
Research Article
Evaluationof theNumber ofVisits toChineseMedical Institutions
Using a Logistic Differential Equation Model

Xiaoxia Zhao,1 Wei Li,2 Yanyang Wang,1 and Lihong Jiang 2

1Faculty of Management and Economics, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
2&e First People’s Hospital of Yunnan Province, Kunming, Yunnan, 650032, China

Correspondence should be addressed to Lihong Jiang; jlh15198763375@163.com

Received 7 June 2021; Revised 6 November 2021; Accepted 9 November 2021; Published 24 December 2021

Academic Editor: Jesus M. Munoz-Pacheco

Copyright © 2021 Xiaoxia Zhao et al. 1is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, we established a two-dimensional logistic differential equationmodel to study the number of visits in Chinese PHCIs
and hospitals based on the behavior of patients. We determine the model’s equilibrium points and analyze their stability and then
use China medical services data to fit the unknown parameters of the model. Finally, the sensitivity of model parameters is
evaluated to determine the parameters that are susceptible to influence the system. 1e results indicate that the system cor-
responds to the zero-equilibrium point, the boundary equilibrium point, and the positive equilibrium point under different
parameter conditions. We found that, in order to substantially increase visits to PHCIs, efforts should be made to improve PHCI
comprehensive capacity and maximum service capacity.

1. Introduction

1e medical and health service system of China, established
through long-term development, consists of hospitals, pri-
mary health care institutions (PHCIs), and professional
public health institutions, and covers both urban and rural
areas [1]. Of these, hospitals and PHCIs are the main types of
China’s medical institutions. PHCIs are generally respon-
sible for the treatment of frequently occurring diseases, as
well as for rehabilitation and nursing for some diseases. 1e
treatment of diseases that cannot be addressed in PHCIs is
undertaken by hospitals. In China, the number of PHCIs
accounts for as high as 95% of the whole medical system.
However, in comparison with hospitals, resource utilization
and the number of visits are fairly low [2, 3]. 1e number of
visits is an important measure of the service efficiency of
medical institutions and is also the main symbol of whether
the development levels of different services of these insti-
tutions are balanced.

Looking back at the progress of the development of
China’s medical healthcare system, the main reasons for
variation in the development level are the following: (1)
compared with hospitals, the comprehensive level of medical

services in PHCIs is poor due to reasons such as shortages of
medical staff, beds, advanced equipment, etc. [4, 5]; (2)
under the influence of the current market economy, there is
a lack of an appropriate division of labor and cooperative
mechanism among China’s medical institutions [6]; (3) the
family-medicine physician system in the United States and
Canada is such that residents should first contact their family
physician when they are sick, except for emergency treat-
ment. If the disease in question is beyond the treatment
capabilities of the family physician, the family doctor will
issue a referral form to the hospital or specialist for treat-
ment. In contrast, Chinese residents can freely choose
medical institutions for treatment. 1us, many patients
select hospitals as their primary choice regardless of the
severity of the disease, resulting in an increased workload in
hospitals, while the resource utilization efficiency of PHCIs
remains extremely low. 1is leads to an imbalance in the
development level between medical institutions [7–9].

In order to improve the above situation, the State
Council launched a new round of healthcare reforms in
2009. While these reforms have been pursued for more than
ten years, no significant change has been achieved in the
number of visits to PHCIs. According to statistics for 2019,
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the average number of visits to hospitals in China was nearly
three times that of visits to PHCIs [10, 11].

To date, many researchers have paid close attention to
the study of patient visits and have achieved promising
results. Li et al. took the time of the promulgation of China’s
key medical policies as the node and constructed a segmental
regression model to analyze the impact of these policies on
visits to medical institutions at all levels in the country.1eir
results showed that visits to different medical institutions
were influenced by different medical policies [12]. Jin and
Song et al. used descriptive statistics to analyze changes in
the number of visits to medical institutions in Guizhou
province and showed that the residents’ habit of going to
high-grade hospitals did not change following the reform of
the medical and healthcare system [13]. Wang et al. pre-
dicted the visiting rate of medical institutions in Chinese
hospitals from 2020 to 2030 under different modes of di-
vision of labor and cooperation by constructing a micro-
simulation model and found that improving the treatment
rate of PHCIs was conducive to the sustainable development
of medical resources [14]. Xie et al. used the Verhulst model
to predict the slow growth rate of visits to community health
service centers. 1e prediction accuracy of this model was
better than that of the GM (1,1) model [15]. Novikov et al.
studied the relationship between temperature and the
number of emergency department visits and reported that
temperature can increase this number. Subsequently, they
established a Poisson regression model to predict the
number of emergency room visits in the next two days [16].
To predict the emergency treatment data of the consecutive
day so that medical institutions could reasonably allocate
medical resources in advance, Ekström used regression
analysis to study the data of website visits on the Internet and
found that the number of visits between 6 p.m. andmidnight
was significantly correlated with emergency room visits the
next day. 1us, it was considered highly effective to use
Internet data to predict emergency visits [17]. CulM used
regression models and neural network models to analyze the
data of public hospital emergency rooms demonstrating that
the artificial neural network model could more accurately
predict the number of emergency patients in the mid-to-
long term, allowing the hospital to allocate resources ahead
of time [18]. José et al. divided the age of patients in the
pediatric emergency department of hospitals into two
groups—0–2 years and 3–14 years—and conducted a ret-
rospective study on pediatric emergency departments in
hospitals to assess the effect of population growth on the
number of visits. 1eir results showed that the number of
emergency visits by the younger age group increased sharply
with the population growth rate, whereas the number of
emergency visits by the senior age group began to decline as
the population increased to its highest value [19].

1e above studies mainly used statistical methods to
analyze historical data or used common prediction models
to forecast the number of future patient visits. However, the
number of patient visits is affected by many factors including
the behavior of patients seeking medical treatment, pop-
ulation dynamics, or the level of medical services, and its
fluctuation has obvious nonlinear and complex

characteristics. In contrast to previous studies, the research
purpose and innovations of this paper are mainly reflected in
the following aspects:

(1) We use a logistic differential equation model to study
the development trend of the number of visits to
medical institutions in the absence of strong gov-
ernment intervention. 1e differential equation
model is an excellent method of describing the
process of a system, and it can transform complex
social problems into an intuitive mathematical
model. At present, mathematicians continue to ex-
pand the new field of differential equation research,
thus promoting the development of differential
equations [20–22]. 1e differential equation model
has been widely used in studying epidemic diseases
[23–27]. Especially, since the outbreak of pneumonia
in the novel coronavirus infection, many scientists
have established models to analyze and predict the
development trend of infectious diseases and have
achieved promising results [28–34]. 1is model has
also been applied in the fields of sustainable science
[35], economics [36], and in other areas, but few
studies have focused on the study of the study of
visits to medical institutions. 1e differential equa-
tion model of this paper is similar to the plaque
model of the cross-regional transmission of infec-
tious diseases [37]. Its topological structure is
nonreversing, and it focuses on describing the
phenomenon of the impact of patient behaviors on
medical institutions, that is, higher-than-normal
service demand. 1us, we provide a reference for
future research by applying the two-way input model
with regulatory measures.

(2) A simulation is conducted to analyze the sensitivity
of the model parameters, and the sensitivity factors
that have an important effect on the system are
identified from multiple uncertain factors. If a small
change in a parameter can lead to a larger change in
the system, this parameter is called a sensitive factor.
Conversely, a parameter with considerable change
leading to small change is called a nonsensitive
factor. Since most decisions are made under un-
certain circumstances, this type of analysis is a
common method used by decision makers to solve
problems, as it can provide a scientific basis for
decision-making by a government to regulate the
allocation of medical resources from the perspective
of system engineering and to assist the balanced
development of medical institutions.

1e rest of the paper is organized as follows. Section 2
comprises the background of the field of study, the as-
sumptions, and the process of establishing the model.
Section 3 describes the process of solving the model and
discusses the qualitative behavior and asymptotic properties
of the solutions. Section 4 analyzes the sensitivity of pa-
rameter values to identify how parameter changes affect the
system. Section 5 concludes the paper.
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2. Establishment of the Mathematical Model

As mentioned above, China’s medical system is a complex,
nonlinear system. In this section, we establish a two-di-
mensional differential equation model based on the present
situation to analyze the process of change of the number of
visits in PHCIs and hospitals over time.

We assume that the medical system is closed, that is,
there are no cross-regional medical treatment cases. We also
do not consider cases where patients should be treated in
hospitals but choose PHCIs for treatment. Additionally,
according to the division of labor in Chinese medical in-
stitutions, common diseases should be treated in PHCIs first,
while rare diseases or major diseases should be treated in
hospitals. However, many patients with common diseases
prefer to choose hospitals directly because of the hospitals’
better medical conditions, as shown in Figure 1.

We use x(t) and y(t) to represent the number of visits to
PHCIs and hospitals at time t. 1ey are nonnegative, con-
tinuous, and differentiable functions. Let x0 and y0 denote the
number of visits to PHCIs and hospitals at the initial time.

Since medical resources are limited, we hold the opinion
that the growth rate of visits to PHCIs and hospitals con-
forms to the logistic block growth law if patients are rea-
sonable in choosing a medical institution according to the
severity of their conditions [38]. We use r(x) and r(y) to
represent the growth-rate function of visits to PHCIs and
hospitals, which means that they will not grow indefinitely
when the number of visits to medical institutions reaches a
certain level.

1erefore, the change of the number of visits per unit
time in China’s medical system can be expressed as

dx(t)

dt
� r(x)x(t),

dy(t)

dt
� r(y)y(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where

x(0) � x0,

y(0) � y0.
(2)

We use the following basic linear minus function to
reflect the retarded growth law:

r(x) � r1 − s1x(t), (3)

r(y) � r2 − s2y(t), (4)

where r1 and r2 represent their inherent increase rate, which
is positively correlated with the population growth rate and
the aging rate. In order to determine the meaning of s1 and
s2, we use k1 and k2 to represent the maximum visiting
capacity of PHCIs and hospitals, which is positively cor-
related with the comprehensive capabilities of the respective
medical institutions.

If x(t) � k1 and y(t) � k2, then r1 � 0 and r2 � 0, which
indicate that the number of visits will not continue to

increase. By substituting these into equations (3) and (4), we
obtain

s1 �
k1

r1
,

s2 �
k2

r2
.

(5)

1us,

r(x) � r1 1 −
x(t)

k1
􏼠 􏼡,

r(y) � r2 1 −
y(t)

k2
􏼠 􏼡.

(6)

1en, substituting them into system (1),

dx(t)

dt
� r1x(t) 1 −

x(t)

k1
􏼠 􏼡,

dy(t)

dt
� r2y(t) 1 −

y(t)

k2
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

We found that the left factors r1x(t) and r2y(t) reflect
the growth trend of patient visits, but the right factors (1 −

x(t)/k1) and (1 − y(t)/k2) indicate the blocking effect of the
limited resources of medical institutions on the growth of
patient visits.

Taking into account that deaths occur in the population
and some people give up treatment due to difficulties in
seeking medical treatment, this reduces the number of visits
to medical institutions, so we use d1 and d2 to represent the
churn rate of visits to PHCIs and hospitals, which positively
correlates with the above situations. 1us, system (1) takes
the form

dx(t)

dt
� r1x(t) 1 −

x(t)

k1
􏼠 􏼡 − d1x(t),

dy(t)

dt
� r2y(t) 1 −

y(t)

k2
􏼠 􏼡 − d2y(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

However, many patients with common diseases prefer to
directly choose hospitals that feature better medical con-
ditions for treatment, which results in an increased number
of visits to hospitals and fewer visits to PHCIs, as shown in
Figure 1. We use m to represent this leapfrog medical
treatment rate that is related to patient behavior, and then,
mx represents the number of visits from PHCIs to hospitals
per unit time. So, system (1) can be rewritten as follows:

dx(t)

dt
� r1x(t) 1 −

x(t)

k1
􏼠 􏼡 − d1x(t) − mx(t),

dy(t)

dt
� r2y(t) 1 −

y(t)

k2
􏼠 􏼡 − d2y(t) + mx(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Complexity 3



1e initial conditions are

x0, y0 > 0,

r1,2, k1,2, d1,2, m, n> 0.
(10)

3. Qualitative Analysis

3.1. Equilibrium Points. 1e main purpose of our study of
differential equations is not to analyze their behavior at each
moment, but to study the future state of the system by
discussing the solutions of differential equations and their
various properties. For most differential equations, their
general solutions cannot be found. 1us, we usually study
the special solution where the derivative is zero, also called
the equilibrium point, which is the point where the trend of
motion change is zero. 1en, according to the structure of
the differential equation, we study the properties of the
equilibrium point or investigate the distribution of the curve
determined by the differential equation. Next, we analyze the
equilibrium points of this system to understand the possible
future state of the medical system in China.

Theorem 1. &e system has three different equilibrium
points under different parameter conditions:

(1) E∗1 � (0, 0) always exists in any condition
(2) E∗2 � (0, k2(r2 − d2)/r2) exists only if r2 − d2 > 0
(3) E∗3 � (k1(r1 − d1 − m)/r1, k2/2r2(r2 − d2+�������������������������������

(r2 − d2)
2 + 4r2k1m(r1 − d1 − m)/r1k2

􏽱

) exists only

if r1 − d1 − m> 0

Proof. 1e zero solutions of a system of differential
equations (10) are its equilibrium points. In order to unify
the subsequent expressions, let dx(t)/dt � f1(x, y) and
dy(t)/dt � f2(x, y), and then, we solve the below algebraic
equations:

f1(x, y) ≡ r1x(t) 1 −
x(t)

k1
􏼠 􏼡 − d1x(t) − mx(t) � 0,

f2(x, y) ≡ r2y(t) 1 −
y(t)

k2
􏼠 􏼡 − d2y(t) + mx(t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Subsequently, four solutions are obtained:

E
∗
1 � x

∗
1 , y
∗
1( 􏼁,

E
∗
2 � x

∗
2 , y
∗
2( 􏼁,

E
∗
3 � x

∗
3 , y
∗
3( 􏼁,

E
∗
4 � x

∗
4 , y
∗
4( 􏼁,

(12)

where x∗1 � 0, y∗1 � 0, x∗2 � 0 , y∗2 � k2(r2 − d2)/r2, x∗3 � k1
(r1 − d1 − m)/r1, y∗3 � k2 /2r2(r2 − d2

+

�������������������������������

(r2 − d2)
2 + 4r2k1m(r1 − d1 − m)/r1k2

􏽱

), and x∗4 � k1

(r1 − d1 − m)/r1, y∗4 � k2 /2r2(r2 − d2

−

�������������������������������

(r2 − d2)
2 + 4r2k1m(r1 − d1 − m)/r1k2

􏽱

).
Because the number of visits is always nonnegative, it is

in line with the actual situation if the equilibrium point is
greater than or equal to zero. 1erefore,

(i) Equilibrium point E∗1 always exists, and the practical
significance of this point is that there will be no
patients in the medical system, such that the
number of visits will be zero.

(ii) Equilibrium point E∗2 exists only if r2 − d2 > 0,
which means that the system has this equilibrium
point if the natural growth rate of the visits to
hospitals is bigger than the churn rate. 1e practical
significance of this point is that there will be no
patients in PHCIs, but all are concentrated in
hospitals, and the number is y∗2 .

(iii) Equilibrium point E∗3 exists only if r1 − d1 − m> 0,
which means that the system has this equilibrium

Patients

PHCIs

Hospitals

• PHCIs mainly treat common 
diseases.

• Hospitals mainly treat rare or 
intractable diseases and other 
serious diseases.

• Patients with 
common diseases 
leapfrog to hospital 
for treatment.

Have been 
cured.

End of 
treatment

Abandoning 
treatment

No

No

Yes

No

• If the patients’ disease 
have been cured, the 
treatment end.

• Some uncured patients 
gave up treatment.

• Some uncured 
patients continue 
treatment.

• Some uncured 
patients continue 
treatment.

Figure 1: Dynamic flowchart of patients’ visits to the medical system.
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point if the inherent growth rate of the number of
visits to PHCIs is greater than the sum of the rate of
inherent attrition and the leapfrog medical treat-
ment. 1e practical significance of this point is that
the number of visits concentrated in PHCIs and
hospitals is x∗3 and y∗3 .

(iv) Equilibrium point E∗4 is illogical because y∗4 < 0.
1us, it will not be discussed in this paper.

We have established the possible future state of the
system through the above equilibrium points. Next, we need
to determine in which state China’s medical system will be in
the future, which requires further discussion of the stability
of the equilibrium points. Since differential equations de-
scribe the motion process of the system, the stability of the
system is not only determined by the structure and pa-
rameters of this system but is also related to the initial
conditions and themagnitude of external disturbances. If the
equilibrium point is unstable, a small error or disturbance of
the initial value will change the topological structure of the
system. 1e stability of the equilibrium points will be dis-
cussed in the next section. □

3.2. Local Stability Analysis. One of the classic methods of
judging the stability of the equilibrium point of a nonlinear
differential equation is to determine the stability according
to linearization. Lyapunov pointed out that, for nonlinear
differential equations, if the linearized characteristic equa-
tion has no root of zero root or zero real part, then the
stability state of its equilibrium point is the same as that of
the equilibrium point of nonlinear differential equations
[39].

(i) When the roots of linearized characteristic equa-
tions are all negative roots or reals, the equilibrium
point of the nonlinear differential equations is lo-
cally asymptotically stable.

(ii) When a linearized characteristic equation has the
root of the positive real part or the root of the
positive root, the equilibrium point of the nonlinear
differential equations is unstable.

(iii) When a linearized characteristic equation has zeros
or zero real part root, the nonlinear differential
equations belong to the critical situation, and the
stability state of the equilibrium point cannot be
judged by the stability state of the linear approxi-
mate equations but should be analyzed by other
means.

Theorem 2. Under different parameter conditions, the stable
states of the three equilibrium points of the system will be
different:

(1) If r1 − d1 − m≤ 0 and r2 − d2 ≤ 0, then E∗1 is a locally
asymptotically stable equilibrium point

(2) If r1 − d1 − m≤ 0 and r2 − d2 > 0, then E∗2 is a locally
asymptotically stable equilibrium point

(3) If r1 − d1 − m> 0, then E∗3 is a locally asymptotically
stable equilibrium point

Proof. 1e coefficient matrix of the approximate equations
of the nonlinear equations are obtained after Taylor’s ex-
pansion of (13) at each equilibrium point:

A|E∗
i

�

zf1(x, y)

zx

zf1(x, y)

zy

zf2(x, y)

zx

zf2(x, y)

zy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌E∗
i

�

−
2r1

k1
x(t) + r1 − d1 − m 0

m −
2r2

k2
y(t) + r2 − d2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌E∗
i

i � 1, 2, 3. (13)

1en, the characteristic equation becomes

det(A − λI)|E∗
i

�

−
2r1
k1

x(t) + r1 − d1 − m − λ 0

m −
2r2

k2
y(t) + r2 − d2 − λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌E∗
i

� 0. (14)

1e above expression can be written in a more explicit
form as follows:

λ2 + pλ + q􏼐 􏼑|E∗
i

� 0, (15)

where
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p|E∗
i

� −
zf1(x, y)

zx
+

zf2(x, y)

zy
􏼠 􏼡 �

2r1
k1

x(t) − r1 + d1 + m +
2r2
k2

y(t) − r2 + d2, (16)

q|E∗
i

� detA

�
2r1

k1
x(t) − r1 + d1 + m􏼠 􏼡

2r2

k2
y(t) − r2 + d2􏼠 􏼡.

(17)

1e characteristic roots are denoted by λ1,2; thus,

λ1,2 �
−p ±

������

p
2

− 4q

􏽱

􏼒 􏼓

2
.

(18)

1erefore, E∗i is locally asymptotically stable if p|E∗
i
> 0

and q|E∗
i
> 0, and E∗i is unstable if p|E∗

i
< 0 or q|E∗

i
< 0.

(1) Substituting E∗1 � (x∗1 , y∗1 ) into equations (16) and
(17) yields

p|E∗1
� −r1 + d1 + m( 􏼁 + −r2 + d2( 􏼁,

q|E∗1
� r1 − d1 − m( 􏼁 r2 − d2( 􏼁.

(19)

(a) p|E∗1
> 0 and q|E∗1

> 0 only when r1 − d1 − m< 0
and r2 − d2 < 0 are satisfied at the same time.
1us, λ1,2 < 0.

(b) 1ere is a special case: if r1 − d1 − m � 0 and
r2 − d2 ≤ 0, the characteristic roots are zero. As
mentioned earlier at the beginning of this sec-
tion, this is the critical state, so we cannot infer
the stability using the linearized equations, but
we can solve them graphically.

Since there is no variable y in the first equation of
system (10), we can consider it a one-dimensional
equation and analyze the stability of its equilibrium
point through its curves [40].
We let f1(x, y) � f1 (x) � r1x (t)(1 − x (t)/k1)

−d1x(t) − mx(x), and we found that f1(x) has two
zero solutions when r1 − d1 − m � 0. As shown in
Figure 2(a), f1(x) goes to the left and approaches
the origin with the increase of x, so x � 0 is the stable
equilibrium point of f1(x).
Next, we substitute x � 0 into in the second equation
of system (10), which is also a one-dimensional
equation at that time.
We let f2(x, y) � f2(y) � r2y(t)(1 − y(t)

/k2) − d2y(t), and we found that if r2 − d2 ≤ 0, then

f2(y) has a zero solution and a negative solution.
1e negative solution is illogical and so will not be
further discussed. If r2 − d2 � 0, then f2(y) has two
zero solutions. We can see in Figure 2(b) that, with
the increase of y, f2(y) goes to the left and ap-
proaches the origin, so y � 0 is the equilibrium point
of f2(y). Obviously, if r1 − d1 − m � 0 and
r2 − d2 ≤ 0, then E∗1 is also a stable equilibrium point.
Summarizing the above discussion, E∗1 is a locally
stable equilibrium point when r1 − d1 − m≤ 0 and
r2 − d2 ≤ 0.

(2) Substituting E∗2 � (x∗2 , y∗2 ) into equations (16) and
(17) yields

p|E∗2
� −r1 + d1 + m( 􏼁 + r2 − d2( 􏼁,

q|E∗2
� −r1 + d1 + m( 􏼁 r2 − d2( 􏼁.

(20)

(a) p|E∗2
> 0 and q|E∗2

> 0 only when r1 − d1 − m< 0
and r2 − d2 > 0 are satisfied at the same time;
thus, λ1,2 < 0.

(b) However, if r1 − d1 − m � 0 and r2 − d2 > 0, the
characteristic roots have a zero root. As men-
tioned at the beginning of this section, this is also
the critical state, and thus, it can be solved
graphically. In this situation, f2(y) has a zero
solution and a positive solution. We can see in
Figure 3 that, with the increase of y, f2(y)

departs from the origin and tends to a positive
solution, which is the equilibrium point of
f2(y). Obviously, E∗2 is also a stable equilibrium
point when r1 − d1 − m � 0 and r2 − d2 > 0.

In summary, E∗2 is a locally stable equilibrium point
when r1 − d1 − m≤ 0 and r2 − d2 > 0.

(3) Substituting E∗3 � (x∗3 , y∗3 ) into equations (16) and
(17) yields

p|E∗3
� r1 − d1 − m( 􏼁 +

���������������������������

r2 − d2( 􏼁
2

+
4r2k1m r1 − d1 − m( 􏼁

r1k2

􏽳

,

q|E∗3
� r1 − d1 − m( 􏼁

����������������������������

r2 − d2( 􏼁
2

+
4r2k1m r1 − d1 − m( 􏼁

r1k2
.

􏽳 (21)
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1erefore, if r1 − d1 − m> 0, then p|E∗3
> 0 and q|E∗3

> 0; thus, λ1,2 < 0, and E∗3 is locally asymptotically
stable.
1e three previously discussed equilibrium points
represent different practical meanings:

(i) If the growth rate of visits to PHCIs is lower
than or equal to the sum of the churn rate and
the leapfrog medical treatment rate, and the
growth rate of visits to hospitals is lower than or
equal to the churn rate, no patients will ulti-
mately seek medical treatment in the system.

(ii) If the growth rate of visits to PHCIs is lower
than or equal to the sum of the churn rate and
the leapfrog medical treatment rate, and the
growth rate of visits to hospitals is greater than
the churn rate, patients will eventually con-
centrate in hospitals, and the number of visits
will be y∗2 , but no patients in PHCIs.

(iii) If the growth rate of the number of visits to PHCIs
is greater than the sum of the churn rate and the
leapfrog medical treatment rate, patients will be
evenly distributed between PHCIs and hospitals in
numbers of x∗3 and y∗3 , respectively. □

3.3. Sector Field and Solution Curve Analysis. In this section,
we draw the slope field and the solution curves of the system
to verify the above conclusions. 1e solution curves consist
of the graph of solutions of the equation and the projection
of the integral curves onto the 0xy-plane, which describes the
approximate graph of the integral curve. Each tangent line of
any point on the solution curves has a slope, and the slopes
of all points make up the slope field, which is the graphical
solution of the differential equation. We can intuitively see
the patterns of change and properties of all the solutions of
the differential equations [41, 42].

According to the realistic significance of the model, the
Chinese population level, and the current visit data, we
assume that x ∈ [0.5 × 105], y ∈ [0.2 × 106], k1 � 1 × 106,
k2 � 2 × 106, m � 0.1, r1 � 0.8, and r2 � 0. 3.

Subsequently, we can change the condition for the ex-
istence of the equilibrium points by changing the values of d1
and d2. Next, we use MATLAB(R2018a) to draw the slope
field and solution curves of the system under different pa-
rameter conditions.

In the slope field, the blue circular points represent
the equilibrium point, and the direction and size of the
arrow indicate the direction and speed of the point,
respectively.

dx
dt

x
0

f1 (x)

(a)

y
0

dy
dt

f2 (y)

(b)

Figure 2: 1e curves of (a) f1(x) and (b) f2(y). (a) r1 − d1 − m � 0. (b) r2 − d2 ≤ 0.

dy
dt

y

f2 (y)

0

Figure 3: 1e curve of f2(y).
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In the solution curves, each curve is a solution of the
system and the arrows on each line show where they go over
time.

Scenario 1. If d1 � 0.7 and d2 � 0.3, then r1 − d1 − m≤ 0
and r2 − d2 ≤ 0. According to1eorem 1, the system has only
one equilibrium point, E∗1 .

We can see from the slope field (Figure 4(a)) that all the
arrows point to the origin, the speed changes from fast to
slow, and the speed of the arrow at the origin is reduced to
zero. It is clear from the solution curve (Figure 4(b)) that, as
time elapses, all solution curves in the end point to the
origin. 1erefore, E∗1 is a locally asymptotically stable
equilibrium point.

Consequently, if the growth rate of visits to PHCIs is less
than or equal to the sum of the churn rate and the leapfrog
medical treatment rate and the growth rate of visits to
hospitals is less than or equal to the churn rate, the system
will converge to the origin, no matter what the initial value
or the interference is, and no patients will seek medical
treatment in the end.

Scenario 2. If d1 � 0.7 and d2 � 0.05, then r1 − d1 − m≤ 0
and r2 − d2 > 0. According to1eorem 1, the system has two
equilibrium points, E∗1 and E∗2 .

We can see from the slope field (Figure 5(a)) that only
the vertical arrow passes through E∗1 , and the arrows in the
other directions are far away from E∗1 and point to E∗2 . 1e
speed changes from fast to slow, and the speed of the arrow
at E∗2 gradually decreases to zero. 1e solution curve indi-
cates (Figure 5(b)) that, as time elapses, all solution curves
finally converge at point E∗2 . 1is means that, under this
parameter condition, E∗1 is an unstable saddle point and E∗2 is
a locally asymptotically stable node, that is, the system re-
mains stable at E∗2 .

Consequently, if the growth rate of visits to PHCIs is less
than or equal to the sum of the churn rate and the leapfrog
medical treatment rate and the growth rate of visits to
hospitals is greater than the churn rate, patients will
eventually concentrate on hospitals, and the number will be
y∗2 , but none will visit PHCIs.

Scenario 3. If d1 � 0.5 and d2 � 0.05, then r1 − d1 − m> 0
and r2 − d2 ≤ 0. According to1eorem 1, the system has two
equilibrium points, E∗1 and E∗3 .

It can be inferred from the slope field (Figure 6(a)) that
only the vertical arrow passes through E∗1 , and the arrows in
the other directions point to E∗3 .1e speed changes from fast
to slow, and the speed of the arrow at E∗3 gradually decreases
to zero. It can be derived from the solution curve
(Figure 6(b)) that, as time elapses, all solution curves finally
converge at E∗3 . 1is shows that, under this parameter
condition, E∗1 is an unstable equilibrium point, and E∗3 is a
locally asymptotically stable node, that is, the system re-
mains stable at E∗3 .

Scenario 4. If d1 � 0.5 and d2 � 0.1, then r1 − d1 − m> 0
and r2 − d2 > 0. According to 1eorem 1, the system has
there equilibrium points, E∗1 , E∗2 , and E∗3 .

1e slope field demonstrates (Figure 7(a)) that only the
vertical arrow passes through E∗1 and E∗2 , and the arrows in
the other directions point to E∗3 . 1e speed changes from fast
to slow, and the speed of the arrow at E∗3 gradually decreases
to zero. It can be inferred from the solution curve
(Figure 7(b)) that, as time elapses, all solution curves finally
converge at E∗3 . 1is shows that, under this parameter
condition, E∗1 and E∗2 are unstable equilibrium points, and
E∗3 is a locally asymptotically stable node, that is, the system
remains stable at E∗3 .

Scenarios 3 and 4 indicate that only if the growth rate of
the number of visits to PHCIs is greater than the sum of the
churn rate and leapfrog medical treatment rate, patients will
be evenly distributed between PHCIs and hospitals in
numbers x∗3 and y∗3 . 1is is the state of the development of
an effective medical system pursued by most countries.

Based on the results of the above analysis, the following
questions arise. What is the future of medical institutions in
China? Is the usage efficiency of medical resource allocation
reasonable or unreasonable? Does a change of parameters
have an impact on the system, and if so, to what extent? A
discussion providing possible answers continues in
Section 4.

4. Simulation Analysis

4.1. Parameter Fitting and Model Validation. 1is study
selects two sets of time-series data for visits of PHCIs and
hospitals from the statistical data of the National Health
Commission of the People’s Republic of China, which are
reported each December. 1e time span of data is from
January 2011 to November 2018. 1e date of January 2011 is
used as the initial value, and data for the period of January
2011 to May 2018 are used to perform a least-squares op-
timal fitting of the unknown parameters of the model and
then to obtain the values m � 0.0011, k1 � 51960,
k2 � 69990, r1 � 0.1019, r2 � 0.0810, d1 � 0.0298, and
d2 � 0.0480. 1e data obtained meet the stability condition
of equilibrium point E∗3 , and it is possible to calculate the
number of consultations for the steady state in PHCIs and
hospitals, which is x∗3 � 36214 and y∗3 � 29654.

1e determination coefficient R2 shows that the fitting
degree of the regression line to the observed value is better.
Its maximum value is 1, and the closer it is to 1, the better the
fitting degree is.1e obtained R2 � 0.978, which is close to 1.
1us, the fitting is close to the real value.

In order to further verify the fitting effect, we use the data
from the period of June to November 2018. As shown in
Figure 8(a), the fitting effect for the number of consultations
in PHCI is better, which shows that the current increase in
the number of consultations has gradually slowed down and
is close to a steady state. 1e maximum visiting capacity still
has much room for consultations and treatments, which
means that the efficiency of resource allocation is low.

Since the number of hospital visits shows obvious sea-
sonal periodic changes [43], this paper does not consider
seasonal factors in the modeling, so the fitting curve of
hospital visits (Figure 8(b)) shows the true value of the
number of visits, and the difference in fitted values for
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Figure 4: (a) Slope field and (b) solution curves (r1 − d1 − m≤ 0 and r2 − d2 ≤ 0).
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Figure 5: (a) Slope field and (b) solution curves (r1 − d1 − m≤ 0 and r2 − d2 > 0).
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Figure 6: (a) Slope field and (b) solution curves (r1 − d1 − m> 0 and r2 − d2 ≤ 0).
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certain months is normal. We can see from the figure that
the number of hospital visits is still growing rapidly, and it is
expected to reach a stable state around 2025.

4.2. Parameter Sensitivity Analysis

4.2.1. Impact of m. In order to analyze the impact of dif-
ferent parameter values on the number of visits in the
medical system, this paper simulates the system model by
taking three cases that are less than, equal to, or greater than
the parameter fitting value.

Figure 9 presents a x(t) and y(t) change when in the
orderly medical treatment status (m � 0), the current
medical treatment status (m � 0.0011), and greater than the
current status (m � 0.0021). Other parameters are fixed.

1rough simulation, we can see that changes in the value
of m will affect x(t) and y(t) values at the same time. 1is

reveals that if other parameters are fixed, the reduction in m

value can decrease the number of visits to hospitals while
increasing the number of visits to PHCIs, that is, patients can
be reasonably reoriented. However, even if there is no
phenomenon of leapfrog medical treatment, it is difficult to
substantially increase the number of consultations in PHCIs.
1erefore, simply changing the patient’s medical treatment
habits does not have a significant effect on increasing the
number of visits to PHCIs.

4.2.2. Impact of k1 and k2. Figures 10 and 11, respectively,
show the effects of different values of maximum patient
capacity on the system.

We find that a change of the k1 value will positively affect
the values of x(t) and y(t) at the same time, but it has a
much greater effect on x(t) and a very small impact on y(t).
1ere is no influence on the value of x(t), and there is a
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Figure 7: (a) Slope field and (b) solution curves (r1 − d1 − m> 0 and r2 − d2 > 0).
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positive influence on the value of y(t). 1e value change of
y(t) when k2 changes is less than that of y(t) when k1
changes by the same magnitude. 1erefore, improving the
maximum number of patients in each type of medical in-
stitution can increase their number of visits and have more
influence on PHCIs.

4.2.3. Impact of r1 and r2. Figures 12 and 13, respectively,
show the effects of different values of maximum patient
capacity on the system.

We find that a change of r1 value will positively affect the
values of x(t) and y(t) at the same time, but it has much
greater effect on x(t) and a very small impact on y(t), which
can almost be ignored. 1ere is no influence on the value of
x(t) and a positive influence on the value of y(t) when the r2

value is changed. A change of the y(t) value when r2 changes
is greater than that of x(t) when r1 changes by the same
magnitude.

1e above result indicates that a growing population
or aging rate can cause an inherent increase in the rate of
visits and enhance the number of visits to clinics in
various institutions. 1us, improving the intrinsic in-
crease rate for each type of medical institution can in-
crease their number of visits and have more influence on
hospitals.

4.2.4. Impact of d1 and d2. Figures 14 and 15, respectively,
show the effects of different churn rate values on the system.

We find that the change in the d1 value will negatively
affect the values of x(t) and y(t) at the same time, but it has
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Figure 9: Effect of parameter value m on the number of visits to (a) PHCIs and (b) hospitals.
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Figure 10: Effect of parameter value k1 on the number of visits to (a) PHCIs and (b) hospitals.
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a much greater effect on x(t) and a very small impact on
y(t), which can almost be ignored. 1ere is no influence on
the value of x(t) and a positive influence on the value of y(t)

when the d2 changes. 1e change of value y(t) when d2
changes is greater than that of x(t) when d1 changes by the
same magnitude.

1is indicates that the churn rate rises with the increase
of human mortality and abandonment rate, and the number
of visits to clinics in various institutions is reduced.1us, the
reduction of the churn rate in each level of medical insti-
tutions can increase their number of visits and have more
influence on hospitals.
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Figure 11: Effect of parameter value k2 on the number of visits to (a) PHCIs and (b) hospitals.
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Figure 12: Effect of parameter value r1 on the number of visits to (a) PHCIs and (b) hospitals.
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Figure 13: Effect of parameter value r2 on the number of visits to (a) PHCIs and (b) hospitals.
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5. Conclusions and Suggestions

1is paper analyzes the change of the number of visits over
time to PHCIs and hospitals in China based on the logistic
differential equation model and evaluates the dynamic be-
havior and parameter sensitivity of the system. Our results
show that

(1) 1e system corresponds to three different types of
locally asymptotically stable equilibrium points under
different parameter conditions, namely, a zero-equi-
librium point, boundary equilibrium point, and pos-
itive equilibrium point. Only the positive equilibrium
point forms a basis for the balanced development of the
medical system. 1us, the relationship between the
inherent growth rate of the number of visits to PHCIs
should be greater than the sum of the churn rate and
the leapfrog medical treatment rate, and the devel-
opment status of PHCIs plays a significant role in
achieving a balanced development.

(2) At present, China’s PHCIs and hospitals are char-
acterized by certain numbers of visits, but the re-
source utilization rate of PHCIs is fairly low. If other
external factors remain unchanged, this trend will
continue until the system reaches a stable state. 1e
number of visits to PHCIs is about to reach a stable
state, while the number of visits to hospitals is
growing rapidly and is expected to reach a stable
state in 2025. 1erefore, with the growth and in-
tensified aging of the population, there is a very
urgent need to increase the consultation rate of
primary medical institutions.

(3) Reducing the rate of leapfrog medical treatment will
increase the number of visits to PHCIs, as well as
reduce the number of visits to hospitals, but the
overall change would not be large. Increasing PHCIs’
maximum visiting capacity or the inherent rate of

visits or reducing the churn rate of visits will both
greatly boost the number of visits to PHCIs and
hospitals, while the impact on hospitals is small
enough to be ignored. Since the topological structure
of this model is a one-way input, increasing hospi-
tals’ maximum visiting capacity or the inherent rate
of visits or reducing the churn rate of visits will
greatly enhance the number of visits to hospitals, but
will not affect the number of visits to PHCIs.

1erefore, it can be concluded that, to increase the rate of
visits to PHCIs in China and to improve the status quo of the
unreasonable use of higher-level medical resources, not only
should we formulate policies in terms of changing patient
habits (the effect is not obvious) but also we must not restrict
the expansion and development of hospitals. 1is finding is
different from some previous research conclusions [44].
Instead, attention should be paid to improving the com-
prehensive diagnostic and treatment capabilities of PHCIs,
such as enhancing the training of medical staff, increasing
the number of beds, and increasing the amount and quality
of equipment and medication, i.e., expanding the consul-
tation capacity and further increasing the consultation rate
of primary medical institutions. 1is conclusion further
verifies that the main reason for the low rate of consultation
in China’s PHCIs is their low diagnostic and treatment
capabilities. 1e inherent growth rate of the number of visits
is also related to the loss rate and population changes, al-
though these relationships are not enough within the scope
of the main discussion of this article to formulate improved
health policies and thus were not discussed in it.

In the process of model building, we simplified some
actual realities. For example, we simplified the leapfrog
medical treatment rate to a constant, even though it is af-
fected by a variety of factors. At the same time, the number
of visits in medical institutions changes periodically every
year, something we did not consider in this study.1erefore,
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in follow-up research, we will optimize the model according
to the characteristics of China’s medical system. Finally,
global stability analysis is not only very important but also
challenging, so global stability analysis will also be the focus
of our follow-up research [45], so as to provide the Chinese
government with a more effective and relatively more ac-
curate decision-making basis for the allocation of medical
resources.
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