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Mountain summits are vital topographic feature points, which are essential for understanding landform processes and their
impacts on the environment and ecosystem. Traditional summit detection methods operate on handcrafted features extracted
from digital elevation model (DEM) data and apply parametric detection algorithms to locate mountain summits. However, these
methods may no longer be effective to achieve desirable recognition results in small summits and suffer from the objective
criterion lacking problem.)us, to address these problems, we propose an improved Faster region-convolutional neural network
(R-CNN) to accurately detect the mountain summits from DEM data. Based on Faster R-CNN, the improved network adopts a
residual convolution block to replace the traditional part and adds a feature pyramid network (FPN) to fuse the features with
adjacent layers to better address the mountain summit detection task. )e residual convolution is employed to capture the deep
correlation between visual and physical morphological features. )e FPN is utilized to integrate the location and semantic
information in the extracted feature maps to effectively represent the mountain summit area. )e experimental results dem-
onstrate that the proposed network could achieve the highest recall and precision without manually designed summit features and
accurately identify small summits.

1. Introduction

Mountain summits are essential topographic feature points
that are widely utilized in military and nonmilitary domains,
such as biodiversity assessment [1], landslide risk analysis
[2], and glacier and snow-covered [3] summit analysis. )e
summit is the area with the maximum elevation from sea
level area. Summits are usually located in a complex and
giant topographic system, with complex structural and
functional differences [4]. Automating the summit detection
process will greatly advance and enrich our geospatial
knowledge; thus, it is valuable to study effective methods for
the automatic detection of mountain summits.

In the literature, there are two main streams of meth-
odologies, heuristic-based methods and data-driven
methods, which have been extensively discussed in summit
detections. A common trait of the heuristic-based methods
is that they rely on features selected by the algorithm de-
signer and landform recognition rules that depend on

parameters configured by the user. In a prior work [5], a
fuzzy set theory was applied to terrain analysis, which
computes the fuzzy membership of each digital elevation
model (DEM) pixel to six different morphometric classes,
Pass, Pit, Plane, Ridge, Channel, and Peak, which are ob-
tained through the evaluation at multiple scales. In another
study [6], a multiscale and multisemantic method, which
combines landform attributes and the surrounding envi-
ronment to compute the membership value of each grid
around the mountain summit, was proposed to detect
mountain summits. )e author considers the mountain to
be a fuzzy entity with various attributes, such as topographic
relief, average slope, and relative altitude. In another work
[7], an accurate summit detection method based on mor-
phological analysis was presented to detect summits, in
which the author concluded that the summit should be
located in a nonflat area and should be the highest point with
respect to the eight adjacent grids around it. Moreover, the
author further illustrated that different summits should be
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separated from a certain level horizontal and vertical dis-
tance. )us, a 3× 3 sliding window is applied on the DEM to
find the highest point in a local area and regard it as a
summit candidate. )en, the relative distance between
neighbors of the candidate is analyzed to more accurately
locate the summit. Although the methods above can well
address the false detection and missing detection problem of
mountain summit detection tasks, most of these methods
require manually designed features, and, thus, their repre-
sentation abilities are limited. Furthermore, it is nontrivial
and cumbersome to manually select parameters especially
when multiple parameters are involved.

With the rapid development of remote sensing tech-
nology, high-resolution DEM data have become easily ac-
cessible, which is characterized by complex backgrounds,
diverse feature structures, and rich details. Easily accessible
high-resolution DEM data have provided an incredible
opportunity to study summit detection from a data-driven
perspective. )e reported data-driven methods can be
classified into two categories: machine learning methods and
deep learning (DL) methods. Recent surveys of the appli-
cations of DL in remote sensing can be found in areas such as
scene classification [8], object detection [9, 10], land use, and
land cover analysis [11]. In a prior work [12], 446 recorded
landslides and landslide-related conditioning factors were
acquired, stored, and analyzed through remote sensing and
geographic information system technologies. )en, the
landslide susceptibility of Ningdu County was predicted
using supervised machine learning models (support vector
machine and chi-squared automatic interaction detection
models) and unsupervised machine learning models
(K-means and Kohonen models) based on 11 conditioning
factors. In another study [13], three machine learning
models, boosted regression tree (BRT), classification and
regression tree (CART), and random forest (RF), were
compared to produce groundwater spring potential maps.

Recently, DL has been widely used in various computer
vision applications, where it can automatically conduct
feature selection from data samples. Convolutional neural
networks (CNNs) have been successfully used to perform
object detection and image recognition [14–16], and CNNs
contain a series of mathematical operations, such as con-
volution, pooling, and thresholding, to automatically learn
the target features from low-level semantics. Due to its
strong ability to capture the spatial correlation and the more
advanced mechanism of feature extraction, CNNs, as well as
DL technology, are hot topics in geography. In a prior work
[17], a DL method was developed to detect terrain features,
including craters, which combines the Faster region CNN
(R-CNN) model with a ZF-net architecture to recognize
some common cases, such as multiple separated but very
close craters and very small craters. In another study [18], a
DL approach was proposed for automatic terrain feature
identification from remote sensing images, which extends
the Faster-RCNN architecture with deep CNNs and adopts
ensemble learning to detect nine different types of terrain
features. Torres et al. [19] proposed an automatic summit
recognition method based on DL. )is method regards the
summit recognition task as a classification problem and

performs well compared to traditional methods. However,
the sliding window makes the network only focus on local
features, which ignores the summit’s overall shape and
spatial structure. With appropriately selected network
structures, DL methods provide flexible options for better
addressing various scenarios of terrain feature identification.
However, the study of DL methods in terrain feature
identification is still in its infancy, and further exploration is
needed to discover its full potential.

In this paper, we focus on how to apply a DL model to
summit detection to achieve high accuracy without man-
ually designed features. A mountain summit recognition
approach based on the Faster R-CNN framework is pro-
posed for more effective mountain summit detection. )e
proposed approach borrows ideas from residual convolution
[20] and feature pyramid network (FPN) [21] to automat-
ically extract the feature of the mountain summit and di-
rectly output the summit’s location in an end-to-end
manner without setting parameters.

)e main contributions of this paper can be summarized
as follows: (1) We formalize summit detection as an image
processing task to train the DL model with DEM data and
locate the boundary coordinates of the summit. (2) We
propose an advanced method for identifying summits from
DEM data, which uses the residual structure to improve the
convolutional layer and merges features of different levels.
(3)We created a new summit detection data set, including its
location and boundaries, to build the proposed model. (4) A
computational experiment demonstrated that the proposed
method could outperform the benchmarks, especially in
terms of detecting small mountain tops and pseudosummits.

2. Methodology

According to the spatial, scale, and controlling area char-
acteristics, the mountain summit can be classified into
several types. Each type of summit has distinctive geological
properties that are not easy to represent in a single model.
Faster R-CNN is the most representative CNN for object
detection. )e region proposal network (RPN) is presented
for efficient and accurate region proposal generation. It is
possible to use a very deep network to improve the overall
object detection accuracy by sharing convolutional features
with a downstream detection network. However, some
limitations of Faster R-CNN, such as poor feature extraction
ability and inefficient feature utilization mechanism, result
in the tendency to miss small summits. )erefore, the hi-
erarchical structure of FPN is applied in the proposed
method to integrate features of different scales to more
accurately locate and identify summits. )e overall im-
proved Faster R-CNN is illustrated in the schematic diagram
shown in Figure 1.

As shown in Figure 1, the improved Faster R-CNN
consists of four parts components: a feature extractor, an
FPN, an RPN, and a summit classifier. )e DEM is fed to the
feature extractor to shrink its size and increase the number
of channels through a sequence of stacked convolution
layers. )e output of the feature extractor is a series of
feature maps that represent the summit from different
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perspectives learned from the data. Next, these feature maps
are sent to the FPN to generate several fused feature maps
containing the summit’s semantic information and location
information. Finally, the RPN generates the location of the
summit through the fused feature maps. Meanwhile, the
parts of the fused feature maps are sent to the summit
classifier to determine whether it is a summit.

)e performance of a neural network increases with the
depth of the network layers. However, neural network
models with many layers are subject to problems during
training, including gradient vanishing and gradient
exploding. )e ResNet model effectively addresses these
problems by introducing a deep residual framework. In this
work, we evaluated the performance of the ResNet-50 and
ResNet-101 architectures. ResNet-101 achieved only a 0.1%
accuracy improvement, while the computational cost in-
creased significantly. )is is because the summits in the
DEM are relatively small and their features may no longer be
identified in those deeper network levels. We chose ResNet-
50 as the feature extractor in the improved Faster R-CNN
framework to balance accuracy and computational
complexity.

Faster R-CNN only uses RPN to perform region sug-
gestion operations in the last convolutional layer, while the
semantic information displayed by small targets in the high-
level features is very limited. It is not easy to obtain more
comprehensive information to predict the summit location.
Figure 2 shows the feature maps extracted by ResNet-50. We
can see that shallow features identify edges by comparing the
brightness of adjacent pixels, while deeper features can find a
specific set of contours and corners to detect the entire part
of the summit and finally identify the summit in the image.
However, as the number of layers in the network increases,
the semantic information in feature maps becomes in-
creasingly prominent, and the location information is
gradually blurred. To find all the possible summit-like re-
gions for subsequent inferring, the FPN structure fuses
semantic and location information of the mountain summit
so that the features at each scale have wealthy semantic
information. )e improved structure is depicted in Figure 3.

We combine the feature from pyramid levels 4 (P4), 3
(P3), and 2 (P2) to generate the finest feature map. Since the
summit is so small that it cannot be retained at this level, the

output from the fifth convolutional layer (C5) is excluded for
proposal detection. Afterward, the feature maps P2, P3, and
P4 are used as an input of the RPN. Based on the location
regression layer of the RPN, a regional suggestion box is
generated to determine the possible locations of the
mountain summit, and the classification layer of the RPN
determines the probability of the existence of the summit
area in the box. In Faster R-CNN, three anchor boxes of
different scales and aspect ratios are predefined manually
according to the PASCAL VOC data set. )ese anchor boxes
are used as the reference bounding boxes for the algorithm
to predict the target position for the first time. It should be
noted that, if we use the default anchor box, the convergence
speed of the bounding box regression slows down during the
training process of Faster R-CNN. Moreover, once an error
occurs in the RPN, it is difficult for the summit classifier to
correct because they share some features between them.
)erefore, considering the size of the summit areas in the
SUMMIT-DEM data set, k-means clustering [22] is used to
adjust the size of the anchor box in the proposed network.
Table 1 shows the anchor box information of the proposed
and previous methods.

3. Experimental Data

Deep learning is much more potent than traditional ap-
proaches due to its ability to learn high-level and abstract
features from data. )erefore, a large amount of data is
needed. Although many large databases, such as VOC [23]
and COCO [24], are available in object detection, few
publicly available data sets for terrain elements detection are
based on optical images.

We use the DEM data marked by NASA [25] to build the
samples data set of summits area, named SUMMIT-DEM.
)e DEM avoids the influence of the illumination and
viewing angle on experimental results, but it lacks many
details representing the summit areas, such as morphology,
orientation, and contrast. We render DEM data into dif-
ferent modes through different visualization technologies to
enable the network to represent mountain summit area
features better.

Firstly, different elevation values are assigned to different
gray scales to achieve three-dimensional terrain expression

Feature Extractor FPN RPN Summit Classifier

ROI 
pooling

RPN

ResNet-50

Fc
ReLU

Fc
ReLU

Class & Box

Figure 1: )e framework of improved faster R-CNN.
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on a two-dimensional plane through tonal differences. )e
range of elevation value is [Hmin, Hmax], and the corre-
sponding gray range is [Gmin, Gmax]. )en, for any elevation,
the corresponding gray value Gi can be calculated through
equation (1). After that, the gray value is normalized to

between 0 and 1, which can reduce part of the noise in the
input data without changing the relative elevation between
elements. )e converted image is shown in Figure 4(a).
)en, the contour lines are generated by a serial of elevation
intervals from the DEM, which can scientifically reflect the
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Figure 2: Feature maps from the shallow to deep layers of the input image.
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Figure 3: Feature pyramid module structure of the improved faster R-CNN.
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primary geomorphological forms and changes such as
ground elevation, mountain body, slope, slope shape, and
mountain strike, as shown in Figure 4(b). Finally, to satisfy
the input of the network, two kinds of data are superimposed
to form the sample shown in Figure 4(c). Figure 4(d) shows a
sample of the summit area after annotation.

By this way, we have made the sampling data set
SUMMIT-DEM, which includes a total of 1000 images and
3,345 samples of the mountain summit area.)e data set was
divided into training, verification, and testing set with a ratio
of 7 : 2 :1.

Gi � Gmin +
Gmax − Gmin

Hmax − Hmin
× Hi − Hmin( . (1)

4. Experiments and Discussion

Two experiments were conducted to evaluate the advantages
of the improved Faster R-CNN. Ablation experiments were
first conducted on three improved modules (feature ex-
tractor, FPN, and anchor box size) to find the contributions
of each module. )en, different heuristic-based and DL
methods, including Faster R-CNN [26], YOLOv3 [27], SSD
[28], and Landserf Peak Classification (LPC) [29, 30], were
compared to validate the effect of improved Faster R-CNN.
)e selection of the methods considered their relevance and
heterogeneity along with the availability of the source code
or a tool supporting their execution.

4.1. Evaluation Metrics and Parameter Selection. )e pre-
cision, recall, F1 score, and average precision (AP) were
selected to evaluate the performance of the improved Faster
R-CNN. )ese metrics are defined as follows:

P �
Tp

Tp + Fp 
,

R �
Tp

Tp + Fn 
,

F1 �
2 × P × R

(P + R)
,

AP �
1
11


R∈ 0,0.1,...,1{ }

P(R),

(2)

where Tp, Fp, and Fn denote the true positive, false positive,
and false negative rates, respectively. Let P be the precision
and R be the recall, while F1 balances P and R. Besides, AP

summarizes the shape of the precision and recall curves to
avoid the problem that the threshold is difficult to evaluate
the effect of the model absolutely, and it is defined as the
mean precision at a set of eleven equally spaced recall levels
[0, 0.1, . . . , 1].

Eachmethod was executed with different parameters, the
values were sampled from the parameter space, and all the
resulting parameter combinations were tested. For the
traditional method, LPC took the DEM and two parameters
as input. )e two parameters were as follows: (1) )e
minimum height that a point must have had to be con-
sidered as a candidate summit. For this parameter, we tested
values from 400m to 6,000m with a step size of 100m
because these two values were the lowest and the highest
elevations of the territory under evaluation. (2) )e mini-
mum distance that was the local maxima in a region. We
tested values from 900m to 30m with a step size of 15m.
)is yielded 3,363 configurations. Each configuration made
the algorithm run independently once, for a total of 3363
runs. Deep learning models have only one parameter: the
probability threshold value to determine if a point is a
summit. We tested a value range from 0.01 to 1 with a step of
0.01, yielding 100 configurations. )e DL algorithm only ran
once, choosing different thresholds to obtain different
precision and recall.

4.2. Ablation Experiment. We analyzed the contributions of
each module in our method, namely, ResNet-50, feature
fusion, and size of anchor box to the overall performance.
)e experimental results are given in Table 2.

By comparing the results of Faster R-CNN, the re-
placement of ResNet-50 brought performance improve-
ments on the AP, with a margin of 1.98%. )is means that
ResNet-50 replaced VGG16 as a feature extractor that can
better represent the summit feature. )e scale and aspect
ratio of the anchor boxes were adjusted in Improved 2, and
then the AP increased to 92.97%. By comparing Improved 3
and Faster R-CNN, the addition of the FPN and the ad-
justment of the anchor box brought performance im-
provements on the AP, with a margin of 2.82%. )is
validates the effectiveness of our FPN and anchor box ad-
justment strategy. Finally, the proposed method (Row 6 in
Table 2) was tested, and its AP reached 94.49%. )e effec-
tiveness of the three improvements, including the replace-
ment of ResNet-50, the addition of FPN, and the adjustment
of the anchor box, was consistently demonstrated.

)e feature maps on the SUMMIT-DEM data set are
shown in Figure 5. )e input images, detection results, and
features of the last two layers of Faster R-CNN and improved

Table 1: Anchor information of the proposed RPN and the original RPN.

Method Feature Size Ratio
Original RPN∗ C5 128, 256, 512 0.5, 1, 2

Our RPN
P2 42 0.66, 0.58, 0.59
P3 102 0.66, 0.58, 0.59
P4 302 0.66, 0.58, 0.59

∗)e original RPN represents the RPNs of faster R-CNN.
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(a) (b) (c) (d)

Figure 4: )e sample construction process of mountain summits area. (a) Grayscale image based on elevation data. (b) Contour line image.
(c) Superimposed images of (a) and (b). (d) Ground-truth images. )e red box is the label of the mountain summit area.

Table 2: Results of the ablation experiments.

Methods Feature extractor Feature fusion Anchor size AP (%)

Faster R-CNN VGG16 RPN (128, 256, 512)
{0.5, 1, 2} 90.55

Improved 1 ResNet-50 RPN (128, 256, 512)
{0.5, 1, 2} 92.53

Improved 2 VGG16 RPN (42, 102, 302)
{0.66, 0.58, 0.59} 92.97

Improved 3 VGG16 FPN+RPN (42, 102, 302)
{0.66, 0.58, 0.59} 93.37

Ours ResNet-50 FPN+RPN (42, 102, 302)
{0.66, 0.58, 0.59} 94.49

(a)

Figure 5: Continued.
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Faster R-CNN are shown in Figure 5. In Column 3, the filter
could learn the summit locations in the form of blobs. As
expected, the improved Faster R-CNN had more informa-
tion at its disposal to distinguish false summits and find
small summits because it preserved the complete location
and semantic features via the FPN. Furthermore, the im-
proved Faster R-CNN could exploit the “context” of a lo-
cation. In Column 4, the improved Faster R-CNN preserved
the correlations among the different locations comprised in
the adjacent points, that is, the network paid more attention
to the surrounding mountains, which affected the compu-
tation of the summit locations and, ultimately, the accuracy.

4.3. Evaluation of Traditional and DL Methods. We com-
pared the proposed method with different methods, in-
cluding Faster R-CNN (FR), YOLOv3, SSD, and LPC on the
SUMMIT-DEM data set.

Figure 6 shows the summit detection results of the
different methods. As shown, the proposed model was the
closest to the ground truth in various summit categories,
including minor, submajor, and major. More impor-
tantly, the proposed model could well identify the

pseudosummits and find the small summits, demon-
strating the effectiveness of the proposed improved Faster
R-CNN.

Table 3 reports the recall, precision, F1 score, and AP
of the proposed method compared with the other
methods. )e improved Faster R-CNN achieved excellent
results on all the evaluation metrics. )e SSD method had
the worst performance because of its limited ability to
extract shallow features and a hierarchical prediction
mechanism, which made the predicted feature maps have
a low utilization rate. In particular, comparing Faster
R-CNN (Column 3) and the improved Faster R-CNN
(Column 2), the recall improved with a margin of 6.45%,
which means more summits were discovered. )ese re-
sults clearly illustrate the superior performance and ro-
bustness of the improved Faster R-CNN.

)e precision-recall curves are shown in Figure 7. )e
PR curves of the improved Faster R-CNN, represented by
the straight blue lines, consistently outperformed all the
other methods. Compared with DL methods, the heu-
ristic-based method, represented by the straight purple
lines, was more sensitive to parameter changes. At point
precision � 0.5 and recall � 0.5, small parameter changes

(b)

Figure 5: )e feature maps of Faster R-CNN and the improved Faster R-CNN. (a) From left to right, the first to fourth items are the input
images, detection results, feature maps of C4, and feature maps of C5. (b) From left to right, the first to fourth items are the input images,
detection results, feature maps of P3, and feature maps of P2.
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could lead to very different results in precision and recall.
)ese results convincingly demonstrate the effectiveness
of the proposed model.

5. Conclusions

In this paper, a novel DL method, improved Faster R-CNN,
was proposed for summit detection without manually
designed summit features. In the improved Faster R-CNN,
ResNet-50 is used as the feature extractor to obtain better
features of the summit, and the hierarchical structure of the
FPN is applied to integrate features of various scales.
Benefiting from these two improved modules, efficient in-
formation communication across multiple layers is con-
ducted, reducing the information loss during RPN anchor
box generation, which leads to more accurate summit de-
tection results. In experimental studies, SUMMIT-DEM
data set was used to study the performance of the improved
Faster R-CNN. Experiments were conducted in different
popular DL and heuristic-based methods, demonstrating the
effectiveness and robustness of the improved Faster R-CNN.

(a) (b) (c) (d) (e) (f )

Figure 6: Mountain summit area recognition results of different networks. (a) Ground-truth images.)e red boxes denote the ground-truth
mountain summits area. (b) )e recognition results of the proposed improved Faster R-CNN. (c) )e recognition results of YOLOv3.
(d))e recognition results of SSD. (e))e recognition results of the network were designed by prior work [26]. (f ))e recognition results of
LPC.

Table 3: )e recognition results of different network models on the test data set.

Measures Improved FR FR-based YOLOv3 SSD LPC
Recall 86.63% 80.18% 81.89% 66.41% 53.79%
Precision 93.98% 91.55% 91.16% 90.57% 77.58%
F1 score 0.90 0.85 0.86 0.77 0.64
AP 94.49% 90.53% 90.69% 85.59% 59.62%
∗)e boldface in the table is the best result of the evaluation index.
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Figure 7: )e P-R curve of each algorithm.
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Our future work will pursue several directions: (1) To-
pographic elements are often symbiotic, such as when the
saddle is between two summits and the ridge is the con-
nection between the summits; thus, we will improve the
model by applying other elements and some methods [31] to
process a set of objects simultaneously through interaction
between their appearance feature and topology, which could
allow modeling of their relations. (2) Multi-information
fusion is also a problem worthy of attention. )e DEM
avoids the influence of the illumination and viewing angle on
the experimental results, but it loses many detailed features,
such as color, texture, and contrast. We will try to use our
method to experiment on remote sensing images in the
future and find a method to combine DEM features and
remote sensing image features to recognize topographic
elements. (3) Due to the conventional nature of cartography,
which often only contains prominent mountains for mor-
phological, historical, and cultural reasons, a data set may
omit many locations with summit-like characteristics.
)erefore, some of the output classified as false positives may
indeed be true positives under a complete ground truth. We
will apply semisupervised learning [32] to improve the
quality of summit data sets, specifically, combining labeled
and unlabeled data to change the learning behavior of the
network.
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