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*e dynamic characteristics of the mechanical arm with a rigid-flexible structure are very complex. *e reason is that it is a
complex DPS (distributed parameter system) with infinite dimension and nonlinearity in essence due to the rigid-flexible
coupling. So, accurately positioning and controlling the rigid-flexible mechanical arms could be difficult. *erefore, a model
reduction method of rigid-flexible mechanical arms based on the approximate inertial manifold is put forward. To repress the
residual vibration of the end of the mechanical arm, a feedforward control strategy is designed. *e high-dimensional solution of
the vibration equation of the rigid-flexible mechanical arms is projected into the complete space composed of orthogonal
decomposition modes. By using Galerkin’s method, the system is simplified and the approximate solution is obtained through the
interaction between high-order and low-order modes. *e truncated finite mode is also used to construct a lowest-order dynamic
model on the basis of approximate inertia manifold. Given the reduced-order rigid-flexible mechanical arms dynamic model,
dynamic response analysis is conducted to optimize the target position error and end residual vibration. A limited number of
sinusoidal signals approximately combine the input signal, by using the particle swarm optimization algorithm to optimize the
input signal, and the amplitude of the sinusoidal signal is corrected. *e simulation results depict the superiority of the proposed
method, which greatly suppresses the end residual vibration of the mechanical arm and realizes the accurate positioning of the end
of the mechanical arm. In addition, the hardware experimental device of the rigid-flexible mechanical arms is constructed, and the
experimental verification of the above method is put into effect. *e simulation results of angular displacement and end vibration
of the reduced model are accordant which is shown by the experimental results of the hardware platform.

1. Introduction

A flexible mechanical arm has the advantages of a high
weight ratio, low energy consumption, high efficiency, less
inertia, and safe operation. At present, most researchers are
focusing on flexible mechanical arms. However, less research
involves rigid-flexible mechanical arms [1, 2]. Rigid-flexible
mechanical arms have stronger operability and versatility,
higher payload, and more low total cost than traditional
flexible mechanical arms [3, 4]. *ey have been widely used
in scientific fields, such as medicine and space [5–8]. Just like
the cyber-physical systems, they also have more nonpara-
metric uncertainties [9] and complex factors, such as dy-
namic/static friction, joint flexibility, structural resonance

modes, and drive dynamics, than the traditional flexible
mechanical arms. Given the complex coupling relationship
between the state variables of the rigid-flexible mechanical
arms [10], the difficulty of modeling and vibration sup-
pression is greatly increased.

So far, many research studies on the modeling and
deformation theory have been done by many researchers
and achieved a series of results [11–13], for example, using
finite element method, virtual modal method, and other
methods to model flexible mechanical arm [14–17]. Various
dimensionality reduction methods are used in this field.
Researchers transform nonlinear partial differential equa-
tions from infinite dimension to finite dimension through
models. Some of the commonly used methods include the

Hindawi
Complexity
Volume 2021, Article ID 8290978, 17 pages
https://doi.org/10.1155/2021/8290978

mailto:zhangyicsu@csu.edu.cn
https://orcid.org/0000-0003-3398-992X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8290978


traditional Galerkin’s method (TGM) [18], inertial manifold
method [19], intrinsic orthogonality decomposition method
[20], and central manifold method [21]. When these
methods are applied to nonlinear dynamic analysis, the
question of how many modes should be included in the
solution will arise. When insufficient modes are considered,
the simplified system may not be topologically equivalent to
the original system. By contrast, excessive considerations
will bring difficulties to system analysis. In this way, the
sensitivity of the solution to disturbance is the key factor
affecting the accurate modeling of the nondynamic model.

*is disturbance may come from the numerical error
and mode truncation of the above method, and this slight
disturbance may affect the system performance [22, 23]. *e
approximate inertial manifold (AIM) has been widely used
in recent years. *e asymptotic properties of some infinite-
dimensional dissipative dynamic systems will evolve. *ey
turn into a finite-dimensional compact set containing
nonlinear phenomena called global attractors [24, 25]. To the
best of the researchers’ knowledge, no research has intro-
duced the AIM into flexible mechanical arms or rigid-
flexible coupling mechanical arms for dimensionality
reduction.

Given that the flexible mechanical arm has under-
actuated variables, the controller for the underactuated
variables of the system is difficult to design directly to
converge in the study of position control. *ese difficulties
lead to the residual vibration of the end of the mechanical
arm in the movement process, which cuts down the accurate
positioning of the end of the mechanical arm. *erefore, the
residual vibration generated during the movement of the
flexible mechanical arm needs to be suppressed, which is the
key to achieving high-precision position control. At present,
the main vibration suppression methods are active control
and passive control [26, 27]. Passive control is mainly
achieved by adding a damping structure to the flexible
structure. As early as the 1980s, the authors in [28] dis-
covered that damping materials could be used to speed up
the attenuation of residual vibration. *ey then proposed to
increase the damping of the robot to achieve structural
vibration suppression. However, this will change the
structure of the mechanical arms. Active control includes
feedforward control and closed-loop control [29–31].
Closed-loop control is the measurement of vibration signals
by sensors and feedback to the control system. *e control
system outputs instructions to control the end vibration,
including PID control, sliding mode control, robust control,
state feedback control, fuzzy control, adaptive control, and
neural network control [32–43]. *e closed-loop control
method mentioned above has a certain effect on the vi-
bration restrain of the end of the flexible mechanical arm,
but it needs to increase the sensor to measure the end
deformation.

Moreover, constructing a complex feedback loop is
necessary for the control, whichmakes its implementation in
practical applications quite difficult. Feedforward control
does not need to add additional sensors, and the control
structure is very simple. Among them, input shaping is the
most widely studied [44, 45]. Yet, it needs to design the input

shaping filter under some constraints. Many parameters are
also needed to be considered. For example, one should
consider the period, the number of pulses, and the amplitude
of the pulse signal. To address the above problem, the au-
thors in [46] proposed a feedforward control strategy that
does not consider the input shaping filter to restrain the
remains vibration of the long and flexible mechanical arm.
*ey expressed the starting and braking part of the input
signal as a Fourier series and optimized the coefficients of the
Fourier series with the goal of zero remains vibration.
Nevertheless, their methods only optimize the starting and
braking parts of the input signal. *e coefficients of the
Fourier series were also modified through trial and error.
Moreover, the selection of the higher mechanical harmonics
is undetermined, and whether precise positioning can be
achieved is not considered.

On the basis of the above problems, the
infinite-dimensional solution of the vibration equation of
the rigid-flexible mechanical arms is projected into the
complete space formed by the POD (proper orthogonal
decomposition) mode by using the AIM [47–49] in this
study. According to AIM, the vibration equation of an
infinite-dimensional rigid-flexible mechanical arm can be
changed into a finite-dimensional equation to extract
nonlinear phenomena. *en, the TGM is used to solve the
simplified system to obtain the interaction between the high-
order mode and the low-order mode. *e proposed method
reduces the free degree of the system and improves the
calculation efficiency without significantly losing the accu-
racy of the solution comparing with the TGM. Given the
reduced-order rigid-flexible mechanical arms dynamic
model, dynamic response analysis is conducted to optimize
the target position error and end residual vibration. *e
input signal is approximately combined by a limited number
of sinusoidal signals. *e NF (natural frequency) of the
system determines the highest frequency of the sinusoidal
signal, to optimize the input signal, and the amplitude of the
sinusoidal signal is corrected using the particle swarm op-
timization (PSO) algorithm. *e simulation results show
that this method cannot only achieve precise positioning but
also effectively suppress the residual vibration generated
during the movement of the rigid-flexible mechanical arms.

*e main dedications of this study are as follows:

(1) Based on the previous detailed description of the
approximate inertial manifold theory, it is applied to
the nonlinear model of rigid-flexible mechanical
arms, and the model is simplified to obtain its lowest
dimensional approximate model. *is dimension
reduction method not only retains the main char-
acteristics of the original system but also reduces the
degree of freedom of the system without significantly
reducing the accuracy of the solution. *erefore, it
brings great convenience for system analysis and
subsequent controller design.

(2) To restrain the residual vibration of the rigid-flexible
mechanical arms, a feedforward control strategy
based upon PSO is proposed.*e input shaping filter
does not need to be considered.
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(3) *e input signal is approximated by a combination
of a finite number of sinusoidal signals, and the
highest frequency of the sinusoidal signal is deter-
mined using the NF (natural frequency) of the
system. *e natural frequency of the system is ob-
tained by physical analysis and simulation.

(4) According to the dynamic response of the rigid-
flexible mechanical arms, the PSO algorithm is also
used to adjust the amplitude of the sinusoidal signal
to achieve the purpose of optimizing the input signal.
While realizing the precise positioning of the rigid-
flexible mechanical arms, it effectively suppresses the
end residual vibration of the mechanical arm.

(5) For the lowest dimensional model of the rigid-
flexible mechanical arms, the feedforward control
method is used, and the input signal based on
particle swarm optimization is used as the input of
the model controller. *e results show that this
method improves the calculation efficiency of the
model, realizes the accurate positioning of the end of
the flexible arm, and suppresses the residual
vibration.

*e other parts of this paper are arranged as follows. Part
II builds the dynamics high-order model of rigid and flexible
mechanical arm. Part III reduces the model based on ap-
proximate inertial manifold to obtain the lowest-order
output model. Part IV conducts dynamic simulation anal-
ysis. An improved feedforward strategy about vibration
suppression based upon PSO to optimize input signals is put
forward in Part V. Part VI summarizes the achievements.

1.1.DynamicModeling of theRigid-FlexibleMechanicalArms.
*e structure of the research object is shown in Figure 1.*e
rigid mechanical arm is connected to the fixed support base,
and the flexible mechanical arm is connected to the end of
the rigid mechanical arm by clicking the drive shaft. *e
following assumptions are made in modeling: the flexible
mechanical arm can bend freely, after elastic deformation,
the intersecting surface is vertical to the deformation axis,
and the longitudinal deformation and gravitational potential
energy are ignored in Figure 1, and the cyber-physical
system composition diagram is depicted in Figure 2.

As depicted in Figure 1, the parameters are as follows:

l1 is the length of the rigid mechanical arm
l2 is the length of the flexible mechanical arm;
OXY is the inertial rectangular coordinate system with
the base as the origin
o1x1y1 is the local coordinate system of the rigid
mechanical arm
o2x2y2 is the local coordinate system of the flexible
mechanical arm, and it turns with the turn of the
mechanical arm
θ1 is the rotary angle of the coordinate system
o1x1y1relative to the coordinate system OXY

θ2 is the rotary angle of the coordinate system o2x2y2
relative to the coordinate system o1x1y1

According to the theory of Euler–Bernoulli beam and the
results of reference [50], the vibration equation of the rigid-
flexible mechanical arm can be obtained as follows:

ℓ2 €w (x, t) + 2δEI2 _w
(4)

(x, t) + ℓ2EI2w
(4)

(x, t) � F(x, t),

(1)

where w (x, t) represents shift of the flexible mechanical arm
at the deformed position.

*e dynamic boundary constraints of the flexible me-
chanical arm are as follows:

F(x, t) � ρ2 l1 sin θ2 _θ1
2

+ l1 cos θ2€θ1
2

− w(x, t) _θ1 + _θ2􏼐 􏼑
2

􏼔 􏼕

− Mp l1 cos θ2w l2, t( 􏼁€θ1 − w l2, t( 􏼁 _θ1 + _θ2􏼐 􏼑
2

􏼔

+l2
_θ1 + _θ2􏼐 􏼑 + l1

_θ1
2 sin θ2􏽩,

(2)
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Figure 1: Structure diagram.
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where F(x, t) � ℓ2[l1sinθ2 _θ12 +l1 cos θ2€θ12 − w(x, t)( _θ1+
_θ2)

2] − Mp[l1 cos θ2w(l2, t)€θ1 − w(l2, t) ( _θ1 + _θ2)
2 + l2(

_θ1+
_θ2) + l1

_θ12 sinθ2].
*e influence of joint friction factors should be con-

sidered to describe the dynamic model accurately. *e four
common static friction models are as follows: the Coulomb
viscous friction model, Coulomb friction model, static
friction Coulomb viscous friction model, and Stribeck
frictionmodel.*e Coulomb viscous frictionmodel adopts a
continuous function to approximate the Stribeck friction
model, which is conducive to the realization of the control of
each joint motor. *erefore, the Coulomb viscous friction
model is used to obtain the friction torque of each joint of
the n-degree-of-freedom mechanical arm as follows [51]:

∇4 �
z
4

zx
4,

(3)

where i� 1,2, fci represents the Coulomb friction torque
coefficient, and fvi represents the viscous friction torque
coefficient. In this way, the modified dynamic model of
rigid-flexible mechanical arms can be obtained:

∇4 �
z
4

zx
4.

(4)

*e coefficients of each matrix are given in Appendix A.

1.2. Model Reduction Based on Approximate Inertial
Manifold. *e approximate inertial manifold is essentially a
Lipshitz manifold. When the time is large enough, the so-
lutions of all the original equations will be attracted into a
neighborhood of the manifold because its existence does not
need the spectral interval condition. Using the approximate
inertial manifold, it is possible for us to approximate and
study the long-time dynamic behavior of the original
equation with a finite-dimensional ordinary differential
system; this ordinary differential equation is the approxi-
mate inertial form to be studied in this paper.

Equation (4) is a system of partial differential integral
equations with nonlinear and strong coupling characteristics,
and the exact analytical solution cannot be obtained directly.
*erefore, dimensionality reduction is needed for the infinite-
dimensional nonlinear distributed parameter system.

*e vibration equation (1) of the flexible mechanical arm
can be rewritten as follows:

z
2
w(x, t)

zt
2 � 2δ∇4 _w(x, t) + ℓ2∇

4
w(x, t) + f(x, t), (5)

where ∇4 � z4/zx4 and f(x, t) � F(x, t)/ℓ2 is equivalent to
the external force.

*e linear operator of Equation (5) can be defined as
Aw � z4w/zx4. Following the TGM, in Equation (5), w (x, t)
is the displacement at the deformation point x of the flexible
mechanical arm, namely:

w(x, t) � 􏽘
∞

i�1
Γi(x)qi(t), (6)

where Γi(x) is a characteristic function and qi � qi(t) is an
undetermined variable. Substituting (6) into (5) and con-
sidering the boundary conditions in (2), we have [50]

Γi(x) � ki sin λix − sinh λix( 􏼁 − cos λix + cosh λix, (7)

where λi is the eigenvalue, is the modal order, and

ki �
cosh λil2 + cos λil2

sinhλil2 + sin λil2
. (8)

*e solution of equation (5) is expanded according to the
orthogonal basis and using program of Galerkin, and the
approximate solution of equation (5) can be obtained.

z � 􏽘
∞

i�1
qi(t) · Γi(x) + EI2 􏽘

∞

i�1
qi(t)

d
4Γi(x)

dx
4

+
2δEI2

ℓ2
􏽘

∞

i�1
_qi(t)

d
4Γi(x)

dx
4 − f(x, t).

(9)

Let U � [q1, q2, . . . , qn]T represent the orthogonal pro-
jection in the Hilbert space (H) onto the space strided over
the first n eigenfunctions of A and V � [qn+1, qn+2 , . . . , q∞]T

represent the rest, whereU is the lowmodule subspace andV
is the high module subspace with infinite dimensions. It
must be balance truncated, and the first N modes in all
modes are used for the approximate solution of the model
[22], which can be expressed by the inner product in H, and
then the following projections are obtained:

z, Γk( 􏼁 � 0, k � 1, 2, ......, n, (10)

z, Γk( 􏼁 � 0, k � n + 1, n + 2, · · · N. (11)

According to the above projections, we have
€U + A1(

_U, _V, U, V) � 0, (12)

V + A2(
_U, _V, U, V) � 0, (13)

where A1(
_U, _V, U, V) andA2(

_U, _V, U, V) are nonlinear
functions of θ, q, _θ, _q.

By the spectral method combined with the Galerkin
truncation criterion, the infinite-dimensional rigid-flexible
mechanical arms system can be approximated to a third-
dimensional model (i.e., N� 3) after truncation [50]. *en,
equation (6) can be written as follows:

w(x, t) � 􏽘
3

i�1
qi(t)Γi(x). (14)

Combining (4) and (12)–(14), a five-dimensional model
of the rigid-flexible mechanical arms can be obtained as
follows:

M
€θ

€q

⎡⎣ ⎤⎦ +
F1(θ, q, _θ, _q)

F2(θ, q, _θ, _q)

⎡⎣ ⎤⎦ +
E1

_θ

E2 _q + Kq

⎡⎣ ⎤⎦ �
u

0
􏼢 􏼣, (15)

where M � MTis the generalized symmetric inertia matrix,
θ � (θ1, θ2)

T is the rotation angle vector of the mechanical
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arm joint, q � (q1, q2, q3)
T represents the modal value of

flexible mechanical arm deformation, u is the input resultant
torque to the joint, F1(θ, q, _θ, _q) F2(θ, q, _θ, _q)􏽨 􏽩

T
is a vector

of nonlinear terms, E1 � diag(μ1, μ2) is the positive and
definite damping matrix, and E2 � diag(δ1, δ2, δ3) is the
structural damping matrix [52]. Equation (14) represents a
five-dimensional strongly coupled nonlinear system based
on generalized coordinates. *e values of elements in the
equation are shown in Appendix B.

Given that the nonlinear system (15) is a five-dimen-
sional system with ten-order, it is a very high-order non-
linear system and difficult for system simulations, analyses,
and controller design. *erefore, further truncation should
be applied to (14). In equations (11) and (12), U and V
contain low and high mode subspaces, and the modes in
lower and higher subspaces can be thought of as “active” and
“inactive,” respectively [22]. *us, a low-dimensional model
may be obtained through the traditional Galerkin method by
setting the first derivative of V and V in equation (12) to 0
then only the following equation can be obtained without
considering equation (13)

€U + A1(
_U, U) � 0. (16)

Equation (15) means that the interaction between low
modes and high modes is ignored when following the

traditional Galerkin method. Nevertheless, on the basis of
AIM theory, the higher-order modes of the flexible defor-
mation displacement will soon decayed relatively to the
lower-order modes under the action of viscous damping
[22].*us, the derivatives of the higher-order mode V can be
set to be zero, that is, €V ≈ 0 and _V ≈ 0. From (13), a form of
approximate inertial manifold can be built as

A2(
_U, U, V) � 0. (17)

Substituting the solution of (17), i.e., V ≈ Ψ( _U, tU), into
(16), (17) becomes

A2(
_U, U,Ψ( _U, U)) � 0. (18)

Equation (18) means that the low modes are used to
capture the behavior of the high modes in equation (13), and
the interaction between low modes and high modes is
maintained. Substituting V ≈ Ψ( _U, U) and _V ≈ 0 into (12),
we have

€U + A1(
_U, U,Ψ( _U, U)) � 0. (19)

Letting n� 1 in equation (12) and substituting (18) and
(19) into (13), a model with the lowest dimension (i.e., three-
dimension) can be obtained as follows:

M

€θ1
€θ2
€q1

00
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

J1(θ, q, _θ, _q)

J2(θ, q, _θ, _q)

J3(θ, q, _θ, _q)

J4(θ, q, _θ, _q)

J5(θ, q, _θ, _q)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

μ1 0 0 0 0

0 μ2 0 0 0

0 0 δ1 0 0

0 0 0 δ2 0

0 0 0 0 δ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_θ1
_θ2
_q1

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ K

0

0

q1

q2

q3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

τ1 − τf1

τ1 − τf2

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where

J1(θ, q, _θ, _q) � −
1
2
ℓ2l1l

2
2 sin θ2 + ℓ2l1 cos θ2 􏽘

3

j�1
hj(1)qj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ _θ

2
2 − ℓ2l1l

2
2 sin θ2 + ℓ2l1 cos θ2 􏽘

3

j�1
hj(1)qj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ _θ1 _θ2

− Mp l1 cos θ2 􏽘

3

i�1
􏽚

l2

0

Γi(x)qi(t)dx + 2l1l2 sin θ2
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

_θ
2
2 − 2ℓ2L1 sin θ2 􏽘

3

j�1
hj(1) _qj(t) − 2ℓ2L2 􏽘

3

j�1
qj(t) _qj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ _θ1 + _θ2􏼐 􏼑

+ Mp 2l1 cos θ2 􏽘

3

i�1
􏽚

l2

0

Γi(x)qi(t)dx + 2l1l2 sin θ2
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ _θ1 _θ2,

J2(θ, q, _θ, _q) �
1
2
ℓ2l1l

2
2 sin θ2 + ℓ2l1 cos θ2 􏽘

3

j�1
hj(1)qj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ _θ

2
1 + 2ℓ2l2 _θ1 + _θ2􏼐 􏼑
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􏽘

3

j�1
qj(t) _qj(t) + Mp l

2
2 + 􏽘

3

j�1
hj(1)qj(t) · 􏽘

3

j�1
qj(t) _qj(t)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+ Mp l1 cos θ2 􏽘

3

j�1
hj(1)qj(t) + l1l2 sin θ2⎛⎝ ⎞⎠ _θ

2
1,

Ji+2(θ, q, _θ, _q) � −ℓ2 _θ1 + _θ2􏼐 􏼑
2
qi + ℓ2l2 _θ

2
1 sin θ2 · hi(1), i � 1, 2, 3. (21)

And solution (18) gives the following:

q2 � τ2m33 − 2m33ℓ2l2 _θ1 + _θ2􏼐 􏼑q1 − k3m23􏽨 􏽩q1
.

+ ℓ2l1 cos θ2 · h1
_θ
2
1m33 − δ3 − ℓ2 _θ1 + _θ2􏼐 􏼑

2
m23􏼒 􏼓q1􏼚 􏼛

+ ℓ2l1 cos θ2 · h3
_θ
2
1m33 ·

ℓ2l2 _θ
2
1 sin θ2 · h3

ℓ2 _θ1 + _θ2􏼐 􏼑
2

− δ5

+ k2θ
.

2 + δ2θ2 +
1
2
ℓ2l1l

2
2 sin θ2 _θ

2
1􏼔 􏼕m33 −

ℓ2l2 _θ
2
1 sin θ2 · h1m23

ℓ2l1 cos θ2 · h2θ
. 2
1m33

,

(22)

q3 � τ2m33 − 2m33ℓ2l2 _θ1 + _θ2􏼐 􏼑q1 − k3m23􏽨 􏽩q1
.

+ ℓ2l1 cos θ2 · h1
_θ
2
1m33 − δ3 − ℓ2 _θ1 + _θ2􏼐 􏼑

2
m23􏼒 􏼓q1􏼚 􏼛

+ ℓ2l1 cos θ2 · h2
_θ
2
1m33 ·

ℓ2l2h2
_θ
2
1 sin θ2

ℓ2 _θ1 + _θ2􏼐 􏼑
2

− δ4

+ k2θ
.

2 + δ2θ2 +
1
2
ρ2l1l

2
2
_θ
2
1 sin θ2􏼔 􏼕m33 −

ρ2l2 _θ
2
1 sin θ2 · h1m23

ρ2l1 cos θ2 · h3
_θ
2
1m33

,

(23)

where m23 � ℓ2 􏽒
l2

0 x · Γ1(x)dx + Mpl2 􏽒
l2

0 Γ3(x)dx and

m33 � ℓ2 􏽒
l2

0 Γ1(x)dx.
Finally, substitute w(x, t) � Φ1(x)q1 +Φ2(x)q2 +Φ3

(x)q3 and w(x, t) � Φ1(x)q1 +Φ2(x)q2 +Φ3(x)q3 into
equation (14) to get the low-dimensional output model of
rigid-flexible mechanical arms as follows:

w(x, t) � Γ1(x)q1 + Γ2(x)q2 + Γ3(x)q3. (24)

2. Dynamic Simulations

2.1. Model Simulation and Analysis. *e initial state of the
rigid and flexible mechanical arms is assumed in a horizontal
position; the basic initial parameters are as follows:
θ1 � θ2 � q1 � q2 � q3 � 0. *e joint input torque is
τ1 � τ2 � 0.412N/m. *e length, width, and height of the
flexible mechanical arm are 300mm, 20mm, and 15mm,
respectively. Other parameters are shown in Table 1. *e
relationship between modal and energy is obtained by
simulation as depicted in Figure 3. *e first-order mode
accounts for 94.12% of the total energy, and the first three-
order modes account for 99.78% of the total energy. *is
finding shows that the accuracy of the first three models is
very high, but only taking the first mode is not enough to
ensure the accuracy of the model.

2.2. Free-Response Dynamic Simulations. When the input
torque is 0 and only the initial state is given, the response
results of the approximate model obtained by the spectral
method and the exact solution are compared.*e initial time
is t0 � 0, and the end time is tf � 10 s. *e initial state of the
system is θ1 � 0, θ2 � π/4, _θ1 � _θ2 � 0, qi � 0, and i� 1, 2, 3.
*e initial value of the first derivative of all other generalized
variables is 0.*e fourth-order Runge–Kutta formula is used
to solve the AIM-based low-order model and the TGM-
based truncated third-order model. *e simulation results
are depicted in Figures 4–7.

In the free-response without input torque, θ1 (t) and θ2
(t) are finally stabilized, and the mutual influence between
the rigid-flexible coupling can be obtained. *e end de-
formation of the lowest-order model based on AIM is
almost similar to that of the truncated flexible model based
on TGM, as shown in Figures 4 to 6. *ey are all stabilized
at zero in the end because of the features of structural
damper of the mechanical arm itself. *e simulation results
of the first-order system and the third-order system after
using the AIM approximation are the same, as shown in
Figure 7. *is conclusion can further prove that the AIM
method is effective for model dimensionality reduction and
can retain the main characteristics of the original system
dynamics. Compared with the TGM-based truncation
method, the lowest-order system based on AIM has a
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Table 1: Other parameter values of the rigid-flexible mechanical arms.

Parameter name Rigid mechanical arm Flexible mechanical arm
Length (m) L1 � 0.33 L2 � 0.30
Moment of inertia (kg·m2) J1 � 0.0812 J2 � 0.138
Line density (kg·m3) ℓ2 � 0.4865
Elastic modulus (N·m2) EI2 � 26.055
End mass (kg) Mt � 0.721 Mp � 0.5
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Figure 3: Relationship of modes and energy.
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Figure 4: Generalized coordinate curve of flexible deformation: (a) q1; (b) q2; (c) q3.
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smaller amount of calculation; according to this method, it
is very convenient to analyze the system and design the
controller.

3. Vibration Suppression Based on PSO

*e AIM approximation model is used for numerical cal-
culation in this study, and the function coefficients of the
approximate input signal are optimized to suppress the end
vibration. Firstly, a series of continuous sinusoidal functions
approximate the input signal. *e selection of the numbers
of the approximation function is determined by the natural
frequency, which is applied to the flexible mechanical arm to
minimize the target position error and the displacement of
end vibration. *en, using the PSO algorithm, the coeffi-
cients of each input function are optimized without con-
sidering the input shaping filter [44, 45]. In this way, the
calculation efficiency of complex dynamic response is

significantly improved, and the residual vibration is mini-
mized when the target position is reached. *e control
structure diagram is depicted in Figure 8.

3.1. Optimization-Based Vibration Suppression and Precise
Positioning. In Figure 1, the input signals acting on Joint 1
and Joint 2 are represented by trapezoidal signals, as shown
in Figure 9. *e expression is shown as follows.

u(t) �

At

ϖ
, 0≤ t<ϖ,

A, ϖ≤ t<(T − ϖ),

A(T − t)

ϖ
, (T − ϖ)≤ t<T.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

It is assumed that the operating cycle of rigid-flexible
mechanical arms is T. *erefore, the signal u (t) can be
approximately expressed by a linear combination of infi-
nitely many sinusoidal functions of different frequencies on
[0, T] and as depicted by the following formula:

u(t) �
k0

2
+ 􏽘
∞

n�1
kn sin wnt, (26)

where kn is the coefficient to be optimized and wn � 2πn/T is
the angular frequency. *eoretically, the greater the value
of n, the higher the fitting accuracy of the function. *e
time acting on the signals of Joint 1 and Joint 2 is taken as
4 s, and d is taken as 0.1 s. *e fundamental frequency is 2π/
T. When n is taken as 11, wn is close to the natural fre-
quency of the mechanical arms (as shown in Figure 6(b)).
In this case, the end vibration will not be suppressed but
increased. *us, n is selected as 9. *e parameters of the
input signal of Joint 1 to be optimized are k10, k11, k12,
. . .. . ., k19. *e parameters of the input signal of Joint 2 to
be optimized are k20, k21, k22, . . .. . ., k29. *ese parameters
are combined as follows:
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c � k10, k11, ......, k19, k20, k21, ......, k29􏼂 􏼃 ∈ R
20

. (27)

When c is determined, the input signals applied to Joint
1 and Joint 2 can also be determined. Using equations
(21)–(24), the relationship between the end vibration of the
rigid-flexible mechanical arms and the applied torque of
each joint is established. *erefore, the displacement of the
end vibration of the flexible mechanical arm can be shown
by the undetermined parameter c as follows:

w(t, c) � 􏽘
N

i�1
Γi(x)qi(t, c). (28)

Moreover, the final target position of the mechanical
arms after applying the input signal (25) is supposed to be

(σtf, δtf ), and the end position error function of the flexible
mechanical arm in the movement is built as follows:

ep(t, c) �

��������������������������

σtf − σ(t, c)􏽨 􏽩
2

+ δtf − δ(t, c)􏽨 􏽩
2

􏽲

. (29)

*e objective of this study is to minimize the error of the
mechanical arms reaching the target position and the re-
sidual vibration displacement at the end of the mechanical
arms. *e objective optimization function is established as
follows:

c(c) � ξ1|w(t, c)| + ξ2ep(t, c), (30)

where ξ1and ξ2 are two weighted coefficients, and ξ1+ξ2 � 1.
*e objective of the optimization is to minimize the ob-
jective function (30) by adjusting these parameters to be
optimized. In this way, the precise positioning of the end
position of the mechanical arms and the suppression of
residual vibration can be transformed into solving the op-
timal value of each parameter in equation (27).

*e PSO algorithm [46] is a study based on predation
behavior of birds proposed by Kennedy et al. [46], because
the algorithm is simple in structure and easy to implement. It
is extensively applied since it can remember the current
individual optimal and global optimal and requires only a
few adjustment parameters [53]. It is a global optimization
algorithm of probability type. *e advantage of the non-
deterministic algorithm is that the algorithm has more
chances to solve the global optimal solution. It does not
depend on the strict mathematical properties of the opti-
mization problem itself. *e PSO algorithm is applied to
optimize the parameters in equation (27). In a searching
space with N-dimension, let the quantity of particles be m,
where the position of the ith particle is xi ∈ Rn, and its
velocity is vi ∈ Rn.pbesti ∈ Rn represents the best position of
the ith particle.gbesti ∈ Rn represents the best position of all
particles. *e velocity and position of the particles are
updated as follows [46]:

v
n+1
i � v

n
i + c1r1 pbestni − x

n
i( 􏼁􏼁 + c2r2 gbestni − x

n
i( 􏼁,

x
n+1
i � x

n
i + v

n+1
i , (n � 1, 2, ..., N, i � 1, 2, ..., m),

⎧⎨

⎩

(31)

where c1and c2 are the contraction factors and r1 and r2 are
the arbitrary values between [−1, 1]. *e detailed steps of
parameter optimization based on particle swarm optimi-
zation for the rigid-flexible mechanical arms are as follows.

Step 1. In these solutions space, 20-dimensional particles are
initialized as xl

1, xl
2, ..., xl

N􏼈 􏼉,and their corresponding flight
velocities are recorded as vl

1, vl
2, ..., vl

N􏼈 􏼉.

Step 2. Each particle is substituted into equation (26), and
the input signals of Joint 1 and Joint 2 are calculated. *en,
the modal coordinates of the flexible mechanical arm are
calculated according to equation (6). Subsequently, the
displacement of end vibration is calculated according to
equations (21)–(23) and (28). Finally, the fitness value of

Model of rigid 
flexible coupling 

manipulator End vibration

Input 
shaper

Reference input 
signal of joint End position

Figure 8: *e control structure diagram of feedforward.
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Figure 10: Optimization process diagram.
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each particle is calculated according to the following
equation:

fi(l) � c x
l
i􏼐 􏼑, i � 1, 2, ..., N. (32)

Step 3. *e local optimal values and the globally optimal
values are initialized, and the local optimal and the global
optimal positions are determined at the same time. If l� 1,
then

fp−best � fg−best

Pp � Pg

⎧⎨

⎩ (33)

Step 4. *e local optimal and the global optimal positions
are recorded. *e position and flight speed of particles are
updated in accordance with the following formula:

x
l+1
iN � x

l
iN + v

l+1
iN ,

v
l+1
iN � v

l
iN + c1r1 p

l
pN − x

l
iN􏼐 􏼑 + c2r2 p

l
gN − x

l
iN􏼐 􏼑.

⎧⎪⎨

⎪⎩
(34)

Step 5. Continue to execute the program until the minimum
value set by the optimization goal or the maximum number
of iterations is met.

3.2. Parameter Optimization Based on the PSO Algorithm.
Table 1 depicts the parameters of the rigid-flexible me-
chanical arms. *e time of the input signal acting on Joint 1
and Joint 2 is 4 s.*e parameter setting of the PSO algorithm
is as follows: c1 and c2 are constant values, which are set by
2.25; r1 and r2∈[−1,1], where r1 is −0.3 and r2 is 0.5. *e
particle quantity is 60, the maximum iterations are 950, and
the minimum value of the optimization function is set by
10−5. *e weight of the optimization function is set by
ξ1 � 0.43 and ξ2 � 0.57 to ensure that the mechanical arm can
reach the target position.

*e curve of the optimization process based on the above
algorithm is shown in Figure 11. It decreases monotonically
until meeting the conditions when the algorithm stops. In
this study, the objective function value is already less than

the minimum setting value when the number of iterations
reaches 540 generations. *e final parameters optimized by
the PSO algorithm are depicted in Table 2. *e complete
input signal is depicted in Figures 12(a) and 12(b). *e
optimized input signal is similar to the original input signal,
but the transition of the optimized input signal is smoother.

*e original input signal and the optimized input signal
are applied to the rigid-flexible mechanical arms to compare
the end vibration of the flexible mechanical arm. *e
movement of the end of the mechanical arms is depicted in
Figures 13(a) and 13(b). After applying the original input
signal for 4 seconds, the maximum amplitude of the residual
vibration is 16.12mm. After applying the optimized input
signal for 4 seconds, the end position error is 0.56mm, the
maximum amplitude of the terminal residual vibration is
4.76mm, and the end residual vibration decreased by
70.22%. *is process not only realizes to suppress the re-
sidual vibration of the end of the mechanical arms obviously
but also realizes to control the end position of the me-
chanical arms accurately and the improvement of the po-
sitioning accuracy of the mechanical arms.

4. Experimental Verification

A hardware experimental device of rigid-flexible me-
chanical arms is developed so as to verify the effectiveness
of the method of dimension reduction. *e sensors consist
of three resistance strain gauges, which can measure the
deformation of different parts accurately. For the accurate
measurement of the strain force, the connection mode of
the half bridge power supply circuit of the mechanical arms
is selected. *e strain force amplifier is used to accurately
measure the voltage signal and amplify the measured
voltage signal. *en, the fast data acquisition instrument is
used for data acquisition and A/D conversion for the
collected data. Finally, the terminal deformation of the
mechanical arms is calculated by computer, as shown in
Figure 14.

According to the software of the control card, a pulse
signal with a width of 5 seconds is given to the servo motor.
According to the motor encoder, the angular velocity of the
motor is obtained, and observing the voltage value of the
resistance strain gauge, then can obtain the deformation of
the end of the flexible arm through transformation. *e
simulation results of the reduced dimension model are
compared with the experimental results, as depicted in
Figures 15 and 16.

(1) As depicted in Figure 15, the simulation conclusions
of the angular velocity of the flexible mechanical arm
are mainly accordant with the experimental con-
clusions, which demonstrate that the selection of the
spectral method and the dimension reduction
method of Galerkin truncation theory can accurately
reflect the characteristics of the dynamic model of
the flexible mechanical arm.

(2) As depicted in Figure 16, in the first 5 seconds, the
simulation conclusions of the first-order model by
AIM are basically consistent with those of the
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Figure 11: Optimization curve of the optimal objective function.
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directly truncated third-order modal model. When
the voltage signal is removed after the fifth second,
the vibration mutation in the terminal deformation
is removed slowly under the effect of structural

damping, which confirms that the overall goal can
further simplify the third-order system and lays a
foundation for the next research on the control of
rigid-flexible mechanical arms.

Table 2: Coefficients optimized by the PSO algorithm.

Joint 1 signal Joint 2 signal
k10 � 0.4135 k15 � 0.0540 K20 � 0.4152 k25 � 0.0613
k11 � 0.2684 k16 � 0.0006 k21 � 0.2757 k26 � 0.0034
k12 � 0.0003 k17 � 0.0375 k22 � 0.0006 k27 � 0.0406
k13 � 0.0886 k18 � 0.0019 k23 � 0.0950 k28 � 0.0002
k14 � 0.0004 k19 � 0.0301 k24 � 0.0004 k29 � 0.0308
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(3) *e experimental verification of vibration suppres-
sion is underway.

5. Conclusion

A dynamic model reduction method of rigid-flexible me-
chanical arms based on the approximate inertial manifold and
a new method of terminal residual vibration suppression
based on particle swarm optimization feedforward control are
established. Firstly, the approximate inertial manifold theory
is used to approximate the model of the rigid-flexible me-
chanical arms whose high-order mode of TGM is truncated
and acts on the low-order mode, and its low-order system
dynamics model is obtained. *en, the feedforward control
method based on particle swarm optimization is applied to
the dynamic model of the lowest-order rigid-flexible me-
chanical arm. *e particle swarm optimization algorithm is
used to modify the amplitude and frequency of the input
signal composed of a limited number of sinusoidal signals
with uncertain parameters so as to reduce the target position
error and end residual vibration. *e simulation results show

that compared with the original input signal before optimi-
zation, the maximum amplitude of end residual vibration of
rigid-flexible mechanical arms is reduced by 70%. Under the
action of optimizing the input signal, the target position error
is relatively small in the specified operation cycle. Simulation
results show that this method can achieve accurate posi-
tioning and improve the suppression effect of residual vi-
bration. *e simulation results of angular displacement and
end vibration of the simplified model are basically consistent
with the experimental results of the hardware platform. *e
future research work is to verify the feedforward control
method based on particle swarm optimization on the ex-
perimental platform and compare it with the simulation
results to verify the effectiveness of the method [54].

Appendix

A

A11 � J1 + Jt + Mtl
2
1 + ℓ2l

2
1l2 +

1
3
ℓ2l

3
2 + Mp l

2
1 + l

2
2 + 2l1l2cosθ2 + w

2
− 2l1w sin θ2􏼐 􏼑

+ ℓ2l
2
1l2 cos θ2 + ℓ2 􏽚

l2

0

w
2dx − 2ℓ2l1 sin θ2 􏽚

l2

0

wdx,

A12 � A21 � Jt +
1
3
ℓ2l

3
2 + Mp l

2
2 + l1l2cosθ2 + w

2
− l1w sin θ2􏼐 􏼑 +

1
2
ℓ2l1l

2
1 cos θ2 + ℓ2 􏽚

l2

0

w
2dx − ℓ2l1 sin θ2 􏽚

l2

0

wdx,

A22 � Jt +
1
3
ℓ2l

3
2 + Mp l

2
2 + w

2
􏼐 􏼑 + ℓ2 􏽚

l2

0

w
2dx,

G1
_θ1, _θ2, θ2􏼐 􏼑 � −

1
2
ℓ2l1l

2
2 sin θ2 + Mp l1l2 sin θ2 + l1w cos θ2( 􏼁 + ℓ2l1 cos θ2 􏽚

l2

0

wdx⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ _θ
2
2

+ − ℓ2l1l
2
2 sin θ2 + 2ℓ2l1 cos θ2 + Mp 2l1l2 sin θ2 + 2l1w cos θ2( 􏼁 + ℓ2l1 cos θ2 􏽚

l2

0

wdx
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ _θ1 _θ2

+ Mp l
2
2 + 2w · _w − 2l1 _w sin θ2􏼐 􏼑 + 2ℓ2 􏽚

l2

0

w · _wdx − 2ℓ2l1 sin θ2 􏽚

l2

0

_wdx _θ1 + _θ2􏼐 􏼑 + Mpw · l1 cos θ2 + l2( 􏼁

+ ℓ2l1 cos θ2 􏽚

l2

0

wdx + ℓ2 􏽚

l2

0

x · wdx,
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G2
_θ1, _θ2, θ2􏼐 􏼑 � −

1
2
ℓ2l1l

2
2 sin θ2 + Mp l1l2 sin θ2 + l1w cos θ2( 􏼁 + ℓ2l1 cos θ2 􏽚

l2

0

wdx⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ _θ
2
2

+ Mp l
2
2 + w · _w􏼐 􏼑 + 2ℓ2 􏽚

l2

0

w · _wdx _θ1 + _θ2􏼐 􏼑 + Mpw · l1 cos θ2 + l2( 􏼁, (A.1)

where w replaces w (x, t). B

M �

m11 m12 m13 m14 m15

m12 m22 m23 m24 m25

m13 m23 m33 0 0

m14 m24 0 m44 0

m15 m25 0 0 m55

,

m11 � J1 + Jt + Mtl
2
1 + ℓ2l

2
1l2 +

1
3
ℓ2l

3
2 + ℓ2l

2
1l2 cos θ2 + ℓ2l2 􏽘

3

i�1
q
2
i (t) − 2ℓ2l1 sin θ2 􏽘

3

i�1
􏽚

l2

0

Γi(x)qi(t)dx

+ Mpl
2
1 + l

2
2 + 2l1l2 cos θ2 − 2ℓ2l1 sin θ2 􏽘

3

i�1
􏽚

l2

0

Γi(x)qi(t)dx + 􏽘
3

i�1
􏽚

l2

0

Γi(x)qi(t)dx
2⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

m12 � Jt +
1
3
ℓ2l

3
2 +

1
2
ℓ2l1l

2
2 cos θ2 + ℓ2 􏽘

3

i�1
q
2
i (t) − ℓ2l1 sin θ2 􏽘

3

i�1
􏽚

l2

0

Γi(x)qi(t)dx + Mpl
2
2

+ l1l2 cos θ2 + 􏽘
3

i�1
􏽚

l2

0

Γi(x)qi(t)dx⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

2

− l1 sin θ2 􏽘

3

i�1
􏽚

l2

0

Γi(x)qi(t)dx
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

m22 � Jt +
1
3
ρ2l

3
2 + ρ2l2 􏽘

3

i�1
q
2
i (t) + Mp l

2
2 + 􏽘

3

i�1
􏽚

l2

0

Φi(x)q
2
i (t)dx⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠m1(i+2)

� ρ2 􏽚

l2

0

x ·Φi(x)dx + ρ2l1 cos θ2 􏽚

l2

0

Φi(x)dx + Mpl1 cos θ2 􏽚

l2

0

Φi(x)dx, i � 1, 2, 3,

m2(i+2) � ρ2 􏽚

l2

0

x ·Φi(x)dx + Mpl2 􏽚

l2

0

Φi(x)dx, i � 1, 2, 3,

m(i+2)(i+2) � ρ2 􏽚

l2

0

Φi(x)dx, i � 1, 2, 3,
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K �

0 0 0 0 0
0 0 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 0 0 k5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ki+2 � EI2 H
0
i􏼐 􏼑

4
, i � 1, 2, 3

hi(1) � 􏽚

l2

0

Γi(x)dx,

hi(x) � 􏽚

l2

0

x · Γi(x)dx, i � 1, 2, 3,

F � f1 f2 f3 f4 f5􏼂 􏼃
T

F1(θ, q, _θ, _q) � f1 f2􏼂 􏼃
T
,

F2(θ, q, _θ, _q) � f3 f4 f5􏼂 􏼃
T
. (B.1)
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