method for the tree-based system with input sequence [B].

Complexity 17

Figure 17: Output of the seq2probTree method for the tree-based system with input sequence [B A].

18 Complexity

Figure 18: Output of the seq2probTree method for the tree-based system with input sequence [B A B].

Figure 19: Output of the seq2probTree method for the tree-based system with input sequence [B A B A].

Figure 20: Output of the seq2probTree method for the tree-based system with input sequence [B A B A D].

Figure 21: Output of the seq2probTree method for the tree-based system with input sequence [B A B A D D].

Table 1: (e calculated average error values for different input sequences.

Input sequence Average error
A D 3.5
D 2.5625
B 2.1
B A 3.4667
B A B 2.6667
B A B A 0
B A B A D 0
B A B A D D 0

Complexity 19

Table 2: Prediction error statistics with every possible Φ4′ input.

SEQ Conf. Weight Average error Weighted A. E.
B A B A 0.1804 1 0 0
D C A A 0.0687 0.3808 2.8889 1.1001
D C A D 0.0013 0.0074 2.25 0.0166
D C B D 0.005 0.0279 1.8 0.0503
D D D C 0.0398 0.2207 4 0.8828
D D D B 0.0487 0.2698 0 0
D D C D 0.0122 0.0674 3.3333 0.2248
D D C C 0.0984 0.5456 2.5714 1.4031
D D A A 0.0702 0.3889 2.2222 0.8642
D D A B 0.0468 0.2592 4 1.0370
B A B B 0.0396 0.2195 1.8571 0.4077
A D C C 0.1313 0.7277 0 0
A D C D 0.0676 0.3749 0 0
A C D A 0.0879 0.4873 2.25 1.0964
A C A A 0.1032 0.572 2.4444 1.3983

iC4 rec.

Dryed iC4

Cooling water

Settler

Acid
regeneration

Polymer and waste to
acid neutralization

Alkilate
nC4

Tr
ea

t /
w

 K
O

H

Ac
id

 re
c.

Saturated C4
fraction

D
ist

ill
at

io
n

co
lu

m
n

H
F-

str
ip

pe
r

Tr
ea

t /
w

 A
l 2O

3
Tr

ea
t /

w
 K

O
H

To depropanizar

Tr
ea

t /
w

 K
O

H

Olefines

Re
ac

to
r

Figure 22: Process flow diagram of the hydrofluoric acid (HF) alkylation production unit.

Table 3: Occurrence statistics of the frequent sequence starting events in DT.

Event ID No. of occurrences
136711 127
136769 32
137438 31
137272 31

20 Complexity

acc
val_acc

0.94

0.92

Ac
cu

ra
cy

0.90

0.88

0 100 200 300

Model training accuracy

Epoch
400 500

(a)

5

4

3

2

1

0

Lo
ss

Model training loss

loss
val_loss

0 100 200 300
Epoch

400 500

(b)

Figure 23: Training statistics on the log of the HF acid production unit.

Figure 24: Output of the seq2probTree method for the HF production unit with input [136769].

Figure 25: Output of the seq2probTree method for the HF production unit with input [137438].

Complexity 21

message of the temperature alarm of the vessel [137438] can
be followed by the pump alarm [136711] again, or the level
alarm of the same vessel [137161], or another, rare alarm on a
circulation pipeline.

Figure 26 is an excellent example that a problem in the
bottom part of the stripper [137272] can generate a cascade of
alarms on the connected units (pump and level of the vessel).

Similarly, very long alarm cascades of varying proba-
bilities are generated in Figure 27. As we saw, the alarm of

the pump [136711] reoccurs in many sequences, and, not
surprisingly, it can induce the presence of several other
alarms with different scenarios for the order of their
occurrences.

4. Conclusion

By proposing the seq2probTree method, the application of
the seq2seq learning algorithm is expanded by not only

Figure 26: Output of the seq2probTree method for the HF production unit with input [137272].

Figure 27: Output of the seq2probTree method for the HF production unit with input [136711].

22 Complexity

considering the most probable item but also further ex-
ploring the alternative courses of an event sequence using
the beam search algorithm during inference. (is approach
has been realized in Python environment by using state-of-
the-art development tools.

(e capability of the method has been demonstrated to
reproduce the characteristics of a given system by applying it to
a first-order Markov chain model. (e provided transition
probabilities were reasonably identified, but the approach was
also capable of revealing the given unique attributes and quirks
of the examined systems.(e assumption that the seq2probTree
method is capable of exploring higher-order relationships be-
tween events has been demonstrated and validated using a tree-
based system as an example. In addition, the average error
metric has been proposed to aid the user in determining the
length of the input necessary for reliable prediction. Finally, the
applicability of the proposed method was examined on a real-
life practical example, where it produced valuable results even in
the case of a highly diversified system. (e proposed approach
was able to map the typical alarm event scenarios and represent
those in a visually interpretable manner in a hydrofluoric acid
alkylation process.

Based on this evidence, it can be stated that the sequence
trees created by the seq2probTreemethod properly represent
the network of the possible alternate sequence of events.
With this approach, the necessary visual output can be
obtained for understanding and diagnostics of higher-order,
complex systems.

Data Availability

(e benchmark datasets and the code of the developed al-
gorithms will be available on the GitHub profile and the
website of the authors (https://www.abonyilab.com/) after
the publication of the results.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by the TKP2020-IKA-07 project
financed under the 2020-4.1.1-TKP2020 (ematic Excel-
lence Programme by the National Research, Development
and Innovation Fund of Hungary. Gyula Dörgő was sup-
ported by the doctoral student scholarship program of the
Co-operative Doctoral Program of the Ministry of Inno-
vation and Technology financed from the National Research,
Development, and Innovation Fund. (e authors gratefully
acknowledge the professional support of Ferenc Tandari
who provided invaluable comments on the case study.

References

[1] D. Deitz, W. Irwin, G. Wilson et al., “Automatic linkage of
process event data to a data historian,” US Patent 7,275,062,
2007.

[2] I. W. Wilson and E. R. Heinzelmann, “Sequence of events
recorder facility for an industrial process control environ-
ment,” US Patent 7,840,285, 2010.

[3] M. Taub, R. Azevedo, A. E. Bradbury et al., “Using sequence
mining to reveal the efficiency in scientific reasoning during
STEM learning with a game-based learning environment,”
Learning and Instruction, vol. 54, pp. 93–103, 2018.

[4] J. S. Kinnebrew and G. Biswas, “Identifying learning behaviors
by contextualizing differential sequence mining with action
features and performance evolution,” in Proceedings of the
International Conference on Educational Data Mining (EDM),
Chania, Greece, June 2012.

[5] N. Béchet, P. Cellier, T. Charnois et al., “Discovering linguistic
patterns using sequence mining,” in Proceedings of the In-
ternational Conference on Intelligent Text Processing and
Computational Linguistics, pp. 154–165, Springer, New Delhi,
India, March 2012.

[6] R. Kant, S. H. Sengamedu, and K. S. Kumar, “Comment spam
detection by sequence mining,” in Proceedings of the Fifth
ACM International Conference on Web Search and Data
Mining, pp. 183–192, Seattle, WA, USA, February 2012.

[7] Y. Fan, Y. Ye, and L. Chen, “Malicious sequential pattern
mining for automatic malware detection,” Expert Systems with
Applications, vol. 52, pp. 16–25, 2016.

[8] G. Weiss, “Predicting telecommunication equipment failures
from sequences of network alarms,” 2001.

[9] S. Laxman, V. Tankasali, and R. W.White, “Stream prediction
using a generative model based on frequent episodes in event
sequences,” in Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pp. 453–461, Las Vegas, NV, USA, August 2008.

[10] R. Karoly and J. Abonyi, “Multi-temporal sequential pattern
mining based improvement of alarm management systems,”
in Proceedings of the 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 003870–003875,
IEEE, Budapest, Hungary, October 2016.

[11] A. Belhadi, Y. Djenouri, J. C. W. Lin et al., “A general-purpose
distributed pattern mining system,” Applied Intelligence,
pp. 1–16, 2020.

[12] M. d’Aquin and N. Jay, “Interpreting data mining results with
linked data for learning analytics: motivation, case study and
directions,” in Proceedings of the /ird International Con-
ference on Learning Analytics and Knowledge, pp. 155–164,
New York, NY, USA, April 2013.

[13] M. El-Hajj and O. R. Zäıane, “Non-recursive generation of
frequent k-itemsets from frequent pattern tree representa-
tions,” in Proceedings of the International Conference on Data
Warehousing and Knowledge Discovery, pp. 371–380,
Springer, Prague, Czech Republic, September 2003.

[14] F. A. Gers and E. Schmidhuber, “LSTM recurrent networks
learn simple context-free and context-sensitive languages,”
IEEE Transactions on Neural Networks, vol. 12, no. 6,
pp. 1333–1340, 2001.

[15] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
forget: continual prediction with LSTM,” in Proceedings of the
1999 Ninth International Conference on Artificial Neural
Networks ICANN 99, vol. 2, Edinburgh, UK, September 1999.

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proceedings of the Advances
in Neural Information Processing Systems, pp. 3104–3112,MIT
Press, Montreal Canada, December 2014.

[17] A. Karatzoglou, A. Jablonski, and M. Beigl, “A Seq2Seq
learning approach for modeling semantic trajectories and
predicting the next location,” in Proceedings of the 26th ACM

Complexity 23

https://www.abonyilab.com/

SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pp. 528–531, Seattle, WA, USA,
November 2018.

[18] J. Rebane, I. Karlsson, P. Papapetrou et al., “Seq2Seq RNNs
and ARIMA models for cryptocurrency prediction: a com-
parative study,” in Proceedings of the SIGKDD Fintech’18,
London, UK, August 2018.

[19] T. Baumel, M. Eyal, and M. Elhadad, “Query focused ab-
stractive summarization: incorporating query relevance,
multi-document coverage, and summary length constraints
into Seq2seq models,” 2018, https://arxiv.org/abs/1801.07704.

[20] P. Wu, Z. Lu, Q. Zhou et al., “Bigdata logs analysis based on
seq2seq networks for cognitive internet of things,” Future
Generation Computer Systems, vol. 90, pp. 477–488, 2019.

[21] S. Hwang, G. Jeon, J. Jeong et al., “A novel time series based
Seq2Seq model for temperature prediction in firing furnace
process,” Procedia Computer Science, vol. 155, pp. 19–26, 2019.

[22] G. Dörgő and J. Abonyi, “Learning and predicting operation
strategies by sequence mining and deep learning,” Computers
& Chemical Engineering, vol. 128, pp. 174–187, 2019.

[23] G. Dörgő, P. Pigler, M. Haragovics, and J. Abonyi, “Learning
operation strategies from alarm management systems by
temporal pattern mining and deep learning,” in Proceedings of
the 28th European Symposium on Computer Aided Process
Engineering, A. Friedl, J. J. Klemeš, S. Radl et al., Eds., vol. 43,
pp. 1003–1008, Elsevier, Amsterdam, Netherlands, 2018.

[24] B. Carter, J. Mueller, S. Jain et al., “What made you do this?
understanding black-box decisions with sufficient input
subsets,” in Proceedings of the 22nd International Conference
on Artificial Intelligence and Statistics PMLR, pp. 567–576,
Naha, Okinawa, Japan, April 2019.

[25] E. Cohen and C. Beck, “Empirical analysis of beam search
performance degradation in neural sequence models,” in
Proceedings of the International Conference on Machine
Learning PMLR, vol. 97, pp. 1290–1299, Long Beach, CA,
USA, June 2019.

[26] H. Scheidl, S. Fiel, and R. Sablatnig, “Word beam search: a
connectionist temporal classification decoding algorithm,” in
Proceedings of the 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR), pp. 253–258,
IEEE, Niagara Falls, NY, USA, August 2018.

[27] Z. Li, J. Cai, S. He, and H. Zhao, “Seq2seq dependency
parsing,” in Proceedings of the 27th International Conference
on Computational Linguistics, pp. 3203–3214, Santa Fem New
Mexico, USA, August 2018.

[28] I. Williams, A. Kannan, P. S. Aleksic, D. Rybach, and
T. N. Sainath, “Contextual speech recognition in end-to-end
neural network systems using beam search,” in Proceedings of
the Interspeech 2018, pp. 2227–2231, Hyderabad, India,
September 2018.

[29] M. Freitag and Y. Al-Onaizan, “Beam search strategies for
neural machine translation,” 2017, https://arxiv.org/abs/1702.
01806.

[30] D. Jahier Pagliari, F. Daghero, andM. Poncino, “Sequence-to-
sequence neural networks inference on embedded processors
using dynamic beam search,” Electronics, vol. 9, no. 2, p. 337,
2020.

[31] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju et al., “Di-
verse beam search: decoding diverse solutions from neural
sequence models,” 2016, https://arxiv.org/abs/1610.02424.

[32] N. Humbatova, G. Jahangirova, G. Bavota et al., “Taxonomy of
real faults in deep learning systems,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software En-
gineering, pp. 1110–1121, Seoul, South Korea, June 2020.

[33] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural
networks for language modeling,” in Proceedings of the
/irteenth Annual Conference of the International Speech
Communication Association, Portland, OR, USA, September
2012.

[34] G. Dorgo, P. Pigler, and J. Abonyi, “Understanding the im-
portance of process alarms based on the analysis of deep
recurrent neural networks trained for fault isolation,” Journal
of Chemometrics, vol. 32, no. 4, Article ID e3006, 2018.

24 Complexity

https://arxiv.org/abs/1801.07704
https://arxiv.org/abs/1702.01806
https://arxiv.org/abs/1702.01806
https://arxiv.org/abs/1610.02424

