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Project cost prediction is one of the key elements in the civil engineering activities development. Project cost is a highly sensitive
component to diverse parameters and hence it is associated with complex trends that make it difficult to be predicted and fully
understood. Due to the massive advancement of soft computing (SC) and Internet of things (IoT), the main research objective of
the current study was initiative. Several machine learning (ML) models including extreme learning machine (ELM), multivariate
adaptive regression spline (MARS), and partial least square regression (PLS) were adopted to predict field canal cost. Several
essential predictors were used to develop the prediction network “the learning process” including the total length of the PVC
pipeline, served area, geographical zone, construction year, and cost and duration of field canal improvement projects (FCIP)
construction. Data were collected from the open source published literature. *e modeling results evidenced the potential of the
applied SC models in predicting the FCIP cost. In numerical magnitude evaluation, MARS model indicated the least value for the
root mean square error (RMSE� 27422.7), mean absolute error (MAE� 19761.8), and mean absolute percentage error
(MAPE� 0.05454) with Nash–Sutcliffe efficiency (NSE� 0.94), agreement index (MD� 0.89), and coefficient of determination
(R2 � 0.94), with best precision of prediction using all predictors, except geographical zone parameter in which less influence on
the cost construction is presented. In general, the research outcome gave an informative primary cost initiative for cost civil
engineering project.

1. Introduction

*e scarcity of freshwater has been a global problem
recently and expected to worsen in the future due to the
increasing human population and decline in annual water
allocation per capita [1, 2]. *e present scenario portrays
water unsustainability due to the drastic increase in water
utilization (>6 folds) in the 20th century [3]. It is presently
estimated that about 1.2 billion people globally have no
access to a clean water supply [4]. Hence, several policies
and projects are being implemented globally to ensure
water sustainability. One of such projects aimed at water
sustainability is the FCIP which aims at increasing the
conveyance efficiency of field canals by about 25% via
improvement of the field canals during irrigation

processes in farmlands [5]. *e project requires the
construction of a burden PVC pipeline rather than re-
lying on earthen field canals for the reduction of water
seepage or losses during field operations [6]. FCIP is
comprised of several simple components and structures
which include concrete pain intakes for water collection
from the source; water is channelled through the suction
pipes to a plain concrete sump [7]. Water is first accu-
mulated in the sump before being pumped by the
pumping sets through the PVC pipelines by the irrigation
valves. *e FCIPs are comprised of civil works, me-
chanical components, and electrical components as the
major components. *e components of the civil works are
the pump house, pipelines, suction pipes, intake, and
sump structure while the mechanical components are the
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irrigation valves, pump sets, and mechanical connections.
*e electrical boards and connections make up the
electrical components of FCIPs [8].

*e most interesting part of FCIPs is the cost estimation
aspect that must be performed; manual cost estimation
processes are time-consuming [9]. However, in some cases,
scan be attained based on personal engineering and deci-
sion-makers’ expertise. Cost estimation is highly associated
with bias and inaccuracy and to overcome these issues of bias
and inaccuracy during cost estimation [10]. *erefore, SC
models have been proposed as the potential solution. In line
with this, the aim of this work is to come up with a robust
ML-based SC model for FCIP cost estimation. *e proposed
models are expected to help decision-makers and man-
agement engineers in making decisions from the perspective
of the stockholders.

Literature review studies suggested that numerous re-
searches have focused on the development of reliable regression
and mathematical techniques that can be used for cost esti-
mation in civil engineering projects [11–16]. *e nagging
problem in this domain still relates to the performance accuracy
of these models as the predicted cost is required to be highly
accurate before the conception of the project. *e weighted
ANN has been developed for unit cost prediction in highway
projects by [16], while a parametric cost model was developed
based on a questionnaire survey for the estimation of the final
cost of pump stations by [17]. A fuzzy logic- (FL-) based
parametric cost estimate model has been presented by [18], for
the prediction of the cost of building projects in the Gaza Strip.
*e study by [19] presented a hybrid ANN-FL model for cost
prediction of water infrastructure. *e prediction of the unit
cost of the highway project in Libya using the ANN model has
been presented by [20] and the performance of the ANNmodel
was excellent. A conceptual cost model for the German resi-
dential building project was developed by [21] using historical
data for 75 residential projects sourced from the building cost
information center. *e use of ANN to determine the relevant
parameters for cost prediction during tunnel construction in
Greece was reported by [22] based on survey questionnaires.
*e survey was based on expert opinions and interviews in
relation to the key cost drivers.

*e reviewed literature suggests the need for intelligence
models that are robust and capable of understanding the
civil engineering complexity in more realistic manners.
Several ML models have been reported recently, such as
ANN [23], SVM [24], ANFIS [25], genetic programming
[26], decision tree [27], and gradient boosting [28], and
several others were reported in the latest review [29].
However, the fact remains that each of these models behaves
differently in terms of prediction accuracy. Some existing
models are also capable of providing accurate results in-
terpretation; for instance, the variable coefficients of the
regression models can explain the influence of each variable
on the response of the model.

Numerous studies have focused on building projects
without giving much attention to the conceptual cost of FCIPs.
Hence, the attention of this study is on the pipeline construction
projects which have not attracted appropriate research atten-
tion, especially on the provision of detailed model development

steps in terms of sample size, multicollinearity, outliers, and
singularity. For instance, the study by [16] only applied 14 and 4
cases for the training and validation of their neural network
model.*is may have elicited concerns about the sample size in
this study as stated by [30].*e motivation of the current study
was inspired from the exhibited literature on the prediction of
the FCIP cost using newly explored machine learning models
including ELM,MARS, and PLS.*esemodels are proven to be
advantageous as they have very quick learning speeds with good
performances and are useful in capturing complicated data
mapping in very high set of predictors which produces inter-
pretative results [31–34]. Modeling structure was adopted based
on the correlation statistic to identify the input predictors for the
built ML models. Based on the reported modeling results,
comprehensive comparative analytical aspects were reported
and discussed.

2. Soft Computing Models

2.1. Extreme LearningMachine. ELMmodel is one of the new
methods of training recently developed single-layer feedforward
neural networks [35]. *e traditional ELM, as shown in Fig-
ure 1, has one input layer, one hidden layer, and one output
layer; each of these layers has a specific number of neurons.*e
linear function is generally selected as the activation function of
the input and output layers of ELM while the sigmoid function
is selected for the hidden layer [36].*e first step of the standard
ELM is a random input weight and hidden biases determi-
nation, followed by the determination of the hidden weights
using the Moore–Penrose generalized inverse method to
achieve the optimal solution of the linear system [37]. *e
advantages of the ELM over the other gradient-based methods
are its strong generalization capability, no parameter tuning,
and fast learning; these have made ELM more popular in
numerous engineering tasks [38–40]. Consider a training
dataset with N samples; the first process is to linearly map the
input vectors into an L-dimensional feature space via nonlinear
transformation; the expression of the simulated values of the
ELM model is as follows:

􏽥ti � 􏽘
L

l�1
βl · g wl · xi + bl( 􏼁, i � 1, 2, . . . , N, (1)

where N represents the number of samples for training, 􏽥ti

represents the output vectors that are associated with the
input vector xi; βl stands for the weight vectors that connect
the hidden neuron to the output layer; wl is the weight
vectors that connect the hidden neuron with the input layer;
bl is the bias; and g is the activation function.

In the ELM, the idea is that the classical single-layer
ANN can approach all the samples with zero deviation as
mathematically expressed in the relation:

􏽘
N

i�1
ti − 􏽥tt � 􏽘

N

i�1
ti − 􏽘

L

l�1
βl · g wl · xi + bl( 􏼁

���������

���������
� 0, (2)

where ti is the target output vector that is related to the input
vector xi. *e reconstruction of the above expression gives
the following:
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(4)

where β is the weight of the matrix that connects the hidden
and output layers; H is the hidden layer output matrix based
on N samples; and T is the target output matrix based on N
samples.

Assume that the hidden biases and input weights are
constant; it implies that the model may be considered a
special linear system in which H and T are equal to the
matrixes of the known dependent and independent pa-
rameters, while β is considered the coefficient matrix that
should be optimized. Hence, the least-squares solution of the
represented linear systemmentioned above can be derived as

􏽥β � H
†
T, (5)

where H† is the Moore–Penrose generalized inverse matrix
of H.

2.2. Multivariate Adaptive Regression Spline Model.
MARS algorithms are nonlinear-nonparametric flexible
regression models that were first developed by [41] and have
found application in many fields of engineering due to their
robustness [42]. *is model is built with three major
components, which are the basis functions (BFs), the knots,
and the spline function [43]. *e role of the BFs is to capture

the relationship between the predictands and the predicted
variables, amounting max (0, c − x) or max (0, x − c), where
x is the threshold value, while c is the input variable value.
*e knots also represent the function of the base and base
endpoints. A regression model is developed for each node by
applying a spline function that consists of 1 or more BFs,
followed by the substitution of the principal predictors [44].
In the MARS model, the predicted value is based mainly on
linear BF elements combination. *e MARS model can be
reviewed as follows: consider Y as the target variable and
X � (X1, X2, . . . , XP) as the P input variable matrix; then,
the equation of the MARS model can be as follows:

Y � f(X) � β0 + 􏽘
M

m�1
β0BFm(X), (6)

where β0 is the initial fixed value; BFm is the applied BF for
the fitting of the MARS model; andM is the total number of
BFs [45]. *e two major phases of the MARS model are the
selection phase (or forward search) and the reversal pruning
phase, as seen in Figure 2. *e forward phase or selection
phase can be regarded as a set of optimum input parameters.
A complicated over fitted model normally results from an
excessive forward stepwise selection process due to a series
of splits and such models cannot perform well predictively
despite fitting the data perfectly. Hence, the backward
procedure is normally applied to improve the predictive
performance of the model by removing the unwanted
variables that have been selected in the selection phase. *e
generalized cross-validation (GCV) is calculated as the
deletion criterion as it is the basis for the backward pruning
process [46, 47].

GCV(M) �
(1/N) 􏽐

N
i�1 Oi − f xi( 􏼁( 􏼁

2

(1 − (C(M)/N))
2 ,

C(M) � (d + 1) × M,

(7)

where Oi is the observed values; N is the number of data;
f(xi) is the predicted values for pattern i;M is the number of
BFs; and C(M) is the penalty factor. In equation (7), the
quantity of parameter d significantly impacts the procedure
as it is the optimization cost of each BF; its range is 2≤ d≤ 4.
*e inclusion of several BFs can result in overfitting;
therefore, it is important to omit some BFs during the
pruning phase to enable the emergence of a well-fitted model
with the least GCV value [48].

2.3. Partial Least Square Regression (PLS) Model. *e first
application of the PLS regression model was introduced over
the literature by [49], and since then the model has been
widely considered a new multivariate analysis technique in
many fields [50, 51]. It combined the features of principal
components, typical multiple regression, and linear re-
gression analyses; hence, it is suitable for finding the solution
to numerous problems, especially problems that cannot be
solved using the conventional multiple regression methods
and problems with multiple correlations [52]. *e efficiency
of PLS in such cases is based on its ability to decompose and

Input vector {xi}, i = 1,2, ··· , N

Input layer

Hidden Layer

Output layer

h1 h2

x1 x2 x3 x4 xn

t1 t2 x3 t4 tm

h3 h4 h5 hL

ti = ∑i=1
L~ βi · g (wl · xi + bl) 

Figure 1: *e extreme learning machine model paradigm.
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screen the variables that mostly explain the dependent
variables [53]. *e first step of the PLS method is to extract
the new variable called the component which serves as the
independent variable, followed by the determination and
establishment of the linear relationship between the de-
pendent and independent variables [54]. After calculating
the coefficient using PLS, the next step is the construction of
the regression equation of the dependent variable. *e re-
gression model developed by using the PLS method is
represented as

ym � a0m + a1mx1 + · · · + aPmxp, (m � 1, 2, . . . , p),

(8)

where x1, . . . , xp represents the linear combinations of
the remote sensing variables and a0m, a1m, . . . , aPm are the
PLS-computed regression model parameters. A higher
number of principal components in the established model
by PLS translates to better model accuracy; however, an
excessive number of principal components results in
overfitting and higher error. *us, the optimal number of
principal components must be determined to achieve a
balanced PLS model. *e cross-validation method was
used to calculate the sum of squared residuals in this
study. *e prediction ability of the resulting model is a
function of the extent of predictive residual errors sum of
square (PRESS) value. So, the optimal number of prin-
cipal components can be determined based on the
minimum PRESS value and this PRESS value can be
calculated as

PRESS � 􏽘
k

i�1
yi − yi,− 1􏼐 􏼑

2
, (9)

where yi, yi,− i represent the measured value of the ith sample
and the estimated value upon exclusion of the ith sample and
k is the number of iterations for validation.

3. Case Study and Data Explanation

For the modeling purpose, datasets were collected from the
open source of literature [7]. *e datasets are explained the
key cost derived from the FCIPs.*e data were including P1,
the served area; P2, the total length of the PVC pipeline; P3,
irrigation valve number; P4, construction year; P5, geo-
graphical zone; and cost and duration of field canal im-
provement projects (FCIP) construction. *e significance of
the dataset is contributing to the best knowledge of irrigation
authorities and decision makers to have a prior under-
standing on the FCIP cost. *e biodata of the current re-
search were collected from the survey conducted for Soltani
Canal, Egypt. *e quantitative costs are related to con-
struction sites recorded between 2011 and 2018. *e poly-
vinyl chloride (PVC) pipeline system is explained in Figure 3
with diameter ranging between 22.5 and 35 cm. *e sta-
tistical properties of the dataset over the training and testing
phases are reported in Tables 1 and 2. It is seen that all
together of 228 data were taken for both training and testing
phase. In Tables 1 and 2, the parameters that are collected for
training and test phase are mean, standard error, median,
mode, standard deviation, sample variance, kurtosis,

Over-fitted input
data

Backward
phase Apply

GCV

Output: Summation of the BF

t (knot)

(x–t)+ (x–t)+

BF(X3)BF(X2)BF(X1)

Piecewise linear/piecewise cubic equation

Feature identification

X1 X2 X3 X4 Xn

Input parameters

Forward phase BF 
identification

t (knot)

(x–t)+ (x–t)+

t (knot)

(x–t)+

max(0,x–c) = 
x–c,
0,

if c≥t
otherwis

(x–t)+

Figure 2: *e systematic structure of the MARS model.
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skewness, range, minimum and maximum, sum, count, and
confidence interval from C to P5. *e mean value of FCIP
cost is 353463.0 for training modeling phase whilst a mean
cost of 352714.35 was taken for testing phase. From Tables 1
and 2, it can be seen that the duration for FCIP construction
ranges from 58 days to 127 days in the trainingmodel dataset
while it ranges from 59 days to 126 days in the testing model
dataset. *e datasets in both training model and testing
model are well distributed and almost resemble a normal
distribution, as for most of the datasets, the mean and
median are very close to each other.

4. Application Results and Analysis

*e feasibility of threemachine learningmodels (ELM,MARS,
and PLS) was evaluated to predict cost of FCIP construction.
*e models were built based on different input combinations,
as reported in Table 3. Based on the correlation statistics, the
input combinations were constructed as shown in Figure 4.

Based on the tabulated input parameters, it can be
recognized that the total length of the PVC pipeline has the
substantial correlation to the construction cost followed by
the time duration, served area, irrigation valve number, and
geographical zone.

Different statistical performance metrics including de-
termination coefficient (R2), root mean square error
(RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), Nash–Sutcliffe efficiency (NSE), and
agreement index (MD) were calculated to validate the ap-
plied models statistically [55, 56].

R
2

�
􏽐

N
i�1 yp − yp􏼐 􏼑 · yo − yo( 􏼁

��������������������������
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5 Feddans

Valve

Valve

Valve

8 Feddans

7 Feddans

8 Feddans 10 Feddans

Pump House
10 Feddans

Branch Canal

Figure 3: *e Soltani Canal FCIP planning.

Table 1: *e statistical properties of the dataset selected for the training modeling phase.

Parameter C D P1 P2 P3 P4 P5

Parameter name Cost of FCIP Duration of FCIP
construction

Area
served

Total length of
PVC pipeline

Number of
irrigation values

Construction
year

Geographical
zone

Unit LE/FCIP Day Hectare Meter Number Year Zone
Mean 353463.30 76.34 49.41 813.83 8.18 2013.20 0.00
Standard error 7539.45 0.78 1.28 26.10 0.23 0.10 0.00
Median 320292.58 75.00 45.90 753.75 8.00 2014.00 0.00
Mode 514778.00 64.00 51.00 530.00 5.00 2014.00 0.00
Standard
deviation 113843.24 11.71 19.31 394.03 3.52 1.48 0.00

Sample variance 12960283390.67 137.20 372.83 155258.84 12.36 2.18 0.00
Kurtosis − 0.22 1.90 − 0.07 − 0.24 2.72 − 0.13 − 1.18
Skewness 0.77 1.04 0.75 0.60 0.94 − 1.05 − 0.58
Range 518824.50 69.00 85.00 1956.45 26.00 5.00 0.00
Minimum 186825.98 58.00 19.00 119.00 1.00 2010.00 0.00
Maximum 705650.48 127.00 104.00 2075.45 27.00 2015.00 0.00
Sum 80589633.51 17405.00 11265.43 185554.07 1866.02 459010.00 0.00
Count 228.00 228.00 228.00 228.00 228.00 228.00 228.00
Confidence level
(95.0%) 14856.26 1.53 2.52 51.42 0.46 0.19 0.00
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MAE �
􏽐

N
i�1 yp − y0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

N
, (12)

MAPE �
1
n

􏽘

n

i�1
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􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

yp

× 100, (13)

NSE � 1 −
􏽐

N
i�1 yp − yo􏼐 􏼑

2

􏽐
N
i�1 yp − yp􏼐 􏼑

2, (14)

MD � 1 −
􏽐

N
i�1 yo − yp􏼐 􏼑

j

􏽐
N
i�1 yp − yo

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yo − yo

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓

j
, (15)

where yo and yp are the observed and predicted values of the
FCIP cost;yo and yp are the mean values of the observed and
predicted values of the FCIP cost; N is the number of ob-
servations; and j is the exponent term.

Tables 4 and 5 report the statistical measures over the
training and testing phases, respectively. In general, pre-
diction performance of themodels indicated less accuracy by
using few predictors. However, MARS model exhibited
better predictability performance over both the training and
testing phases. It has been noticed that the maximum de-
termination coefficient was achieved for model M6
(R2 � 0.94) with a minimum RMSE of 28458.17 in the
training phase while 27422.7 in the testing phase using all the

predictor parameters, excluding the geographical zone in
which less influence on the cost phenomena was revealed
when compared to ELM and PLS whose coefficient of de-
termination (R2) maxed out at 0.90 with RMSE of 36011.43
and 36013.16, respectively, for model M6 in the training
phase. Similarly, in testing phase ELM and PLS, coefficient of
determination (R2) maxed out at 0.89 with RMSE of 37141.8
and 37140.3 for model M6. In addition, it is seen that the
ratio of the MSE and the potential error which is denoted by
MD is 0.89 for MARS M6 model on both cases, i.e., training
and testing phases.

*e model performances were assessed using graphical
presentations such as scatter plots and Taylor diagram.
Figure 5 shows the scatter plots between the actual obser-
vations and the predicted values. Among the three applied
prediction models, MARS model is indicated as the best

Table 2: *e statistical properties of the dataset selected for the testing modeling phase.

Parameter C D P1 P2 P3 P4 P5

Parameter name Cost of FCIP Duration of FCIP
construction

Area
served

Total length of
PVC pipeline

Number of
irrigation values

Construction
year

Geographical
zone

Unit LE/FCIP Day Hectare Meter Number Year Zone
Mean 352714.35 77.00 48.46 807.57 8.41 2013.23 1.29
Standard error 7469.77 0.81 1.24 27.65 0.26 0.09 0.05
Median 318652.92 76.00 45.68 720.82 7.46 2014.00 2.00
Mode 201587.44 66.00 51.00 630.00 5.00 2014.00 2.00
Standard
deviation 112791.09 12.19 18.79 417.58 3.96 1.41 0.79

Sample variance 12721830134.86 148.62 352.92 174372.83 15.71 1.99 0.63
Kurtosis 0.05 2.09 0.21 0.06 6.34 0.12 − 1.18
Skewness 0.88 1.22 0.84 0.76 1.72 − 1.14 − 0.58
Range 503217.10 67.00 86.00 1916.15 27.87 5.00 2.00
Minimum 198035.54 59.00 19.00 119.00 1.02 2010.00 0.00
Maximum 701252.64 126.00 105.00 2035.15 28.89 2015.00 2.00
Sum 80418872.53 17556.00 11049.13 184125.65 1917.50 459016.00 295.00
Count 228.00 228.00 228.00 228.00 228.00 228.00 228.00
Confidence level
(95.0%) 14718.96 1.59 2.45 54.49 0.52 0.18 0.10

Table 3:*emodeling input combinations for the adopted dataset.

M1 P2
M2 P2 D
M3 P2 D P1
M4 P2 D P1 P3
M5 P2 D P1 P3 P4
M6 P2 D P1 P3 P4 P5

0.85

P2

D

P1

P3

P4 0.01
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
P2 D P1 P3 P4 P5

C 0.77 0.7 0.63 0.24 0.03

0.79 0.6 0.53 -0.05 0.01

0.58 0.5 -0.08 0.04

0.57 -0.04 -0.01

-0.14 0

Figure 4: *e correlation matrix between the predictors and the
FCIP cost.

6 Complexity



identical match with high correlation value. On the other
hand, Figure 6 shows the Taylor diagram map in which the
prediction models were evaluated based on the distance
coordination in accordance with multiple statistical metrics
(i.e., standard deviation, RMSE, and correlation value).

5. Discussion

Various studies have been conducted to estimate a reli-
able parametric cost model, but there is no available study

carried out for FCIP [5]. However, prediction of cost is
not new; a simplex optimization of ANN weights was
used to create a model for estimating the unit cost of
highway projects with a mean absolute percentage error
(MAPE) of 1% [16]. Another study used a combination of
ANN and fuzzy logic to create a high-precision cost
prediction model for water infrastructure based on the
sum of squares of mistakes. During the validation phase,
the researchers produced multiple prediction models
with perceptions ranging from 4.6 percent to 0.6 percent

Table 4: Prediction performance results over the training phase.

R2 RMSE MAE MAPE Nash MD
MARS model
M1 0.76 57097.21 40090.04 0.11 0.76 0.78
M2 0.79 52443.11 35922.94 0.10 0.79 0.80
M3 0.83 46957.45 35377.61 0.10 0.83 0.81
M4 0.87 41427.33 31383.75 0.09 0.87 0.83
M5 0.94 28458.17 20444.55 0.06 0.94 0.89
M6 0.94 28458.17 20444.55 0.06 0.94 0.89
ELM model
M1 0.72 61144.00 42644.28 0.12 0.72 0.76
M2 0.75 58309.91 40861.50 0.12 0.75 0.77
M3 0.79 52776.65 40372.48 0.11 0.79 0.78
M4 0.81 50951.98 39296.32 0.11 0.81 0.79
M5 0.90 36019.94 24352.69 0.07 0.90 0.87
M6 0.90 36011.43 24362.29 0.07 0.90 0.87
PLS model
M1 0.72 61182.31 43650.76 0.12 0.72 0.75
M2 0.73 59634.10 42063.22 0.12 0.73 0.76
M3 0.79 52816.73 40059.10 0.11 0.79 0.78
M4 0.81 50951.98 39297.60 0.11 0.81 0.79
M5 0.90 36026.97 24406.13 0.07 0.90 0.87
M6 0.90 36013.16 24393.67 0.07 0.90 0.87

Table 5: Prediction performance results over the testing phase.

R2 RMSE MAE MAPE Nash MD
MARS model
M1 0.75562 55636.4 39175.3 0.11317 0.75561 0.77964
M2 0.78542 52169 36042.4 0.10461 0.78513 0.79856
M3 0.81853 47949.3 36928.8 0.10698 0.81848 0.79537
M4 0.86669 41152.6 32861.1 0.09655 0.86629 0.82096
M5 0.94125 27422.7 19761.8 0.05454 0.94063 0.89374
M6 0.94125 27422.7 19761.8 0.05454 0.94063 0.89374
ELM model
M1 0.70389 61662 43434.8 0.12204 0.69981 0.75368
M2 0.72687 59271.2 41879.9 0.11948 0.72264 0.76358
M3 0.77521 53666.1 41776.6 0.11991 0.77262 0.76784
M4 0.80047 50554.1 40050.8 0.11642 0.79822 0.77885
M5 0.894 37239.8 25507.3 0.06922 0.89051 0.86168
M6 0.89463 37141.8 25376.6 0.06887 0.89109 0.86241
PLS model
M1 0.6997 62852.2 45250.3 0.12747 0.68811 0.74448
M2 0.71411 60628.3 43182.2 0.12358 0.70979 0.75411
M3 0.77381 53854.1 41631.9 0.11941 0.77102 0.76864
M4 0.80047 50554.3 40051.8 0.11643 0.79822 0.77884
M5 0.8941 37229.5 25541 0.06928 0.89057 0.86148
M6 0.89464 37140.3 25418.7 0.06898 0.89109 0.86217
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Figure 5:*e scatter plots between the observed and predicted values of the cost over the testing phase for all tested input combinations and
applied predictive models.
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[19]. Furthermore, by varying the ANN structure,
training function, and training algorithm until an opti-
mum model was found, a researcher built a prediction
model with a MAPE of 1.4 percent for the unit cost of the

highway project in Libya [20].It is seen that, in this study,
the value of MAPE for MARS model M6 in both training
and testing phases ranges from 5% to 6% when compared
with other models.
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Figure 6: *e Taylor diagram for the adopted modeling scenarios and the established machine learning models over the testing phase.
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6. Conclusion and Remarks

*e prediction of cost related to civil engineering project is
considered as vital topic to be studied comprehensively. In
this study, couple of machine learning models including
extreme learning machine (ELM), multivariate adaptive
regression spline (MARS), and partial least square regression
(PLS) were developed to predict field canal improvement
project (FCIP) cost. For the purpose of the modeling de-
velopment, datasets related to irrigation projects were col-
lected from the open source published literature. Input
combinations were initiated based on the total length of the
PVC pipeline, served area, geographical zone, construction
year, and cost and duration of FCIP construction. *e
prediction results showed that MARS and ELMmodels were
presented positively in comparison with the PLS model.
However, MARS model reported the superior results. Also,
the research finding exhibited that all the predictors are
substantial toward the cost calculation with almost no in-
fluence for the geographical zone of the pipeline network.

Nomenclature

ANFIS: Adaptive neuro-fuzzy inference system
MD: Agreement index
ANN: Artificial neural network
BF: Basic function
R2: Determination coefficient
ELM: Extreme learning machine
FCIP: Field canal improvement project
FL: Fuzzy logic
GCV: Generalized cross validation
IoT: Internet of things
NSE: Nash–Sutcliffe efficiency
ML: Machine learning
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MARS: Multivariate adaptive regression spline
PLS: Partial least square regression
PVC: Polyvinyl chloride
PRESS: Predictive residual errors sum of square
RMSE: Root mean square error
SC: Soft computing
SVM: Support vector machine.
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*e data used in this study can be provided upon request
from the authors.
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