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In this study, a fuzzy wavelet neural network with the improved Levenberg–Marquardt algorithm (FWNN-LM) is proposed to
conquer nonlinearity and uncertain disturbance problems in the AC servo system. First of all, use the particle swarm optimization
algorithm based on Levenberg–Marquardt (LM) to optimize parameters in the FWNN controller. Second, the potentiality of fuzzy
rules (PFR) method is developed to optimize the structure of the FWNN by error reduction ratio (ERR). Furthermore, stability of
FWNN-LM is proved by the Lyapunov method. Finally, simulation and prototype test results show that this method can improve
the accuracy and robustness of the system in presence of load disturbances and parameter perturbations.

1. Introduction

In recent years, varies studies show that the AC servo system
exhibits good dynamical property [1, 2], but the stability still
needs to improve. For the AC servo system, the dynamic
mathematical model is a complex systemwith characteristics
of large load, which can lead to nonlinearity and uncertain
disturbance. In practical applications, an AC servo system
performance may be affected due to unmodeled dynamics
changed [3, 4].

After referring to many references, a lot of studies have
shown the neural network is an important component of a
complicated nonlinear system control policy under the
circumstance of the lack of full model details [5–8].-emost
prominent advantage of the neural network is approximate
capability, and it can approximate function with any pre-
cision. However, it is hard to avoid local minimization for
the BP neural network. If we use a sigmoid function as the
stimulation function, it also causes slow convergence speed.
Moreover, it cannot realize the mapping rules in time [9].
Fuzzy logic has become a hot topic research of neural
networks in many studies. Dong et al. [10, 11] provide
theoretical basis to modelling and controlling the nonlinear
system. Consider there aremany uncertainties existing in the
fuzzy control process. Wang [12] provides a fuzzy neural

network along with utilization to improve system robustness
without accurate control; however, the parametric learning
algorithm is presupposed for the topology of fuzzy systems.

As an alternative, multiple research studies concentrate
on the use of the wavelet neural network (WNN) [13–16].
Compared with the usual sigmoid function neural network,
the wavelet function possesses a better learning capacity in
aspects of system identification. In recent years, Zekri et al.
[17–19] studied the combination of wavelet theory and the
fuzzy neural network (FNN). In the FWNN, fuzzy rules are
corresponding to the sub-WNN, respectively, and the
wavelet and fuzzy sets parameters learning can improve the
FWNN approximation accuracy [20–23]. However, the
main drawback of the WNN is that due to its feed-forward
network structure, its application area is limited to static
issues. -e Levenberg–Marquardt (LM) method has a re-
markable characteristic of local learning and a fast con-
vergence performance at the same time [24]. However, the
LM algorithm increases memory demands with the method
of calculating some problems that come from the error
function with the Jacobian matrix [25]. Moreover, another
disadvantage is that the LM algorithm is still a local opti-
mization method.

-e particle swarm algorithm (PSO) is a global opti-
mization algorithm, through collaboration and competition
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between individuals to find the optimal solution, and the
particle swarm optimization search process is started from
the entire group, with the implicit parallel search features to
improve the performance of the algorithm [22]. However,
the PSO algorithm has some disadvantages such as slow
convergence speed.

Based on the above analysis, in this study, an adaptive
fuzzy wavelet neural network controller with LM is proposed
to control the rotor position of the AC servo system for
tracing reference trajectory with robustness. In the proposed
control structure, the FWNN is a controller, and the LMPSO
algorithm is employed for the online training of all weights
of the FWNN. Moreover, potentiality of fuzzy rules (PFR)
with using error reduction ratio (ERR) is developed to adjust
the parameters and organize the structure of the FWNN.-e
stability of the system can be proved by using Lyapunov
theory [26]. Finally, studies demonstrate promising results
of a prototype AC servo system that can verify the feasibility
and effectiveness by using the proposed algorithm.

-e contents of this study can be listed as follows: the
second section analyzes the servo system. After briefly in-
troducing the FWNN in the third section, the following
section four develops the FWNN-LM which has been
proposed at great length. Afterwards, the convergence of the
algorithm is analyzed in section five. And then, the simu-
lation outcomes are discussed in section six. Last, a con-
clusion has been mentioned in the last section.

2. AC Servo System Analysis

-e AC servo system control structure is shown in Figure 1.
In the stationary (d-q) frame of reference, the mathe-

matical models of the permanent magnet synchronous
motor can be expressed as follows:
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where id, iq, ud, uq, and Ld, Lq represent the electric currents,
voltages, and inductance coefficient of the motor d and q
axes, respectively; R is the motor stator resistor (Ohm), ψf

represents the motor permanent magnet flux, p represents
the motor pair of poles, J represents the motor inertia
constant, B represents the viscous friction coefficient, ωr

stands for the motor angular velocity, Te stands for motor
electromagnetic torque, and TL stands for the load torque.

-e system is applied to a three-closed-loop control
system. It uses the magnetic field-oriented control tech-
nology to complete the motor position and achieve high
performance. Additionally, the simplification of the motor
control system uses the id � 0 vector control approach.

When id � 0, the motor mechanical equation can be
expressed as

J _ωb + Bωb + TL � Te, (2)

where ωb is the mechanical angular velocity, and Te can be
written as

Te �
3
2

pψfiq � Ktiq, (3)

where Kt is a moment constant that needs to be adjusted.
Generally, compared with the mechanical time constant,

the motor current time constant has a much smaller nu-
merical value; thus, the delay time of the current responding
can be neglected. -e state variables can be set as x1 � θ and
x2 � _θ; substitute equation (2) into equation (3), and the AC
servo system can be rewritten as
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J
iq(t) + −
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J
TL ,
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(4)

where − (B/J), Kt/J, and − (1/J)TL represent the nonlinear
dynamic equations and the external disturbance,
respectively.

3. Fuzzy Wavelet Neural Network

3.1. Wavelet Neural Network Structure. -e structure of
wavelet neural network is shown in Figure 2. As Figure 2
illustrates, K is the master nodes of the input layer, the
hidden layer number is M, ωkm is the connection weighing
between node k of the input layer and node m of the hidden
layer, ωm is the connection weighing between node m and
the output layer, bm is the translation parameter of wavelet
function, and am is the scale variable of the wavelet function.
-e output can be written as [21]

L(t) � 
M

m�1
ωmψm netm( , (5)

where netm � 
K
k�1 ωkmxk − bm/am, (m � 1, 2, . . . , M).

Choose the Morlet wavelet function as the generating
function ψ(x) � cos(1.75x)exp(− (1/2)x2).

3.2. Fuzzy Wavelet Neural Network Structure. In the fuzzy
wavelet network, each fuzzy rule corresponds to a given
wavelet scale values of the wavelet neural network [27]. In
order to describe FWNN-LMPSO clearly, a simple structure
of the FWNN is shown in Figure 3.

-e NF fuzzy IF-THEN rules can be expressed as
follows:

Rn: if x1 is A1n,x2 is A2n, ..., and xm is Amn, then

yn � Ln � 

Nw,n

m�1
ωm,nψm,n(x), (6)
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where Rn is the fuzzy rule (1≤ n≤NF); Amn is the mem-
bership function for the fuzzy set of Gaussian function,
which can be expressed as

μAmn
xm(  � exp − xm − cmn( )

2/σ2mn( 
, (7)

where xm is the input of m � 1: Nin, Nin represents the
number of input neurons; n � 1: NF. -e canter cmn and
width σmn can be used to define as a subordinate function.

-e output of the entire FWNN structure by using
product rules and defuzzification is shown as

OFWNN(k) � 

NF

n�1
μn(x)Ln, (8)

where μn(x) � (μn(x)/
NF

n�1 μn(x)), Ln � 
NW(n)

j�1 ωjψj, and
μn(x) � mμAmn

(xm).
-e output mean square error of the online learning is
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Figure 1: -e structure of the AC servo system.
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1
2
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where Od is the expected output of the training data.
According to the descent algorithm, the FWNN parameters
adjustment formulas are shown as
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where cl(l � 1: 6) is the learning rate, and the arguments of
the FWNN controller can be expressed as

γl
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1
, . . . , c
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, . . . , c

l
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ωm , c

m
, c

d
, c

c
, c

σ
 .

(11)

4. FWNN with LM Algorithm-Based PSO

In the neural network, a sigmoid function is used as the
activation function of the BP neural network, which leads to
the result that the BP neural network is easy to get into a local
minimum, slow convergence speed. -us, to improve the
performance of FWNN, the training process is required to
adjust both the structure size and the parameters. An
LMPSO method is used for adjusting the parameters; and a
PFR is developed to design the structure of FWNNs. In the
following, the LMPSO method and PFR method are de-
scribed in detail.

4.1. LMAlgorithm-ModifiedFWNN. -e LM algorithm is an
approximate Newton algorithm, which proves that the LM-
based BPNN algorithm converges quick and accurate per-
formance [28]. In this study, the total mean square error of P
is given as

P �
1
2



P

p�1
e
2
p. (12)

-e LM algorithm is written as
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T
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(14)

-e structure of the fuzzy wavelet neural network
(FWNN) based on the LMPSO controller is shown in
Figure 4.

4.2. LM Algorithm-Based PSO. PSO is a population-based
heuristic global optimization technique. In this algorithm,
the population is called a swarm, and the trajectory of each
particle in the search space is adjusted by dynamically al-
tering its velocity, according to its own flying experience and
swarm experience in the search space. In the PSO algorithm,
a group of particles represent a candidate solution. -e
velocity and position updating formulas of the PSO are il-
lustrated as

WFNN
Controller

Eq (5)-Eq (11)

AC servo
System

Eq (1)-Eq (4)

On-line Learning
Algorithm

Eq (12)-Eq (13)

PSO
Eq (15)-Eq (17)

Y

Yd

–

+ e

WFNN Controller with LM
based PSO

uWFNN

Δωkm, Δωm, Δm, Δd, Δc, Δσ

Δωm, μn

γωkm, γωm, γm, γd, γc, γσ

PFR
Structure Size

Eq (18)-Eq (23)

Figure 4: FWNN with LM-based PSO.
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vi(k + 1) � w(k)vi(k) + c1r1 Pi(k) − xi(k)(  + c2r2 Pg(k) − xi(k) ,

xi(k + 1) � xi(k) + vi(k + 1),

⎧⎨

⎩ (15)

where vi(k) represents the current rate of particle ith during
the iteration k; xi(k) represents the current position of the ith

particle; Pi(k) is on behalf of the optimum position of the ith

particle previously appeared; Pg(k) denotes the best pre-
vious position among all the particles; c1 and c2 are on behalf
of the acceleration factors; r1 and r2 uniformed random
number in the interval [0, 1]; wstands for the inertia weight
in the interval [0.4, 0.9]. An appropriate fitness function to
calculate the appropriate value is

F(t) � 0.4eMAE + 0.6emax, (16)

where F(t) is the fitness value; eMAE represents the mean
absolute error, emax is the maximum absolute error, and
connected with LM-based FWNN, there is

eMAE �


X
x�1 ex




X
; emax � max(|e(h)|); xi � h. (17)

In this study, the PSO-LM algorithm is used to make
adjustments of FWNN which can make eMAE and emax more
appropriate in actual conditions. A few particulars about the
PSO procedure are shown as follows:

(1) Initialize the PSO parameters
(2) Determine Pg(k) and Pi(k)

(3) Refresh the particle speed as well as the position by
taking advantage of equation (29)

(4) Get the current fitness value FT and updatePi(k),
Pg(k); if FTi <Pi(k), FTi <Pg(k).

(5) Ifi<N, set i � i + 1 and then go to step (3); other-
wise, proceed to the next step.

(6) If k<maxgen, set k � k + 1 and then go to step (2) or
output Pg(k) to LM-based FWNN.

4.3. Potentiality of Fuzzy Rules (PFR). -e PFR values can be
used to calculate the potentiality of fuzzy rules and extract
the contributions of the normalized neuron. -e FWNN
model is expressed as follows:

yd(t) � W(t)Φ(t) + e(t), (18)

where W(t) � [w(t − k − 1),w(t − k + 2), . . . ,w(t)]T is the
weight between the output layer and normalized layer, and
Φ(t) is given by

Φ(t) � [μ(t − k + 1), μ(t − k + 2), . . . , μ(t)]. (19)

-e matrix Φ(t) can be transformed into a set of or-
thogonal basis vectors by QR decomposition as

ΦT
� Q(t)R(t), (20)

where R(t) is an upper triangular matrix, andQ(t) � [q1(t),

q1(t), . . . , qn(t)] have the same dimension asΦ(t).-en, the
ERR is given by [29]

error(t) �
yd(t)qTl (t) 

2

qTl (t)ql(t)yd(t)yTd(t)
, l � 1, 2, . . . , NF.

(21)

-e PFR value of the lth normalized neuron can be
expressed as follows:

PFRl(t) �
Rl(t)


NF

l�1 Rl(t)
, l � 1, 2, . . . , NF, (22)

where PFRl(t) ∈ (0, 1) is the potentiality of fuzzy rule in the
lth normalized neuron, and

Rl(t + 1) � ηRl(t) + μ(t − ρ + 1)error(t), ρ � k, k − 1, . . . , 1,

(23)

where 0< η< 1 is a constant.

5. Stability Analysis

Lyapunov function is used to assess the system stability, and
it can be defined as

V(k) �
1
2
e
2
(k), (24)

where e(k) � (yd(k) − y(k)).yd is the desired output, and
y(k) is the actual output.

ΔV(k) �
1
2

e
2
(k + 1) − e

2
(k) , (25)

where e(k + 1) � e(k) + Δe(k). Using Taylor’s formula,
Δe(k) can be given as

Δe(k) � 

NF

n�1

ze(k)

zPl
n(k)

 

T

ΔPl
n(k)

⎧⎨

⎩

⎫⎬

⎭, (26)

where
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l
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μn(x)
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h�1 μh(x)
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,
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1
n, . . . , P

2
n, . . . , P

l
n  � ωKm,(n),ωm,(n)mm,(n), dm,(n), cm,(n), σm,(n) ,

n � 1: NF, l � 1: 6, j � 1: m, k � 1: Nin,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(27)

where A � (zy(k)/zu(k)). -en, Δe(k) can be written as

Δe(k) � c
l
A
2
e1(k)

1


NF

h�1 μh(x) 
2 

NF

n�1
μ2n(x)

zLn

zPl
n(k)

��������

��������

2

.

(28)

Substituting equation (28) into equation (25), ΔV(k) can
be rewritten as

ΔV(k) � −
1


NF

h�1 μh(x) 
2 × 

NF

n�1
μ2n(x)

zLn

zPl
n(k)

��������

��������
 

2

Ae1(k)λ,

(29)

where

λ � c
l 1 −

1
2

c
l


NF

h�1 μh(x) 
2 × 

NF

n�1
μ2n(x)

zLn

zPl
n(k)

��������

��������

2

 
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

(30)

If μn(x)≤ 1, that is,

λ≥ c
l
· 1 −

1
2

c
l


NF

h�1 μh(x) 
2 × 

NF

n�1
max μ2n(x)  

2
max

zLn

zPl
n(k)

��������

��������
 

2

 
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (31)

-us, according to Lyapunov stability theory, when λ> 0,
ΔV(k)< 0, and the stability of the system will be guaranteed.

6. Simulation Test and Discussion

In order to test and verify the effectiveness of the FWNN-
LMPSO control, it will be compared with FWNN-LM.

6.1. Simulation Experiment. In addition, all simulation
programs are conducted in Matlab/Simulink, and a clock
rate of 2.6GHz and 4GB of RAM on a PC running in a
Microsoft 7.0 environment are selected. -e main param-
eters of the AC servo system are given in Table 1. Figures 5–9
show the simulation results.

As shown in Figure 5, the moment of inertia changes
from the initial value to 1.5 times. FWNN-LM generates an
overshoot; it takes 4.15 s to reach the stable condition. Using
FWNN-LMPSO control, the system responds quickly, and
only needs 1.6 s to reach the steady state without overshoot.

Figure 6 shows step response when a 360 nm disturbance
added at 3 s.

As Figure 6 shows, when the load added, it gets more
deviation results on account of the response of the algorithm
of FWNN-LM control. It also has a 5.15° delay in tracking the

reference position. However, when using the FWNN-
LMIPSO control algorithm, the offset can decrease to 1.25°.
It costs 0.35 s to reach the target position. Above all, the
system can perform better in the aspect of load disturbance
suppressing.

Experimental result of tracking step signal with random
disturbances is shown in Figure 7. It can be seen from
Figure 7 that when adding random disturbance to the re-
sponse signal, there is no offset occurring by using FWNN-
LMPSO control. Moreover, random disturbance is also
added in sinusoidal tracking experiment. -e maximum
error of FWNN-LM and FWNN-LMPSO is 0.089° and
0.057°, respectively.

-e sinusoidal tracking error curves with a frequency of
1.67 rad/s and amplitude of 30 degree is shown in Figure 8.

In Figure 9, the number of FWNN-LM iterations is
about 220 steps, the training error is 0.128, and the training
error of FWNN-LMPSO is 0.035 when the number of it-
erations is about 95 steps. -erefore, the convergence rate of
FWNN-LMPSO is better than the FWNN-LM method.

6.2. Semiphysical Experiment. -e semiphysical experiment
platform structure is shown in Figure 10. A step response
with FWNN-LM control and FWNN-LMPSO control are
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Table 1: -e main parameters of the AC servo system.

System parameters S Value Unit
Converted to the motor output shaft moment of inertia J 5239 Kg.m2

Converted to unbalanced torque and friction torque of the motor output shaft TL 9.32 × 103 N · m
Electromagnetic torque coefficient Kt 0.195 N · m/A
Viscous friction coefficient B 1.43 × 10− 4 N · m/(rad.s− 1)

Reduction ratio i 1039
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conducted on this semiphysical experiment platform to test
the system performance.

According to Figures 11–14, when the system is under
maximum load, its steady state time takes 1.41 s for the
FWNN-LM control and the maximum steady state error is
2.63°; however, for FWNN-LMPSO control, the system

required steady state time is 1.35 s, and maximum steady
state error is 0.749°.

Compared with FWNN-LM control, the FWNN-
LMSPSO control has better dynamic and steady state per-
formance. In addition, it performs well in improving system
antidisturbance performance.
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7. Conclusions

-is study offers a new fuzzy wavelet neural network method
in the AC servo system. Compared with the FWNN-LM
controller, the proposed FWNN-LMPSO controller can be
designed more accurately, more meaningful, and simpler.
-e main advantages of the existing method based on
FWNN-LMPSO are as follows: first, in the FWNN-LMPSO
based on the PFR method, fuzzy rules can be added to and
removed from the structure learning method with the
method of using the ERR value. Second, the LM algorithm
improves the control accuracy through the adjustment of
parameters, and the PSO learning algorithm is used to
improve the learning speed. Lyapunov theory is also in-
troduced to analysis system stability. Last, experimental
results show the method has strong robustness and better
dynamic performance.
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