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Mobile image retrieval greatly facilitates our lives and works by providing various retrieval services. )e existing mobile image
retrieval scheme is based on mobile cloud-edge computing architecture. )at is, user equipment captures images and uploads the
captured image data to the edge server. After preprocessing these captured image data and extracting features from these image
data, the edge server uploads the extracted features to the cloud server. However, the feature extraction on the cloud server is
noncooperative with the feature extraction on the edge server which cannot extract features effectively and has a lower image
retrieval accuracy. For this, we propose a collaborative cloud-edge feature extraction architecture for mobile image retrieval. )e
cloud server generates the projection matrix from the image data set with a feature extraction algorithm, and the edge server
extracts the feature from the uploaded image with the projectionmatrix.)at is, the cloud server guides the edge server to perform
feature extraction. )is architecture can effectively extract the image data on the edge server, reduce network load, and save
bandwidth. )e experimental results indicate that this scheme can upload few features to get high retrieval accuracy and reduce
the feature matching time by about 69.5% with similar retrieval accuracy.

1. Introduction

Mobile image retrieval plays an important role in processes
such as identification of crop diseases and insect pests, the
protection of pedestrians in autonomous vehicles, suspect
identification, and medical services [1–6]. It has penetrated
into all aspects of people’s lives. Feature extraction and
feature matching are two important factors in image re-
trieval tasks. Feature matching is the most time-consuming,
and feature extraction affects thematching time and retrieval
results. As a result of the limited computing and storage
resources of user equipment, many mobile image retrieval
tasks are based on mobile cloud computing architecture
[7–11]. For instance, Shelly et al. [12] proposed a cloud
computing-based iris retrieval solution based on the Hadoop
framework and proved that the use of cloud servers can
effectively accelerate retrieval tasks. Hassan et al. [13]

proposed a face retrieval method based on mobile cloud
computing architecture. In this framework, the mobile
device performs a lightweight task and the cloud server runs
the computationally intensive tasks. In these solutions, the
user equipment performs a lightweight task and the cloud
server runs the computationally intensive tasks with pow-
erful computing and storage resources. )e above methods
all use the powerful computing and storage resources of
cloud servers. )at is, mobile users first use their user
equipment to capture images and then upload the captured
image data to the cloud server for further processing. After
obtaining the uploaded image data, the cloud server pro-
cesses it and gets the result and sends it to the mobile users.
To reduce the network traffic, many studies [14, 15] have also
preprocessed these captured image data, and even extracted
features from these image data, and only uploaded the
extracted features to the cloud server. Kan et al. [14]
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presented an automatic classification method for medicinal
plant leaves instead of manual classification, which can
greatly improve the accuracy and speed of retrieval. )is
method preprocesses the image of the leaves of medicinal
plants, extracts the shape and texture features, and then
classifies the leaves of the medicinal plants through a support
vector machine (SVM) classifier. Mannan et al. [15] pro-
posed an enhanced cloud-based biometric identification
method for identifying individuals on campus. By using the
computing and storage resources of the cloud server, the
system’s computing and storage burdens are reduced. )is
method uses the local binary pattern (LBP) algorithm to
extract features of encrypted images to protect personal
privacy. At the same time, it uses the principal component
analysis algorithm to reduce transmission delay and cal-
culation time.

Mobile image retrieval greatly facilitates our lives by
providing various retrieval services. However, as a result of
the long distance between mobile users and the cloud server,
it is difficult to provide a fast response to massive mobile
image retrieval tasks, and with limited coverage and spec-
trum resources, mobile users are usually far away from cloud
servers, leading to network delays and interruptions, which
will bring a poor user experience. Since fast response is a
great demand for mobile image retrieval tasks, a new
computing paradigm multiaccess edge computing (MEC)
[16–20] architecture has emerged as a promising solution to
address the long response time of mobile cloud architecture
by providing computing and storage resources at the edge of
the network. In the MEC environment, feature extraction is
mainly performed on edge servers and the time-consuming
operation is performed on the cloud server. In recent years,
many related studies have been proposed [21, 22]. For in-
stance, Soyata et al. [21] presented a hybrid mobile-cloudlet-
cloud computing architecture that uses the cloudlet as a
lightweight server and applies an optimal task-partitioning
method for distributing computing load among cloud
servers. Hu et al. [22] proposed a face retrieval framework
based on fog computing architecture. In the proposed
framework, fog nodes perform face detection, image pre-
processing, feature extraction, and face identifier from the
raw image transmitted by the client with a local binary
pattern algorithm. )en, the cloud server performs face
matching and identity information acquisition after re-
ceiving the identifier from fog nodes. Results show that the
proposed framework can reduce bandwidth consumption
and response time.

However, in most of the existing methods, the feature
extraction on the edge server is separated from the cloud
servers. )is leads to the lack of effectiveness of the extracted
features, which affects the performance of image retrieval
tasks. Sharma et al. [23] presented a coordinated architecture
for edge and cloud computing that can analyse big data
effectively in the Internet of )ings networks. )e key point
is that the cloud server utilizes the network knowledge and
historical information to guide the edge server to provide
various customized services. To this end, we aim to study
mobile image retrieval in the MEC environment. And, we
propose a cloud-edge collaboration feature extraction

solution for mobile image retrieval in MEC. In the proposed
framework, the effective features are extracted through the
collaboration of the cloud server and edge servers, rather
than through the cloud server or the edge servers alone.
Meanwhile, we store the extracted features and results on the
edge server to respond to the same image retrieval service
faster.

)e rest of this paper is organized as follows: Section 2
presents the system framework. Section 3 presents the ex-
perimental results and analysis. Finally, we conclude this
paper in Section 4.

2. Design of the Proposed Architecture

2.1. Problem Statement. In this paper, we study the problem
of image retrieval in the MEC environment, which is de-
scribed as follows: As illustrated in Figure 1, the system
architecture of MEC consists of three layers of components:
user equipment, edge servers, and cloud servers. User
equipment communicates with edge servers through a
network gateway, and the edge servers connect to cloud
servers via the Internet backbone. A large amount of labelled
image data is stored on cloud servers. Mobile users first use
their user equipment to capture images and preprocess them
and then upload the preprocessed image data to edge servers.
After receiving the preprocessed images, the edge servers use
a feature extraction algorithm to extract effective features,
store the features, and then upload the extracted features to
the cloud server for further processing. After receiving the
extracted features, the cloud server processes them and gets
the results and finally returns the results to the edge servers
and user equipment. )e symbols used in this paper are
summarized in Table 1.

2.2. Detailed Design of the Proposed Architecture. )e ar-
chitecture of the proposed framework consists of three layers
of components: user equipment, edge servers, and cloud
servers. User equipment refers to some devices with limited
computing and storage resources, such as smartphones,
laptops, and Apple watches with a mobile broadband
adapter. Edge servers are usually a group of servers that are
deployed at the edge of the network, such as microservers.
Cloud servers are usually Alicloud servers, Amazon Web
Service (AWS) Cloud servers, and Microsoft Azure Cloud
servers.

In order to verify the feasibility and effectiveness of the
architecture, we implemented a prototype system that uses a
Karhunen–Loève transform (KLT) [24, 25] algorithm for
feature extraction. In practical scenarios, our framework can
flexibly select algorithms according to application scenarios,
including but not limited to KLT algorithms. )e proposed
framework can be divided into offline stages and online
stages. In the offline stage, we get the projection matrix A
with a KLT algorithm from the image data set on the cloud
server. We assume that xi, i � 1, . . . , m, is the i-th image in
the image data set. )e number of features of the image is d,
and the number of class labels is K. )e calculation process
of KLT is as follows:
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(1) Standardize the data set on the cloud server. Most
machine learning and optimization algorithms
perform better when all the features are along the
same scale. To do this, a standardization approach
can be implemented. Sample xi can become the
standardized feature by using the following
calculation:

μ �
1
m

􏽘

m

i�1
xi, (1)

where μ is the mean of the sample

xi � xi − μ. (2)

)en, the sample xi has zero mean:
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where σj is the standard deviation of the corre-
sponding feature, xi(j), j � 1, . . . , d, is the j-th

feature, and finally, the standardized feature xi(j) is
as follows:

xi(j) �
xi(j)

σj

. (4)

(2) Calculate the covariance matrix for the features in
the data set. )e covariance matrix C is as follows:
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(3) Calculate the eigenvalues and eigenvectors for the
covariance matrix.

(4) Sort eigenvalues and their corresponding
eigenvectors.

(5) Form the projection matrix A by selecting the cor-
responding eigenvectors of the t largest eigenvalues.

A � p1, . . . , pt􏼂 􏼃. (6)

)e feature set on the cloud server can also be calculated
by X · A. )en, the projection matrix A is transmitted to the
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Figure 1: )e detailed design of the proposed framework.

Table 1: Frequently used symbols.

Symbols Descriptions
X )e pixel matrix of an image data set
xi )e i-th image in the image data set
μ )e mean of the image
xi(j) )e j-th feature of the i-th image
σj )e standard deviation of the j-th feature

C
)e covariancematrix for the features in the image data

set
A )e projection matrix
d(xi, vi) )e Euclidean distance between two vectors xi and vi

R )e accuracy rate of the feature matching
φ(ai, bi) Step function, equals 1 if ai � bi and equals 0 otherwise
K K-nearest neighbor
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edge server for feature extraction from the raw image
uploaded by the user equipment. Matrix A gets the whole
information of the image data set on the cloud server;
therefore, the feature extraction from the raw image on the
edge server is effective and has fewer features.

We use the K-nearest neighbor (KNN) [26, 27] al-
gorithm to match features. KNN assumes the similarity
between the new sample and available cases and puts the
new case into the category that is most similar to the
available categories. )e processing flow of KNN is that
we first choose the number of K, where K represents the
number of neighbors. )en, we measure the distance of
the K-nearest neighbors of the test data. Followed by that,
we count the number of neighbors of each category.
Finally, we assign the test data to the category with the
most neighbors. Note that we use the most used
Euclidean distance to calculate the distance between
samples. Given two samples xi and vi, their Euclidean
distance can be written as

d xi, vi( 􏼁 �

���

􏽘

d

j�1

􏽶
􏽴
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2
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We also store the results of feature extraction and feature
matching for saving computing resources when there are the
same image retrieval requests. We assume that for the image
xi, ai and bi are the results of the feature matching. To
quantify the performance of retrieval, the accuracy rate is
defined as follows:

R �
1
m

􏽘

m

i
φ ai, bi( 􏼁, (8)

where φ(ai, bi) equals 1 if ai � bi and equals 0 otherwise. In
the online stage, mobile users use their user equipment to
capture images and upload the captured image data to the
edge server. After receiving the image data, the edge server
first performs object detection, using object segmentation
algorithms to preprocess it. )en, the edge server uses the
projection Matrix A to extract features from the pre-
processed image data and uploads the extracted feature data
to the cloud server for feature matching. Note that KNN is
used to test the effectiveness of the extracted features. For
convenience, we set K � 1.

)e detailed cooperative cloud-edge process is given in
Algorithm 1.

)e novelty of our scheme is that the proposed
framework uses the collaboration between the cloud servers
and edge servers to extract efficient features to reduce feature
matching time and get similar retrieval accuracy with fewer
features, thus improving the user experience of mobile image
retrieval applications.

3. Experiment

In this section, we use six data sets: ORL, YALE, UMIST,
MNIST, COIL20, and LEAVES [28, 29] to verify our
proposed architecture. Table 2 lists the details used in the

experiment, and all the data sets are divided randomly
into the image data set on the cloud server and multiple
raw images on the edge server uploaded by user
equipment mentioned in Section 2. Hence, the raw image
is the image that has been preprocessed in our experi-
ment. )e MNISTdata set is rescaled to 28×28 pixels, and
the other image data sets are rescaled to 32×32 pixels.

We evaluate the proposed framework in terms of
accuracy and feature matching time. Figure 2 shows the
accuracy of the raw image and our method using different
training samples. In Figure 2(a), in the beginning, the
accuracy of using the original image method is higher
than using our method. When the number of training
images reaches 280, our method begins to outperform the
original image method. At first, in Figure 2(b), the ac-
curacy of our proposed method is not as good as the
original image method, but when the number of training
images increases to 83, the accuracy of the original image
method starts to decline relative to our method. In
Figure 2(c), the accuracy changes of the original image
method and our method are similar to those of
Figure 2(a) and Figure 2(c), but the accuracy of the two is
more similar. )en, in Figure 2(d) and Figure 2(e), the
accuracy of the original image method is better than of
our method and the accuracy difference between the two
is even higher than that of other data sets. In Figure 2(f ),
the accuracy of our method has always been better than
that of the original image method, and after the number
of training images is set to greater than 130, the accuracy
of our method improves faster. In most cases, the ac-
curacy of our method is similar to that of using raw
images. Note that our method uses only a few features to
participate in the retrieval tasks.

Our method achieves accuracy similar to that of using all
features, which proves the effectiveness of the features
extracted by our method. In addition, with the increase in
training images, the accuracy of directly using the raw
images and our method has increased, which proves the
importance of collecting enough training images.

Our method has the least feature matching time.
Figure 3 shows that the matching time of raw images and
the matching time of the extracted features have similar
accuracy. We observe that compared to using raw images,
using the extracted features can save a lot of matching
time. For instance, compared with using raw images, on
the ORL data set, our method reduces the feature
matching time by about 69.5% in the case of similar
retrieval accuracy. )is is because our method extracts a
small number of features. )erefore, with the same
number of images, fewer features result in less feature
matching time.)is also shows that using our method can
save a lot of feature matching time. Moreover, on the
COIL20 data set, the matching time between our method
and the original image method has the largest change, and
on the YALE data set, we have the smallest change in
matching time between the original image method and
our method. )e size of matching time changes of other
data sets is in the order of MNIST data set, UMIST data
set, ORL data set, and LEAVES data set.
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(i) Input: image data set, raw image
(ii) Output: result of image retrieval
(iii) Cloud gets the projection Matrix A with a KLT algorithm for the image data set storing on the cloud server
(iv) Cloud sends the projection Matrix A to the edge server
(v) Edge server gets the raw image uploading from the user equipment
(vi) Edge server preprocesses the raw image and gets the pixel Matrix X, then extracts features by X · A
(vii) Edge server sends the features of raw image to the cloud server for feature matching;
(viii) Cloud gets the result of image retrieval with a KNN algorithm
(ix) Cloud sends the result to the edge server, and the user equipment gets the image retrieval result sending by the edge server

ALGORITHM 1: Cooperative cloud-edge process.

Table 2: Description of benchmark data sets.

Data sets Images Dimensions Classes
ORL 400 1024 40
YALE 165 1024 15
UMIST 564 1024 20
MNIST 70000 256 10
COIL20 1440 1024 20
LEAVES 186 1024 3
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Figure 2: Continued.
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4. Conclusions

In this article, the advantages of our architecture are the
collaboration between cloud servers and edge servers. )e
cloud server performs the computing-intensive part of the
image retrieval task, that is, projection matrix generation
and feature matching. )e edge server performs the light-
weight part of the task, i.e., extracting features from the raw
image with the projection matrix. Although the edge server
can also perform feature extraction on the original image
uploaded by user equipment, using our method can make
the feature extraction of the original image more effective.
)e experiment also proved this, and the experiment shows
that feature extraction is more effective as the number of
images in the data set increases. )erefore, the projection
matrix generated from the entire data set on the cloud server
can better guide the original image feature extraction work
on the edge server and make feature extraction more ef-
fective. Also, the accuracy of image retrieval and the

matching time verify the effectiveness of our proposed ar-
chitecture. Moreover, our proposed framework uses the KLT
algorithm to extract features. In future work, the efficiency of
the adopted algorithm for different data sets in different
scenarios might prove important. )is is an issue for future
research to explore.
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