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-e 3D Prandtl fluid flow through a bidirectional extending surface is analytically investigated. Cattaneo–Christov fluid model is
employed to govern the heat andmass flux during fluid motion.-e Prandtl fluidmotion is mathematically modeled using the law
of conservations of mass, momentum, and energy. -e set of coupled nonlinear PDEs is converted to ODEs by employing
appropriate similarity relations. -e system of coupled ODEs is analytically solved using the well-established mathematical
technique of HAM. -e impacts of various physical parameters over the fluid state variables are investigated by displaying their
corresponding plots. -e augmenting Prandtl parameter enhances the fluid velocity and reduces the temperature and con-
centration of the fluid. -e momentum boundary layer boosts while the thermal boundary layer mitigates with the rising elastic
parameter (α2) strength. Furthermore, the enhancing thermal relaxation parameter (ce)) reduces the temperature distribution,
whereas the augmenting concentration parameter (cc) drops the strength of the concentration profile. -e increasing Prandtl
parameter declines the fluid temperature while the augmenting Schmidt number drops the fluid concentration.-e comparison of
the HAM technique with the numerical solution shows an excellent agreement and hence ascertains the accuracy of the applied
analytical technique. -is work finds applications in numerous fields involving the flow of non-Newtonian fluids.

1. Introduction

Non-Newtonian fluids are those fluids that do not obey
Newton’s law of fluid motion. -e Newtonian fluids have
constant viscosity as evidenced by the direct relationship
between the shear stress and the resulting strain. -e ma-
jority of applications of non-Newtonian fluids in different
fields such as petroleum production, bio-chemicals prepa-
ration, pharmaceutical industry, food, and power engi-
neering, have been thoroughly investigated by various

researchers and investigators.-e non-Newtonian fluids, for
example, genetic and manufactured liquid organisms,
polymers, emulsions, paints, blood, oil, toothpaste, and
ketchup, have a crucial and important role in this advanced
scientific, industrial, and technological arena. -e non-
Newtonian fluids due to their complex and nonlinear nature
are very difficult to be handled both numerically as well as
analytically as compared to Newtonian fluids. Carreau [1, 2]
for the first time introduced an expression for the stress
tensor that models the nonlinear and viscoelastic features of

Hindawi
Complexity
Volume 2021, Article ID 8204928, 15 pages
https://doi.org/10.1155/2021/8204928

mailto:mashwanigr8@gmail.com
https://orcid.org/0000-0002-4286-5403
https://orcid.org/0000-0002-0186-0526
https://orcid.org/0000-0002-2366-8041
https://orcid.org/0000-0002-5081-741X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8204928


non-Newtonian fluids. -e Carreau relation for the stress
tensor has opened the way to investigate the non-Newtonian
fluids both analytically and numerically.

Non-Newtonian fluids may be further divided into many
types based on their physical characteristics. -ere exists an
important type called shear thinning or pseudoplastic fluids.
-e viscosity of such fluids displays a decreasing tendency to
the applied shear stress. -e most important and common
example of such kind of fluid is the human blood. Re-
searchers have developed different models to describe the
behavior and properties of shear-thinning fluids. -e im-
portance of these models is the Prandtl fluid model, which is
capable to describe the shear-thinning nature of such kinds
of fluids. Akbar et al. [3] inspected the outcomes of hy-
dromagnetic stagnation-point flow of Prandtl fluid through
stretching flat surface embedded in a porous medium. Bilal
et al. [4] analyzed the consequences of double diffusion on
the MHD Prandtl nanoliquid moving through an extended
sheet taking into account the effects of external magnetic
influence. Nadeem et al. [5] performed the analytical
treatment of a Prandtl fluid model with heat transfer
characteristics. Khan et al. [6] briefly investigated the im-
pacts of homogenous and heterogeneous reactions on the 2D
MHD flow of Prandtl fluid through a nonlinear heated
surface. Amanullah et al. [7] investigated the hydromagnetic
flow of Prandtl-Eyring fluid through an isothermal per-
meable spherical surface, considering the magnetic and slip
effects. -e effect of slip-on electrically conductive hydro-
magnetic boundary layer flow through an exponentially
extended sheet with viscous dissipation and thermal radi-
ation has been investigated by Mukhopadhyay [8]. Ali et al.
[9] described the unique features of unsteady Eyring-Powell
nanofluid flow near the stagnation point through a con-
vectively heated stretching surface. Further relevant studies
about viscoelastic Prandtl fluid can be studied in references
[10–19]. Abbas et al. [20] addressed the entropy optimized
Darcy–Forchheimer nanofluid flow through an elongated
curved surface with MHD and temperature-dependent
viscosity effects. Sreedevi and Reddy [21] examined the
impacts of thermophoresis and Brownian motion on the
hydromagnetic 3D Maxwellian nanoliquid migration
through a stretching sheet in the presence of thermal ra-
diation and chemical reaction effects. Recently, enormous
research on the dynamic features of nanofluid motion has
been undertaken in references [22–27].

MHD and electrically conducting flows of non-New-
tonian fluids through stretching surfaces have enormous
applications in the different fields of engineering and
technology. Some of them are hot rolling, glass fiber, nuclear
reactor cooling, plastic sheet extrusion, metal casting, glass
blowing, and metallurgical casting. Abel et al. [28] analyzed
the effects of heat transport andMHDmotion over 2DUCM
fluid flow through a stretching surface in the presence of
induced magnetic parameter. Vishnu et al. [29] performed
the Lie symmetry analysis of the magnetic field effects on the
free convection nanofluid flow over a semi-infinite
stretchable surface. Das et al. [30] demonstrated the hy-
dromagnetic nanofluid flow through a stretching surface
embedded in permeable source through a rotating frame.

Ibrahim et al. [31] numerically analyzed the impacts of heat
source and applied magnetic field on the mixed convective
MHD dissipative Casson nanoliquid stagnation-point flow
through a stretching surface by taking into account the
convective boundary condition and velocity slip impacts.
Kumar et al. [32] thoroughly examined the hydromagnetic
flow of chemically reactive non-Newtonian viscoelastic
Williamson liquid through a curved/flat sheet with gener-
ation of variable heat and radiation effects. Das and Zheng
[33] studied the impacts of melting and external magnetic
force on the stagnation-point flow of conducting viscoelastic
Jeffrey fluid through a curved surface with Newtonian
heating. Aziz and Afify [34] evaluated numerically the MHD
and boundary layer flow through a curved surface in the
presence of magnetic field and viscous dissipation. Recently,
Abbas et al. [35] studied 3D MHD flow of micropolar
nanofluid through a rotating permeable exponentially
elongated surface using convective boundary conditions. In
[36–38], homotopy analysis method (HAM) has applied for
solving various types of nonlinear differential equations. In
[39], the influence of thermal radiation, inclined magnetic
field, and stratification on the third-grade nanofluid with
swimming gyrotactic microorganisms have been mainly
analysed by using the optimal homotopy analysis method
(OHAM). -e fluid is flowing past a horizontal cylinder
exposed to an inclined magnetic field. -e boundary layer
system of equations is reconstructed into ordinary differ-
ential equations using similarity transformations. -e sys-
tem of equations is resolved using the optimal homotopy
analysis method (OHAM) and the results are visualized
numerically and graphically. -e Galerkin finite element
scheme has employed for developing new system of equa-
tions to investigate the generation of entropy in viscoelastic
Sisko nanofluid over a cylinder. -e analysis is performed in
the existence of nanofluid and motile microorganisms. -e
magneto-hydrodynamic flow including the inclined mag-
netic field is considered. Fluxes for heat, mass, the con-
centration of nano-sized particles, and the concentration of
swimming microorganisms are computed and scrutinized
[40]. Recently in [41], a simulationmodel has been employed
in order to observe knowledge flow within the regional
innovation system under relationships of varying strength.
-e results show that when the relationship between the
subjects of the regional innovation system reaches certain
strength, the system will exhibit high module independence
and high network integrity, forming a loosely coupled
system. -e knowledge flow in the system exhibits the
emergence of a fast flow rate, a high mean value, and little
variance. When relationship strength is at other levels, the
emergence of knowledge cannot be identified.

Motivated through the above literature, it is planned to
investigate the various thermal features during the three-di-
mensional Darcy–Forchheimer flow of Prandtl fluid through a
stretching and permeable surface. -e thermal analysis of the
flow is performed using the Cattaneo–Christov model. -e
main aim of the investigation is to explore the thermal energy
transport features of the non-Newtonian Prandtl fluid mi-
grating through a porous and stretching surface.-e structure
of the article is organized in the following manner.
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-e geometry and mathematical model of the problem
under investigation are presented in Section 2. -e model
equations are transformed to simple form by using similarity
relations. -e solution methodology of HAM applied to
solve the reduced model is explained in Section 3. -e
convergence analysis of the applied procedure is discussed in
Section 4 by displaying graphs and tables of the state var-
iables. -e results are displayed through different graphs
describing the impacts of physical parameters over the state
functions in Section 5. -e work is concluded finally in the
last section.

2. Problem Framework

We consider the 3D Darcy–Forchheimer flow of Prandtl
fluid through a permeable stretching surface as displayed in
Figure 1. -e surface temperature and concentration are
expected to remain constant. -e Cattaneo–Christov model
of heat and mass flux is employed to analyze the heat and
mass flow rates. -e stretching velocities along x- and y-axes
are, respectively, Uw � ax and Vw � by. -e z-axis is taken
normal to the fluid flow.

-e governingmodel of the flow consists of the following
equations:
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-e flow satisfies the following conditions:

u � Uw � ax, v � Vw � by, w � 0, C � Cw, T � Tw at z � 0,

v⟶ 0, u⟶ 0, C⟶ C∞, T⟶ T∞ as z⟶∞.
􏼨 􏼩

(6)

Here, u, v, and w are the velocity Cartesian components,
υ � μ/ρf is the kinematic viscosity, μ is the fluid dynamic
viscosity, ρf is the fluid density, A and C are the material
constants for the Prandtl liquid, λE is the relaxation time of
heat flux, F � cb/x

���
K∗

√
is the inertia coefficient, λC is the

relaxation of mass flux, α∗ � k/(ρc)f is the thermal diffu-
sivity, k is the thermal conductivity, (ρc)f is the heat ca-
pacity of working liquid, (ρc)p is the effective heat capacity
of nanoparticles, T is the temperature, C is the

concentration, Tw is the surface temperature, Cw is the
surface concentration, T∞ is the ambient temperature, Cw is
the ambient concentration, and D is the mass diffusion
coefficient.

-e similarity transformations are defined as
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Using these transformations, the continuity equation is
satisfied identically, whereas equations (2)–(6) are trans-
formed as
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where α, α1, α2, cc, ce, Pr, Sc, Fr, and K are respectively
the ratio parameter, Prandtl fluid parameter, elastic pa-
rameter, concentration parameter, thermal relaxation pa-
rameter, Prandtl number, Schmidt number, inertia
parameter, and porosity parameter. -ese are given by
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-e skin frication coefficients, heat transfer rate, and
mass flow rate are defined as

���
Rex

􏽰
Cf � α1

􏽦f″(0) + α2
􏽦f″(0)􏼒 􏼓

3

����
Rey

􏽱
Cg � α1􏽦g″(0) + α2 􏽦g″(0)􏼒 􏼓

3

Nux���
Rex

􏽰 � − 􏽥θ′(0)

Shx���
Rex

􏽰 � − 􏽥ϕ′(0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (14)

where Rex � ax2/υ and Rey � ay2/υ indicate the local
Reynolds numbers. -e present fluid reduces to the New-
tonian fluid when α1 � 1 and α2 � 0.

3. Solution Methodology

In order to solve the nonlinear system of equations (8)–(11)
subjected to the conditions in equation (12), we employ the
homotopic scheme. -e following steps are needed to ex-
ecute the HAM procedure. -e solution having the auxiliary
constraint Z adjusts and regulates the convergence of the
analytical series solution.

-e initial guesses are

z

y

x
u=uw=ax

v=vw=by

Figure 1: Configuration of the flow map.
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where all 􏽥ci(i � 1 − 10) are numbers in the general solution.
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,

(20)
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N􏽥ϕ
[􏽥f(η; 􏽥p), 􏽥g(η; 􏽥p), 􏽥ϕ(η; 􏽥p)] �

z
2􏽥ϕ(η; 􏽥p)

zη2
+

Sc

􏽥f(η; 􏽥p)
z􏽥ϕ(η; 􏽥p)

zη
+ 􏽥g(η; 􏽥p)

z􏽥ϕ(η; 􏽥p)

zη

−cc

z􏽥ϕ(η; 􏽥p)

zη

􏽥g(η; 􏽥p)
z􏽥f(η; 􏽥p)

zη
+ 􏽥g(η; 􏽥p)

z􏽥g(η; 􏽥p)

zη
+ 􏽥f(η; 􏽥p)

z􏽥f(η; 􏽥p)

zη
+

􏽥f(η; 􏽥p)
z􏽥g(η; 􏽥p)

zη

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

(􏽥g(η; 􏽥p))
2

+(􏽥f(η; 􏽥p))
2

+ 2􏽥g(η; 􏽥p)􏽥f(η; 􏽥p)􏼐 􏼑
z
2􏽥ϕ(η; 􏽥p)

zη2
,
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.

(21)

-e basics of HAM have been explained in references
[36]. -e 0th-order problem from the system of equations
(8)–(11) is

(1 − 􏽥p)L􏽥f
􏽥f(η; 􏽥p) − 􏽥f0(η)􏽨 􏽩 � 􏽥pZ􏽥f

􏽥N􏽥f
[􏽥f(η; 􏽥p), 􏽥g(η; 􏽥p)], (22)

(1 − 􏽥p))L􏽥g 􏽥g(η; 􏽥p) − 􏽥g0(η)􏼂 􏼃 � 􏽥pZ􏽥g
􏽥N􏽥g[􏽥f(η; 􏽥p), 􏽥g(η; 􏽥p)], (23)

(1 − 􏽥p)L􏽥θ
􏽥θ(η; 􏽥p) − 􏽥θ0(η)􏽨 􏽩 � 􏽥pZ􏽥θ

􏽥N􏽥θ
[􏽥f(η; 􏽥p), 􏽥g(η; 􏽥p), 􏽥θ(η; 􏽥p)], (24)

(1 − 􏽥p)L􏽥ϕ
􏽥ϕ(η; 􏽥p) − 􏽥ϕ0(η)􏽨 􏽩 � 􏽥pZ􏽥ϕ

􏽥N􏽥ϕ
[􏽥f(η; 􏽥p), 􏽥g(η; 􏽥p), 􏽥ϕ(η; 􏽥p)]. (25)

-e extreme values are

􏽥f(η; 􏽥p)|η�0 � 0,
z􏽥f(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌η�0
� 1,

z􏽥f(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌η⟶∞
� 0,

􏽥g(η; 􏽥p)|η�0 � 0,
z􏽥g(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌η�0
� α,

z􏽥g(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌η⟶∞
� 0,

􏽥θ(η; 􏽥p)|η�0 � 1, 􏽥θ(η; 􏽥p)

􏼌􏼌􏼌􏼌􏼌􏼌η⟶∞
� 0, 􏽥ϕ(η; 􏽥p)

􏼌􏼌􏼌􏼌􏼌􏼌η�0

� 1, 􏽥ϕ(η; 􏽥p)|η⟶∞ � 0,

(26)

where 􏽥p ∈ [0, 1] is the embedding parameter, and
Z􏽥f

, Z􏽥g, Z􏽥θ
, Z􏽥ϕ

are used to control the convergence of the
obtained solution.

When 􏽥p � 0 and 􏽥p � 1, we have
􏽥f(η; 1) � 􏽥f(η), 􏽥g(η; 1) � 􏽥g(η), 􏽥θ(η; 1)

� 􏽥θ(η), 􏽥ϕ(η; 1) � 􏽥ϕ(η).
(27)

-e Taylor’s series expansions of
􏽥f(η; 􏽥p), 􏽥g(η; 􏽥p), 􏽥θ(η; 􏽥p), 􏽥ϕ(η; 􏽥p) about 􏽥p � 0 are given by

􏽥f(η; 􏽥p) � 􏽥f0(η) + 􏽘
∞

m�1

􏽥fm(η)􏽥p
m

,

􏽥g(η; 􏽥p) � 􏽥g0(η) + 􏽘
∞

m�1
􏽥gm(η)􏽥p

m
,

􏽥θ(η; 􏽥p) � 􏽥θ0(η) + 􏽘

∞

m�1

􏽥θm(η)􏽥p
m

,

􏽥ϕ((η; 􏽥p) � 􏽥ϕ0(η) + 􏽘
∞

m�1

􏽥ϕm(η)􏽥p
m

,

(28)

whereas

􏽥fm(η) �
1

m!

z􏽥f(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌􏽥p�0
,

􏽥gm(η) �
1

m!

z􏽥g(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌􏽥p�0
,

􏽥θm(η) �
1

m!

zθ(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌􏽥p�0
,

􏽥ϕm(η) �
1

m!

zϕ(η; 􏽥p)

zη

􏼌􏼌􏼌􏼌􏼌􏼌􏽥p�0
.

(29)
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-e secondary constraints Z􏽥f
, Z􏽥g, Z􏽥θ

, Z􏽥ϕ
are chosen in

such a way that series (27) converges at 􏽥p � 1. Substituting
􏽥p � 1 in equation (27), we get

􏽥f(η) � 􏽥f0(η) + 􏽘
∞

m�1

􏽥fm(η),

􏽥g(η) � 􏽥g0(η) + 􏽘
∞

m�1
􏽥gm(η),

􏽥θ(η) � 􏽥θ0(η) + 􏽘
∞

m�1

􏽥θm(η),

􏽥ϕ(η) � 􏽥ϕ0(η) + 􏽘
∞

m�1

􏽥ϕm(η).

(30)

-e mth − order problem satisfies the following
relations:

L􏽥f
􏽥fm(η) − χm

􏽥fm−1(η)􏽨 􏽩 � Z􏽥f
􏽥R

􏽥f
m(η),

L􏽥g 􏽥gm(η) − χm􏽥gm−1(η)􏼂 􏼃 � Z􏽥g
􏽥R

􏽥g
m(η),

L􏽥θ
􏽥θm(η) − χm

􏽥θm−1(η)􏽨 􏽩 � Z􏽥θ
􏽥R
􏽥θ
m(η),

L􏽥ϕ
􏽥ϕm(η) − χm

􏽥ϕm−1(η)􏽨 􏽩 � Z􏽥ϕ
􏽥R

􏽥ϕ
m(η).

(31)

-e corresponding boundary conditions are
􏽥fm(0) � 􏽥fm

′ (0) � 􏽥gm(0) � 􏽥gm
′ (0) � 􏽥θm(0) � 􏽥ϕm(0) � 0,

􏽥fm
′ (∞) � 􏽥gm

′ (∞) � 􏽥θm
′ (∞) � 􏽥ϕm

′ (∞) � 0.

(32)

-e different symbols in equation (30) represent the
following expressions:

􏽥R
􏽥f
m(η) � α1􏽥f

″′
m−1 + 􏽘

m−1

k�0
􏽥g
″′
m−1−k

􏽥fk
″ + 􏽘

m−1

k�0

􏽥fm−1−k
􏽥fk
″ − 􏽘

m−1

k�0

􏽥fm−1−k
′􏽥fk
′ + α2 􏽘

m−1

k�0

􏽥f
″′
m−1−k 􏽘

k

l�0

􏽥fk−1″􏽥fl
″ − K􏽥fm−1′ − Fr 􏽘

m−1

k�0

􏽥fm−1−k
′ 􏽥fk
″,

(33)

􏽥R
􏽥g
m(η) � α1􏽥g

″′
m−1 + 􏽘

m−1

k�0

􏽥fm−1−k􏽥g
″′
k + 􏽘

m−1

k�0
􏽥gm−1−k􏽥gk

″ − 􏽘
m−1

k�0
􏽥gm−1−k
′ 􏽥gk
′ + α2 􏽘

m−1

k�0
g
″′
m−1−k 􏽘

k

l�0
gk−l
″gl
″, (34)

􏽥R
􏽥θ
m(η) � 􏽥θm−1″

+Pr

􏽘

m−1

k�0

􏽥fm−1−kθk
′ + 􏽘

m−1

k�0
􏽥gm−1−kθk

′−

ce

􏽘

m−1

k�0

􏽥fm−1−k
′ 􏽘

k

l�0
􏽥gk−l

􏽥θl
′ + 􏽘

m−1

k�0
􏽥gm−1−k 􏽘

k

l�0
􏽥gk−l
′ 􏽥θl
′ + 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

k

l�0

􏽥fk−l
′ 􏽥θl
′ + 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

k

l�0
􏽥gk−l
′ 􏽥θl
′+

􏽘

m−1

k�0
􏽥gm−1−k 􏽘

m−1

k�0
􏽥gm−1−k

􏽥θl
″ + 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

m−1

k�0

􏽥fm−1−k
􏽥θl
″ + 2 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

m−1

k�0
􏽥gm−1−k

􏽥θl
″
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,
(35)

􏽥R
􏽥ϕ
m(η) � 􏽥ϕm−1″ + Sc

􏽘

m−1

k�0

􏽥fm−1−k
􏽥ϕk
′ + 􏽘

m−1

k�0
􏽥gm−1−k

􏽥ϕk
′−

cc

􏽘

m−1

k�0

􏽥fm−1−k
′ 􏽘

k

l�0
􏽥gk−l

􏽥ϕl
′ + 􏽘

m−1

k�0
􏽥gm−1−k 􏽘

k

l�0
􏽥gk−l
′ 􏽥ϕl
′ + 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

k

l�0

􏽥fk−l
′ 􏽥ϕl
′ + 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

k

l�0
􏽥gk−l
′ 􏽥ϕl
′+

􏽘

m−1

k�0
􏽥gm−1−k 􏽘

m−1

k�0
􏽥gm−1−k

􏽥ϕl
″ + 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

m−1

k�0

􏽥fm−1−k
􏽥ϕl
″ + 2 􏽘

m−1

k�0

􏽥fm−1−k 􏽘

m−1

k�0
􏽥gm−1−k

􏽥ϕl
″
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,

(36)

with

χm �
0, if 􏽥p≤ 1,

1, if 􏽥p> 1.
􏼨 (37)

4. Convergence Analysis

-e right selection of auxiliary constraints Zf, Zf, Zθ, and Zϕ
well affects the convergence of a series solution of a non-
linear governing problem by homotopic technique. -e

Complexity 7



precise choice of these parameters plays a significant role in
regulating the convergence zone. In this regard, we com-
puted and sketched the velocity, temperature, and con-
centration plots in Figure 2. -e interval of convergence is
determined by the flat part of these plots. Tables 1 and 2
show the ranges of the permissible auxiliary parameter
values and fruitful convergence. It is found that as the order
of approximation upsurges, the average squared residual
error diminishes, as shown in Figure 3. -e comparison of
the HAM solution with the shooting technique (RK-4) has
been made to confirm the effectiveness of the implemented
method. Results are shown graphically in Figures 3–6 and
tabulated in Tables 3–6.

5. Results Analysis

-is part is devoted to understand the physical conse-
quences through the graphical display of the state variables
of the investigated fluid flow. -e system of nonlinear
equations (8)–(11) with the extreme conditions in equation
(12) are tackled via the famous analytical method of HAM.
-e impact on velocity, energy, and concentration profiles
is explored graphically with the variation of various di-
mensionless parameters in Figures 2–10. -e computa-
tional upshots for the drag force, heat, and mass flow rates
are tabularized respectively in Tables 7–9. Table 7 repre-
sents the variation in the drag force coefficient with varying
values of α1, α2, K, and Fr. It has been perceived that the
drag force diminishes with the increasing α1, α2 values,
while enhances with the augmenting K, Fr values. Table 8
displays the heat transfer features through variation of
Nusselt number with varying Pr and ce. It is noticed that
Joule heating increases with higher Prandtl number values
and drops with the increasing thermal relaxation param-
eter. Table 9 displays the impact of varying strength of Sc

and cc on the mass flow rate. -e tale shows that the mass
flow rate enhances with the increasing Schmidt number
values and drops with the augmenting inertia parameter
strength.

Figures 8(a)–8(c) demonstrate the impact of Prandtl
fluid parameter (α1) variation over fluid velocity, thermal
field, and concentration field, respectively. One can per-
ceive that f′(η) is the growing function of α1. -us, the
fluid velocity and associated boundary layer thickness
enhance with the rise in Prandtl fluid parameter. Here, the
thermal field and concentration profile drop with the in-
creasing α1, and therefore, the boundary layer thickness
diminishes in both cases. Figures 9(a)–9(c) depict the effect
of elastic parameter (α2) variation on the flow field,
temperature distribution, and concentration, respectively.
Figure 9(a) shows that the thickness of the momentum
boundary layer boosts with the larger elastic parameter
strength. -e boosting is more prominent in the inter-
mediate region. -e increasing elastic parameter dimin-
ishes the heat conduction and escalates the heat convection.
In consequence, the thermal field θ(η) curves and
boundary layer thickness dwindle with the enhancing α2 as
displayed by Figure 9(b). -e concentration field dimin-
ishes with the rising α2 as displayed by Figure 9(c).
Figure 10(a) illustrates the variation in the thermal field
(θ(η)) with the different values of thermal relaxation pa-
rameter (ce). -is graph reveals that the temperature field
decreases with the higher relaxation parameter strength. In
fact, the working fluid dissipates extra heat with the aug-
menting thermal relaxation parameter. In consequence, the
fluid temperature diminishes. Figure 10(b) delineates the
impact of cc on the concentration profile ϕ(η). We see that
higher estimation of cc retards the concentration and the
related boundary layer thickness mitigates. In consequence,
ϕ(η) reduces. Figures 11(a) and 11(b) present the outcome
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0

-2

-2.0 -1.5 -1.0 -0.5 0.0
f′ 

(0
) θ

 (0
) ϕ

 (0
)

hf,θ, ϕ

f″ (0)
θ′ (0)
ϕ′ (0)

Figure 2: Z− curves plot of the velocity, energy, and concentration profiles.

Table 1: -e permissible ranges for the convergent solution.

Approximate solutions Auxiliary parameters Convergent
intervals

f(η) Zf −0.7≤ Zf ≤ − 0.1
θ(η) Zθ −1.6≤ Zθ ≤ − 0.2
ϕ(η) Zϕ −0.5≤ Zϕ ≤ − 0.1
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of porosity parameter (K) and inertia parameter (Fr) on
the stream flow profiles. As anticipated, the velocity of
material particles diminishes with the larger porosity and
inertia parameters. Figure 12(a) shows the impact of
variation of Prandtl number on the thermal field distri-
bution. Clearly, the thermal field decreases with the higher
strength of Pr. An upsurge in the Prandtl number declines
the thermal diffusion in the fluid layers. In consequence, a
thinner thermal boundary layer forms and the temperature
field diminishes. Figure 12(b) portrays the Schmidt number
(Sc) effect on the concentration profile ϕ(η). As we know
that the Schmidt number and mass diffusion are related
inversely with each other, hence an upsurge in Sc results in
a decay in the concentration field as displayed in the figure.

Table 2: Series solution convergence analysis subjected to distinct order approximations.

M f(η) g(η) θ(η) ϕ(η)

4 1.43051×10–6 0.0000213906 0.0000826203 0.0000276808
8 1.82262×10–9 1.54095×10–7 1.02815×10–6 1.32032×10–7

12 1.03571×10–11 2.29034×10–9 1.34154×10–8 4.87951×10–10

16 1.12675×10–13 5.49984×10–11 1.72623×10–10 1.10127×10–12

20 2.14918×10–15 1.19988×10–12 2.20574×10–12 1.13712×10–15

2 4 6 8 10

10-6

10-5

10-4

0.001

m

Er
ro

r

Figure 3: Squared residual via order of approximation.
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Figure 4: Comparison of the two solutions for f′(η).
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Figure 5: Comparison of the two solutions for g(η).
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Figure 6: Comparison of the two solutions for θ(η).

Table 3: Comparison of the two solutions for f′(η).

η HAM solution Numerical solution Absolute error
0.0 1.000000 1.000000 0.000000
0.5 0.917840 0.917839 1.1× 10−6

1.0 0.841372 0.841369 2.7×10−6

1.5 0.770370 0.770365 5.1× 10−6

2.0 0.704599 0.704590 8.6×10−6

2.5 0.643808 0.643793 0.000014
3.0 0.587740 0.587717 0.000022
3.5 0.536131 0.536096 0.000034
4.0 0.488662 0.488662 0.000051
4.5 0.445145 0.445145 0.000073
5.0 0.405279 0.405279 0.000102
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Table 4: Comparison of the two solutions for g(η).

η HAM solution Numerical solution Absolute error
0.0 1.000000 1.000000 4.4×10−6

0.5 0.891008 0.890713 0.000295
1.0 0.790149 0.789552 0.000597
1.5 0.697491 0.696584 0.000907
2.0 0.612988 0.611765 0.001223
2.5 0.536478 0.534936 0.001542
3.0 0.467693 0.465830 0.001863
3.5 0.406272 0.404089 0.002184
4.0 0.351778 0.349278 0.002500
4.5 0.303719 0.300908 0.002810
5.0 0.261568 0.258456 0.003112

Table 5: Comparison of the two solutions for θ(η).

η HAM solution Numerical solution Absolute error
0.0 1.000000 1.000000 2.2×10−16

0.5 0.965778 0.965706 0.000072
1.0 0.931640 0.931496 0.000144
1.5 0.931640 0.897453 0.000217
2.0 0.897670 0.863660 0.000291
2.5 0.863951 0.830198 0.000366
3.0 0.830564 0.797143 0.000443
3.5 0.797586 0.764564 0.000523
4.0 0.765086 0.732527 0.000604
4.5 0.701776 0.701088 0.000688
5.0 0.671072 0.670297 0.00755

Table 6: Comparison of the two solutions for ϕ(η).

η HAM solution Numerical solution Absolute error
0.0 1.000000 1.000000 0.000000
0.5 0.957396 0.957229 0.000168
1.0 0.914948 0.914673 0.000335
1.5 0.872812 0.872311 0.000501
2.0 0.83114 0.830477 0.000666
2.5 0.790091 0.789261 0.000830
3.0 0.749795 0.748803 0.000991
3.5 0.710383 0.709232 0.001151
4.0 0.671372 0.670664 0.001308
4.5 0.634660 0.633197 0.001462
5.0 0.538531 0.596917 0.001614
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0.6

0.8

1.0

Numerical
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ϕ 
(η

)

Figure 7: Comparison of the two solutions for ϕ(η).
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Figure 8: Effect of Prandtl fluid parameter on f′(η), θ(η), ϕ(η). (a) Velocity profile. (b) Temperature field. (c) Concentration profile.
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Figure 9: Continued.
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Figure 9: Effect of elastic parameter on f′(η), θ(η), ϕ(η). (a) Velocity profile. (b) Temperature field. (c) Concentration profile.

Ye = 0.0, 0.3, 0.5, 0.7.

1.0

0.8

0.6

0.4

0.2

0.0

θ 
(η

)

0 1 2 3 4 5
η

(a)

Yc = 0.0, 0.3, 0.5, 0.7.

1.0

0.8

0.6

0.4

0.2

0.0

ϕ 
(η

)

0 1 2 3 4 5
η

(b)

Figure 10: Effect of thermal relaxation parameter and concentration parameter on θ(η), ϕ(η). (a) Temperature field. (b) Concentration
profile.

Table 7: Impact of different parameters on drag force.

α1 α2 K Fr
���
Rex

􏽰
Cf

0.1 0.5 0.5 0.5 −0.273061
0.2 −0.267862
0.3 −0.26281

0.5 −0.273061
0.6 −0.26965
0.7 −0.266325

0.5 −0.273061
0.6 −0.277752
0.7 −0.282494

0.5
0.6 −0.276538
0.7 −0.280041

Table 8: Impact of Pr and ce on the Nusselt number.

Pr ce Nux/
���
Rex

􏽰

0.4 0.1 0.830990
0.5 0.868434
0.6 0.894973
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6. Conclusions

-is section concludes the findings of the undertaken re-
search. In the current mathematical framework, the 3D
Darcy–Forchheimer flow of Prandtl fluid motion over a
nonlinear permeable surface with heat conduction and mass

diffusion is considered. -e Prandtl motion is modeled
through coupled nonlinear PDEs. -e system of PDEs is
converted to a simplified set of coupled nonlinear ODEs
using suitable similarity relations. HAM is applied to solve
the reduced system of equations. -e convergent analysis of
the applied procedure shows that the solution is convergent

Table 8: Continued.

Pr ce Nux/
���
Rex

􏽰

0.4 0.1 0.830990
0.2 0.829404
0.3 0.827812

Table 9: Impact of Sc and cc on the Sherwood number.

Sc cc Shx/
���
Rex

􏽰

0.2 0.1 0.682041
0.3 0.774562
0.4 0.830982
0.2 0.1 0.682041

0.3 0.679379
0.5 0.673995

K = 1.0, 2.0, 3.0, 4.0.
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Figure 11: -e effect of the porosity parameter and inertia parameter on f′(η). (a) Demonstration of velocity profile. (b) Velocity profile.
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Figure 12: Effect of Prandtl and Schmidt numbers on θ(η), ϕ(η). (a) Temperature field. (b) Concentration profile.
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over a wide range. -e comparison of HAM with the
shooting technique through graphs and tables displays
tremendous agreement. -is research work has a wide range
of applications in industrial and technological fields.-e key
points of the current work are outlined as follows:

With the increase in Prandtl fluid parameter, the
momentum boundary layer enhances, while the ther-
mal and concentration boundary layers diminish
-e momentum boundary layer upsurges for larger
elastic parameters, whereas both temperature and
concentration fields dwindle
-e rising thermal relaxation and concentration pa-
rameters depict similar reducing behavior for the
thermal and concentration fields
-e augmenting Schmidt number causes drop in the
fluid concentration
-e drag force coefficient decreases with the enhancing
Prandtl fluid t and elastic parameters
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