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Biometric traits gradually proved their importance in real-life applications, especially in identification field. Among the available
biometric traits, the unique shape of the human ear has also received loads of attention from scientists through the years. Hence,
numerous ear-based approaches have been proposed with promising performance. With these methods, plenty problems can be
solve by the distinctiveness of ear features, such as recognizing human with mask or diagnose ear-related diseases. As a complete
identification system requires an effective detector for real-time application, and the current richness and variety of ear detection
algorithms are poor due to the small and complex shape of human ears. In this paper, we introduce a new human ear detection
pipeline based on the YOLOv3 detector. A well-known face detector named RetinaFace is also added in the detection system to
narrow the regions of interest and enhance the accuracy. +e proposed method is evaluated on an unconstrained dataset, which
shows its effectiveness.

1. Introduction

Identification always holds an essential role in our daily lives,
such as information security, banking transactions, and
e-commerce. With the development of computer vision,
most identification systems are now based on biometric
traits. However, due to the COVID-19 pandemic, people
have to wear masks or protective gears all the time in public.
+is issue limits the possibility of several biometric patterns,
including face, iris, and fingerprints. +erefore, we proposed
to apply the human ear to substitute the available biometric
traits in identification tasks. As a human hearing organ, the
ears have been proved to be as distinctive as other biometric
patterns. Specifically, parts such as the helix, the antihelix,
the tragus, the antitragus, and the fossa have formed nu-
merous curves during ear development [1]. +ese curves
create the outer of the ear, which is also called the pinna, and
provide the uniqueness of the human ear [2]. Even ears from
the same person still have several differences. With these
studies, the first human ear identification system was pre-
sented byManuel Zimberoff in 1963. After that, loads of ear-

based approaches have been proposed in order to replace the
common biometric traits with the human ear in several
computer vision tasks or just simply combining the features
of the human ear with other biometric patterns to enhance
the performance. For example, Alshazly et al. combined deep
learning and transfer learning models to analyze and rec-
ognize human ears [3]. Hassaballah et al. extracted features
from ear image using the LBP descriptor and its variants for
classification [4]. In 2020, Alshazly et al. proposed a neural
network to recognize unconstrained ear images [5]. In that
year, Ganapathi et al. presented a geometric feature for 3D
ear recognition [6]. Several ear comparative studies and
surveys were also made by Pflug et al. for research purpose
[7, 8]. +ese approaches allow us to build multiple appli-
cations to solve ear-related tasks. Currently, one of the most
urgent and essential problems which is face with mask
recognition can be solved with ear detection because ears are
not occluded when wearing mask. Ear recognition is also
helpful when identifying person from other angles which is
very useful for large-scale recognition tasks and cameras
with fixed angle. Furthermore, ear detection can be applied
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in diagnose diseases related to human ear, such as otitis
media, tinnitus, and perforated eardrum.

An ordinary ear-based identification system usually
contains two main stages, which are detection and recogni-
tion. Among them, detection is an important and indis-
pensable part which requires a robust detector for real-time
applications. +rough years, there are loads of advanced
object detectionmethods which have been presented to detect
numerous kinds of object with promising performance. For
example, Paidi et al. used the MATLAB cascade object de-
tector to recognize blinking eyes’ detection for driver
drowsiness detection task [9]. Moreover, Fatima et al. applied
several handcrafted techniques for detecting driver fatigue,
such as Viola Jones and principal component analysis [10].
Moujahid et al. also proposed several CNN-based methods to
tackle the same issue [11]. For face detection, RetinaFAace
was introduced in 2019 and became one of the state-of-the-art
methods in the field with the ability to capture tiny and
occluded faces [12]. A new CNN-based method is also pre-
sented to locate car license plate frommultidirection [13] and
plenty of eyes’ detection methods were discussed by Hussien
et al. in a comparative study [14].

For ear detection, due to the distinctive shape of the
human ear, it appears to be a simple task. Several 2D and 3D
ear detectors have been introduced through years. For in-
stance, Wahab et al. presented HEARD, an automatic ear
detection technique, in 2012 [15]. Resmi and Raju proposed
an ear detection system using Banana wavelets and circular
Hough transform [16]. Chen et al. modified the faster R-CNN
model with focus filters and the gradient map to avoid il-
lumination variation and make the features more prominent
in advanced ear detection [17]. Bizjak et al. applied mask
R-CNN, one of the state-of-the-art segmentation algorithm,
for pixel-wise ear detection [18]. Kamboj et al. proposed a
CNN-based ear detection network for unconstrained images,
which is named CED-Net [19]. For 3D ear detection, Prakash
and Gupta proposed using the inherent structural details of
the ear to make the model invariant to rotation and scale [20].
Zhou et al. introduced a shape-based feature set for 3D ear
detection called histograms of categorized shapes (HCS).
However, in practice, ears from video footage or camera
vision are usually small and have several ill effects, such as
blur, low illumination, noise, and occlusion. In order to get rid
of these issues, a small object detector is required. +erefore,
in this paper, we present a new detectionmethod based on the
YOLOv3 detector. YOLO has been recognized as one of the
most robust detectors due to its fast inference speed and high
accuracy. For examples, Lin and Sun make a traffic flow
counting system based on YOLO [21]. Laroca et al. applied
YOLO for automatic license plate detection [22]. A real-time
YOLO-based face detector, YOLO-face, is presented by Chen
et al. [23]. Furthermore, YOLO is also widely employed for
small object detection tasks [24–26].

In brief, the contribution of our proposed method is
summarized as follows:

(i) As our method is based on YOLOv3, the imple-
mentation is pretty simple, and the inference speed
is extremely fast

(ii) We also add a face detector in the ear detection
pipeline in order to narrow the region of interest so
that the detection can be faster for better
performance

(iii) +e proposed method is trained with an uncon-
strained database, which helps it works perfectly in
real-time applications

+e proposed method is evaluated on our database,
which is a collection of unconstrained Asian celebrity im-
ages. +e experimental results show that our method out-
performs the prior detectors. +e rest of this paper is
constructed as follows. Section 2 discusses about the related
works. Section 3 introduces our proposed method, including
YOLOv3 and RetinaFace. Section 4 describes the evaluated
database and shows the experimental results. Finally, the
conclusion and future works are discussed in Section 5.

2. Related Works

2.1. Handcrafted vs. Deep Model. Nowadays, with deep
learning, loads of deep object detection approaches have
been proposed with promising performance. However, there
are still several efficient handcrafted-based ear detection
methods, for example, Resmi and Raju apply banana
wavelets and circular Hough transforms for automatic ear
detection [16]. Kumar et al. extracted log Gabor and SIFT
features for ear detection [27]. Deepak et al. proposed a
snake-based ear detection system with HOG descriptors and
SVM [28]. Zhou et al. computed histograms of categorized
shapes from 3D ears and employed SVM as a classifier [29].
On the other side, most deep ear detection methods are
based on state-of-the-art detection algorithms, including
Faster R-CNN, Mask R-CNN, and YOLO. For example,
Chen et al. applied Faster R-CNN with the object refocus
filter and the gradient map to avoid illumination variation
and make the features of ears more prominent [17]. Bizjak
et al. employed Mask R-CNN for human ear detection [18].
Yuan and Lu used YOLOv2-tiny for real-time ear detection
[30]. Furthermore, researchers also create new detectors
dedicated to localizing human ears so the performance can
be more optimized. Cintas et al. extracted ear features using
geometric morphometrics and CNN [31]. Emersic et al.
proposed convolutional encoder-decoder networks for
pixel-wise ear detection and segmentation [32, 33]. For
unconstrained images, Kamboj et al. proposed CED-Net, a
context-aware ear detection network [19]. Ganapathi et al.
presented an ensemble-based CNN model [34].

2.2. Skin-Color Segmentation and Edge Detection. +e prior
ear detection pipelines are usually built with skin-color
segmentation and edge detection. +ese stages are usually
applied first in the pipeline in order to support the model to
locate ears easier. For instance, an automatic human ear
detection technique named HEARD has been introduced
[15]. Sarangi et al. also proposed an automatic ear locali-
zation technique using modified Hausdorff distance [35, 36].
For advanced skin segmentation, there also is a pixel-wise
skin segmentation method based on shallow fully CNN
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presented by Minhas et al. [37]. Arsalan et al. proposed OR-
Skip-Net, an outer residual skin network for skin segmen-
tation in nonideal situations [38]. Skinny, a lightweight
U-net, is also introduced by Tarasiewicz for skin detection
and segmentation [39]. Several skin-segmentation-related
works are also discussed in a local texture-based gender
classifier for smart phone application [40]. For edge de-
tection, the proposedmethods are mostly based on fuzzy. An
edge detection algorithm for blood vessel detection in retinas
was presented by Orujov et al. [41]. Versaci and Morabito
proposed a new edge detection approach based on fuzzy
entropy and fuzzy divergence [42].

2.3. 3D Ear Detection. 3D ear images also received loads of
attention from researchers. In 3D, the human ear encountered
many problems, such as variance in rotation and scale.
+erefore, a large number of 3D ear detection algorithms have
been proposed. For example, Prakash and Gupta introduced a
scale and rotation invariant technique for detecting the hu-
man ear in 3D [20]. Chen and Bhanu proposed a shape
model-based 3D ear detector for side face images [43]. Local
and holistic fusion features also applied for 3D ear recognition
[44]. Ganapathi et al. introduced a 3D ear recognitionmethod
based on 2D curvilinear features [45].

3. Proposed Method

In practice, ears from camera vision or video footages are
usually small and hard to locate, especially CCTVs that
mostly capture the whole scene of an area. +erefore, we
propose to apply the YOLO detector to solve this problem.
YOLO is well known to be a robust small object detector. It is
also one of the state-of-the-art detectors with fast inference
speed and high accuracy. Furthermore, we employ a face
detector to narrow the region of interest in order to fasten
the detection speed and help the model locate the ears easier.
Nowadays, many face detectors have been presented, in-
cluding SRN, DSFD, PyramidBox, and RetinaFace. Among
them, the RetinaFace detector shows the most promising
performance, so we add it into our proposed ear detection
pipeline. +e overview of our ear detection pipeline is il-
lustrated in Figure 1.

To implement, a pretrained RetinaFace model is first
employed to locate faces in the image or video frame. +e
obtained face bounding boxes are then added to several
offsets in order to extract the entire head with the ear oc-
cluded. After that, the added bounding boxes are used to
crop head images and annotate the ear label. Finally, labeled
images are fed to the YOLOv3 detector for training. With
this detection system, we only need to train the YOLOv3
detector for ear detection. RetinaFace is applied using the
pretrained weights on the ImageNet.

3.1. You Only Look Once Detector. You Only Look Once
(YOLO) was first introduced by Redmon et al. in 2016 [46]
and soon received loads of attention from scientists.
Nowadays, it is known to be one of the fastest and most
accurate object detectors that is being used popularly in

many computer vision applications. +e main idea of YOLO
is to renew the detection method at that time. Specifically,
the prior object detectors mostly consist of two main stages.
+e first stage is selecting potential regions in the image
using several region proposal algorithms or using a sliding
window function to obtain the regions. +e proposed re-
gions are then processed to a classifier to determine if this is
the object it is looking for.With this pipeline, the detection is
time-consuming and not suitable for real-time applications.

+erefore, the authors create a new detection method
with the inspiration of the human visual system. In practice,
the human eyes can easily locate an object and know which
class it is with only one look. Hence, the proposed detector is
also able to simultaneously predict what objects are present
in the image and where they are with just a single glance.
With this new strategy, the detection becomes faster but still
maintains an acceptable precision, and the entire process is
done with just one neural network.

To implement, the input image is first divided into an S × S

grid. Each grid cell is responsible to predict B bounding boxes
using the extracted features from thewhole image. A bounding
box consists of five components: x, y,w, and h and confidence
score. Where, x and y are the coordinates of the central point
of the object and w and h are its width and height. +e
confidence score shows how confident and accurate the model
is when it predicts a bounding box. +is score is calculated by
the intersection over union (IOU) between the predicted box
and the ground truth. Each grid cell is also required to returnC

conditional class probabilities. When testing, these probabil-
ities aremultiplied with each box confidence score for its class-
specific confidence scores.+e first version of YOLO is mostly
based on the GoogLeNet architecture, which contains 24
convolutional layers and two fully connected layers. +e au-
thors also replace the inception modules with 1 × 1 reduction
layers and 3 × 3 convolutional layers. +e final output is a 7 ×

7 × 7 × 30 tensor of predictions.
Presented since 2016, YOLO has been updated several

times and received many improvements in both inference
speed and accuracy. In the YOLO9000 model or YOLOv2,
the authors add batch normalization beside every con-
volutional layers [47]. +ey also fine tune the classifier at the
448 × 448 resolution on ImageNet. +erefore, the model no
need to switch to the object detection learning section and
change the input resolution at the same time. Moreover,
inspired by Faster R-CNN, YOLOv2 applies the anchor
boxes for bounding box prediction instead of the fully
connected layers on top of each convolutional feature ex-
tractor. With these modifications and other crucial im-
provements, the YOLOv2 has outperformed its previous
version by 15.2% on the VOC2007. Furthermore, YOLOv3
applied a new feature extraction network, which is DarkNet-
53 (Table 1), and replaced the Softmax layer to a multiclass
classifier to enhance the performance [48]. In this paper, we
use the YOLOv3 detector for the best performance.

3.2. RetinaFace. Introduced in 2019, RetinaFace is currently
known to be one of the state-of-the-art face detectors [12]. It
has outperformed other detectors with an AP of 91.4% in the
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hard subset of the well-known WIDER face database at that
time (Figure 2). It is not just able to locate tiny faces from far
distance but also can detect occluded, painted, or makeup
faces. Even animated or hand-drawn faces can be recog-
nized. With its robustness, researchers have used RetinaFace
in many applications. For example, Guo and Nie apply
RetinaFace as a face detector in advanced surveillance [49].
Xue et al. improve the RetinaFace for detecting face with
mask wearing [50].

RetinaFace inherits several achievements from the prior
object detectors and face detectors, including RetinaNet, Pyr-
amidBox, and SRN. It is built in a single-stage design, mostly
similar to YOLO, which helps the detection become more
efficient with a higher recall rate. For feature extraction, Reti-
naFace uses feature pyramid techniquewith a five-level pyramid
from P2 to P6. Where, P2 to P5 are calculated by the output of
the corresponding ResNet (C2 to C5) using top-down and
lateral connection calculation inspired from RetinaNet. P6 is
computed by using a 3 × 3 convolution with stride equals 5 on
C5. C2 to C5 are pretrained ResNet-152 models on the
ImageNet-11k dataset andP2 was first designed to capture small

faces by using anchors (see Figure 3). Moreover, the authors
independently applied context modules on each feature pyra-
mid level to increase the receptive field and enhance the rigid
context modelling power of the method. Deformable convo-
lution network (DCN) [51] is also utilized to substitute all 3 × 3
convolutional layers to increase the robustness of the nonrigid
context modelling ability. Due to the low scale of tiny faces in
the WIDER face database, the author uses several data aug-
mentation techniques to increase the variety of the database.
Furthermore, RetinaFace can locate human eyes, nose, and
mouth position while detecting faces using multitask learning
technique. +erefore, the authors also deployed multitask loss
function.

4. Experiments

4.1. Dataset Description. To evaluate the proposed method,
we build a face database by randomly collecting daily pic-
tures and portraits of more than 1,000 Asian celebrities from
social media, so they are unconstrained. Each image has a
different resolution and taken conditions, such as

Face
bounding

box

Cropped face image

Original image

Detected ear image

RetinaFace YOLOv3

Ear
bounding

box

Figure 1: An illustration of our ear detection system.

Table 1: DarkNet-53 architecture.

Type Filters Size Output
Convolutional 32 3 × 3 256 × 256
Convolutional 64 3 × 3/2 128 × 128

1×

Convolutional 32 1 × 1
Convolutional 64 3 × 3

Residual 128 × 128
Convolutional 128 3 × 3/2 64 × 64

2×

Convolutional 64 1 × 1
Convolutional 128 3 × 3

Residual 64 × 64
Convolutional 256 3 × 3/2 32 × 32

8×

Convolutional 128 1 × 1
Convolutional 256 3 × 3

Residual 32 × 32
Convolutional 512 3 × 3/2 16 × 16

8×

Convolutional 256 1 × 1
Convolutional 512 3 × 3

Residual 16 × 16
Convolutional 1024 3 × 3/2 8 × 8

4×

Convolutional 512 1 × 1
Convolutional 1024 3 × 3

Residual 8 × 8
Avg pool Global

FC 1000
Softmax
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illumination, rotation, and direction to make the detection
more challenging. At first, the collection contains about
60,000 images. After feeding to RetinaFace for face detec-
tion, we remove the images without the ears based on the
obtained bounding boxes. +en, we crop and annotate the
rest and gather 48,732 face images in total. Finally, the
cropped images are separated into two sets for training and
testing. +e training sets consist of 50% of the images, and
the rest belong to the testing set. Figure 4 displays several
sample images in the experimental database.

4.2. Results. To train and evaluate our detection system, we
use an object detection toolbox named MMDetection [58].
+is spectacular toolbox contains loads of configurations of
state-of-the-art object detectors. First, we convert our da-
tabase into COCO type and then start training with several
well-known detectors, including Faster R-CNN [59], Mask
R-CNN [60], RetinaNet [61], CornerNet [62], YOLACT
[63], Cascade R-CNN [64], and Dynamic R-CNN [65] in
order to compare the performance between them and the
proposed YOLOv3. Images are also resized into different
sizes depending on the input layer of each detector. For
YOLOv3 and YOLACT, the input layer demands the image
size to be 416 × 416 and 550 × 550. On the contrary, the
input layers of the other detectors are not constraint with
size, so we use the default size given by MMDetection, which

is 1333 × 800. Moreover, the hyperparameters are all set the
same for every detectors with 100 epochs and 10− 4 of the
learning rate. +erefore, the comparison can be more
general and practical. +e training results are shown in
Table 2.

According to the results, we can easily recognize that
RetinaNet and Cascade R-CNN show the best perfor-
mance. Even one of the most efficient segmentation al-
gorithms, such as Mask R-CNN, does not have a high AP
as those models. However, the training time of both
models is very long and time-consuming. Specifically, the
training process of RetinaFace takes 62,700 seconds,
which is equivalent to more than 17 hours and even more
for Cascade R-CNN. +is problem leads to the slow in-
ference speed, which does not fit the real-time applica-
tions. Among the experimental methods, the proposed
YOLOv3 gives the fastest training speed with an ac-
ceptable AP of 71.2% in 28,200 seconds ( ≈ 7 hours). We
summarize the inference results through a chart (in
Figure 5). From this chart, the YOLOv3 method out-
performs other detectors in inference time, with 589
seconds in the testing set. +e difference between its AP
and the highest AP is also negligible (3.1% of AP). +e
demo of a real-time application can be found in this video
Youtube Link. Hence, we believe YOLOv3 has made the
most efficient performance with an acceptable accuracy
and a fast inference speed, which is very suitable for real-
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Figure 3: +e RetinaFace pipeline.
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time ear detection. Figures 6 and 7 display several detected
images by our proposed method. An illustration of the
comparison between the proposed YOLOv3 detector and
other experimental object detection methods is presented
in Figure 8. +e comparison shows that the performance
of YOLOv3 is also as accurate as other detectors despite its
lower AP in the experiment. Furthermore, by using the
multiscale training and data augmentation techniques, the

detected ears have shown that the YOLOv3 detector is
invariant to scale, occlusion, and rotation.

However, in the experiment, we also met several fail
cases due to the medium accuracy of YOLO. Figure 9
demonstrates some fail cases in the experiment. Accord-
ing to the fail cases, we believe that the reasons may be
because of low illumination, occlusion, noise, ear direction,
and skin color. In several cases, the human hair or nose

Table 2: A comparison of several object detection algorithm on the training set.

No. Detector Backbone Input size Training time AP AP AP AP AP AP
1 Faster R-CNN (2017) ResNet-50 1333 × 800 61,800 72.1 97.6 86.8 68.0 72.5 72.3
2 Mask R-CNN (2017) ResNet-50 1333 × 800 64,500 73.3 97.7 88.2 69.0 73.6 73.6
3 RetinaNet (2017) ResNet-50 1333 × 800 62,700 74.0 98.7 89.1 69.8 74.5 74.7
4 CornerNet (2018) Hourglass-104 1333 × 800 180,000 60.8 80.9 73.0 15.6 67.0 65.1
5 YOLOv3 (2018) DarkNet-53 416 × 416 28,200 71.2 97.5 86.5 67.2 71.6 71.7
6 YOLACT (2019) ResNet-50 550 × 550 38,400 71.3 97.5 87.3 66.3 71.6 72.6
7 Cascade R-CNN (2019) ResNet-50 1333 × 800 82,320 74.3 97.8 89.5 69.6 74.8 75.4
8 Dynamic R-CNN (2020) ResNet-50 1333 × 800 87,660 74.0 97.0 89.5 68.9 74.6 75.3
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Figure 5: A comparison of several object detection algorithm on the testing set.

Figure 4: Several sample images in the experimental database.
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Figure 6: Illustration of several experimental results of the proposed method.

Figure 7: Illustration of detecting ear on several group pictures from WIDER face database.
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(a) YOLOv3 (b) Faster
R-CNN

(c) Cascade
R-CNN

(d) RetinaNet (d) Dynamic
R-CNN

Figure 8: Illustration of comparison between the proposed YOLOv3 detector with other experimental object detection methods.

Figure 9: Illustration of several fail cases in the experiment.
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creates numerous curves that is similar to the human ear
and cause errors in the detection. In the future, modifi-
cations are added to resolve these issues for better
performance.

5. Conclusion

In this paper, we proposed a new ear detection system, which
is based on YOLOv3 and RetinaFace. +e experimental
results have shown that our method works very efficient. It
has outperformed the prior ear detectors in both inference
speed and accuracy. More unconstrained databases and
video footage are feed for training to increase the accuracy of
the proposed method in the future. Numerous modifications
are added to improve the method so it can be more suitable
for real-time applications.
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[1] Ž. Emeršič, V. Štruc, and P. Peer, “Ear recognition: more than
a survey,” Neurocomputing, vol. 255, pp. 26–39, 2017.

[2] A. K. Jain, A. A. Ross, and K. Nandakumar, Introduction to
Biometrics, Springer Science & Business Media, Berlin, Ger-
many, 2011.

[3] H. Alshazly, C. Linse, E. Barth, and T. Martinetz, “Ensembles
of deep learning models and transfer learning for ear rec-
ognition,” Sensors, vol. 19, no. 19, Article ID 4139, 2019.

[4] M. Hassaballah, H. A. Alshazly, and A. A. Ali, “Ear recog-
nition using local binary patterns: a comparative experimental
study,” Expert Systems with Applications, vol. 118, pp. 182–
200, 2019.

[5] H. Alshazly, C. Linse, E. Barth, and T. Martinetz, “Deep
convolutional neural networks for unconstrained ear recog-
nition,” IEEE Access, vol. 8, pp. 170295–170310, 2020.

[6] I. I. Ganapathi, S. S. Ali, and S. Prakash, “Geometric statistics-
based descriptor for 3d ear recognition,” 3e Visual Com-
puter, vol. 36, no. 1, pp. 161–173, 2020.

[7] A. Pflug and C. Busch, “Ear biometrics: a survey of detection,
feature extraction and recognition methods,” IET Biometrics,
vol. 1, no. 2, pp. 114–129, 2012.

[8] A. Pflug, P. N. Paul, and C. Busch, “A comparative study on
texture and surface descriptors for ear biometrics,” in Pro-
ceedings of the 2014 International Carnahan Conference on
Security Technology (ICCST), pp. 1–6, IEEE, Rome, Italy,
October 2014.

[9] Z. Paidi, N. A. N. Shaarin, N. M. Zain, and M. Othman,
“Blinking eyes detection to monitor drowsy drivers due to

fatigue using matlab cascade object detector,” Journal of
Computing Research and Innovation, vol. 6, no. 4, pp. 31–39,
2021.

[10] B. Fatima, A. R. Shahid, S. Ziauddin, A. A. Safi, and
H. Ramzan, “Driver fatigue detection using viola jones and
principal component analysis,” Applied Artificial Intelligence,
vol. 34, no. 6, pp. 456–483, 2020.

[11] A. Moujahid, F. Dornaika, I. Arganda-Carreras, and J. Reta,
“Efficient and compact face descriptor for driver drowsiness
detection,” Expert Systems with Applications, vol. 168, Article
ID 114334, 2021.

[12] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou,
“Retinaface: single-stage dense face localisation in the wild,”
https://arxiv.org/abs/1905.00641.

[13] L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang, “A new cnn-
based method for multi-directional car license plate detec-
tion,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 2, pp. 507–517, 2018.

[14] M. N. Hussien, M.-H. Lye, M. F. A. Fauzi, T. C. Seong, and
S. Mansor, “Comparative analysis of eyes detection on face
thermal images,” in Proceedings of the 2017 IEEE International
Conference on Signal and Image Processing Applications
(ICSIPA), pp. 385–389, IEEE, Kuching, Malaysia, September
2017.

[15] N. K. A. Wahab, E. E. Hemayed, and M. B. Fayek, “Heard: an
automatic human ear detection technique,” in Proceedings of
the 2012 International Conference on Engineering and Tech-
nology (ICET), pp. 1–7, IEEE, Cairo, Egypt, October 2012.

[16] K. Resmi and G. Raju, “A novel approach to automatic ear
detection using banana wavelets and circular hough trans-
form,” in Proceedings of the 2019 International Conference on
Data Science and Communication (IconDSC), pp. 1–5, IEEE,
Bangalore, India, March 2019.

[17] C.-Y. Chen, J.-J. Ding, and C.-W. Huang, “Advanced ear
detection algorithm using faster r-cnn, refocus filters, and the
gradient map,” in Proceedings of the 2018 IEEE 23rd Inter-
national Conference on Digital Signal Processing (DSP),
pp. 1–5, IEEE, Shanghai, China, November 2018.
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