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Mining useful knowledge from high-dimensional data is a hot research topic. Efficient and effective sample classification and
feature selection are challenging tasks due to high dimensionality and small sample size of microarray data. Feature selection is
necessary in the process of constructing the model to reduce time and space consumption. *erefore, a feature selection model
based on prior knowledge and rough set is proposed. Pathway knowledge is used to select feature subsets, and rough set based on
intersection neighborhood is then used to select important feature in each subset, since it can select features without redundancy
and deals with numerical features directly. In order to improve the diversity among base classifiers and the efficiency of
classification, it is necessary to select part of base classifiers. Classifiers are grouped into several clusters by k-means clustering
using the proposed combination distance of Kappa-based diversity and accuracy. *e base classifier with the best classification
performance in each cluster will be selected to generate the final ensemble model. Experimental results on three Arabidopsis
thaliana stress response datasets showed that the proposed method achieved better classification performance than existing
ensemble models.

1. Introduction

*e development of high-throughput sequencing technol-
ogy has provided researchers with a large amount of
microarray data, and extracting valuable information from it
has become a hot research topic in bioinformatics [1, 2].
Plants often encounter various stresses at different growth
stages throughout their lives, which may lead to inhibition of
growth, leaf injury, and plant death. How to predict these
stresses will play a very important role in the development of
forestry and agriculture. To eliminate negative influences
due to these stresses before the appearance of some
symptoms, microarray data is used to diagnose and rec-
ognize the type of plant stress.

*e microarray data has the characteristics of high-di-
mensionality, small sample, and high redundancy. Tradi-
tional classification algorithms for microarray data have
problems such as poor classification stability and low ac-
curacy. *erefore, the analysis of such data is required a
classification model with strong processing capability. For

high-dimensional microarray data, feature selection is a
crucial step towards effective and efficient classification
[3, 4]. *erefore, high performance methods for feature
selection and sample classification have become increasingly
important.

Feature selection is an important process in the analysis
of high-dimensional data [5, 6]. Rough set theory is a
mathematical tool that deals with imprecise, inconsistent,
and incomplete problems [7]. *e classical rough set theory
is employed in attribute reduction problems, and sometimes
it requires equivalent relationship among samples. *is kind
of tolerance relation seems arbitrary and puzzling. In order
to deal with this issue, the generalized rough sets theory
which substituted binary relation for originally equivalent
relationship was proposed [8]. A new binary tolerance re-
lationship intersection neighborhood for processing nu-
merical data was put forward, and it was employed to select
features in microarray data [9], which was more flexible for
application on data with complex structure. *e proposed
model uses a rough set model based on the intersection
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neighborhood to select features in each dataset. For feature
selection of microarray data, these models are usually
designed based on a single data source of microarray data.
Because of the biological interaction between genes, fusion
of existing biological knowledge into the classificationmodel
can improve its classification performance.

*is paper firstly uses pathway knowledge to make a
preliminary selection of features in stress response micro-
array data and selects important features using intersection
neighborhood rough set. Each feature subset contains genes
in pathway knowledge unit. Because of the high redundancy
of microarray data, only a very small number of genes are
related to classification [10], and a gene selection model
based on intersection neighborhood rough set (INRS) is
used on each feature subset to select important and non-
redundant features for subsequent classification work.

*e ensemble classification model is constructed by
using the information complementarity among base clas-
sifiers; thus, it has more stable and accurate classification
performance [11, 12]. *ese methods have become in-
creasingly important because they have better performance
than single classifiers in many areas especially for classifi-
cation problems with complex data structures [9, 13]. Many
ensemble learning methods including Boosting [14],
Stacking [15], Bagging [16], and Random Subspace Method
[17] are proposed. For classification of microarray data,
Meng et al. proposed an ensemble classification model using
neighborhood system and rough set theory [18]. *ey aimed
at averaging the results of different classifiers [19]. To speed
up feature selection process, Meng et al. proposed a parallel
feature selection method using MapReduce [20].

In the case of a large number of base classifiers in en-
semble model, there will be some redundant classifiers,
resulting in poor overall difference. In order to improve the
performance of ensemble classification, it is necessary to
select base classifiers. Ensemble pruning methods can be
roughly divided into four categories: iterative optimization
method, ranking method, clustering method, and pattern
mining method. In the clustering based technology, Lin et al.
proposed a dynamic base classifier selection strategy based
on K-means clustering and cyclic sequence [21]. Zhang and
Cao proposed an ensemble pruning method based on
spectral clustering [22]. Krawczyk used a cluster-based
pruning method in the weighted Bagging ensemble classi-
fication [23]. However, these methods do not consider the
diversity among base classifiers and the classification per-
formance of the classifiers at the same time when calculating
the distance between base classifiers.

In this paper, we propose an ensemble classification
method for high-dimensional data using neighborhood
rough set (ECHDNRS). Since feature distributions of these
subsets, which are generated by neighborhood rough set and
pathway, are significantly different, diversity among base
classifiers trained on these subsets is obvious. Not only is this
method a way of generating different training sets for
training base classifiers from features, but also it can be
regarded as an improvement of the traditional Random
Subspace Method. For the purpose of improving the clas-
sification performance of the ensemble model and reducing

the space and time consumption, k-means clustering is used
to select base classifiers. Using k-means instead of passing
data to all base classifiers leads to time and space reduction.
A new function which combines Kappa-based diversity and
accuracy for calculating the distance between two base
classifiers is proposed. All base classifiers are grouped into
clusters and the base classifier with the best classification
accuracy in each cluster is selected to generate the ensemble
classification model. Our contributions can be summarized
in four aspects:

(1) Use pathway to preselect features.
Pathway is used as a feature preselection tool for
ensemble classification. Each pathway contains a
group of features that regulate a biological process;
thus, the biological significance of features can be
assessed. We associate each pathway with its cor-
responding features included in microarray data to
form different feature subsets.

(2) Employ neighborhood rough set to select important
features in each pathway unit.
Neighborhood rough set is used to select important
features in each pathway unit. In the feature selec-
tion, neighborhood rough set makes the classifica-
tion ability of the pathway unit unchanged.
Moreover, it will reduce the training time of the
ensemble classification model.

(3) Combine Kappa-based diversity and accuracy to
calculate classifier distance.
We consider the diversity among base classifiers and
the classification performance of the classifiers at the
same time when calculating the distance between
base classifiers. A new function which combines
Kappa-based diversity and accuracy for calculating
the distance between two base classifiers is proposed.

(4) Demonstrate that ECHDNRS can achieve good
classification performance.

Extensive experiments demonstrate the good classifi-
cation performance of ECHDNRS compared with existing
schemes.

*e rest of the paper is organized as follows: Section 2
describes Framework of ensemble classification. Feature
selection based on pathway and INRS is described in Section
3. Our proposed ensemble pruning method based on k-
means is described in Section 4. Experiment results and
analysis are discussed in Section 5. Finally, conclusion and
future work are given in Section 6.

2. Framework of Ensemble Classification

An ensemble classification model generates many classifi-
cation models for a certain classification problem and results
of these models are comprehensively considered [12].
Generally, there are three ways to generate different base
classifiers: (1) training base classifiers on training sets with
different samples, such as Bagging; (2) training base clas-
sifiers on training sets with different features, such as
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Random Subspace; (3) using different classification algo-
rithms to train base classifiers based on the same training set
[14]. For microarray data with high dimensionality and
small sample size, in order to generate base classifiers with
significant diversity, it is suitable to employ a model that
trains base classifiers on training sets with different features.
In this paper, pathway knowledge is used to preselect fea-
tures; therefore, for the same microarray dataset, different
training sets are generated from which we obtain different
base classifiers. *e procedure of ECHDNRS is shown in
Figure 1.

Our ECHDNRS model consists of five steps:

(i) Step 1: Integrate pathway knowledge to generate
different feature subsets. Each pathway lists features
contained in a specific path. ECHDNRS combines
microarray data with the corresponding pathway
knowledge to preselect features, to form feature
subsets Pi (i� 1, 2, ..., m). Since the pathway
knowledge is limited, many features included in
microarray data have no associated biological
knowledge, and they are used to generate unit P0.

(ii) Step 2: Select important features using intersection
neighborhood rough set model (INRS). It is
employed to select significant features in each
feature unit Pi (i� 0, 1, 2, ..., m); then the unit
Pi
′(i� 0, 1, 2, ..., m) without redundant features is

obtained.
(iii) Step 3: All samples are partitioned into training

samples, pruning samples, and test samples, as
shown in Figure 2. Each training set Ti is the samples
set in which all training samples only contain fea-
tures in Pi

′. *en, Ti 
m

i�0 are used to train base
classifiers, and SVM is selected as classification
algorithm.

(iv) Step 4: Prune base classifiers using k-means algo-
rithm. Base classifiers are used to classify pruning
samples so as to validate the classification perfor-
mance. *en k-means clustering groups base clas-
sifiers into several clusters based on the
classification results on pruning samples. *e base
classifier with the best classification performance in
each cluster will be selected to generate the final
ensemble model.

(v) Step 5: Integrate classification results of these se-
lected base classifiers. Each test sample is classified
by all selected base classifiers; then, the model in-
tegrates the results of different classifiers bymajority
vote method.

*ese steps of the ECHDNRS are described in detail in
the following subsections.

3. Feature Selection

*e performance of classifier depends on the interrela-
tionships among the number of samples, dimension of
features, and complexity of classifier [13]. If the number of
samples in training set is much smaller than the number of

features, it will lead to poor classification performance due to
the overfitting of classifier on training set [24]. *is behavior
is referred to as the peaking phenomenon [25, 26].

In practice, sample number is very small relative to the
dimension of feature, usually tens of thousands in micro-
array data. For the objective of improving the classification
performance, feature selection is essential. *erefore,
pathway knowledge is used in preselection which is used to
generate a number of feature subsets. Moreover, INRS is
employed to select important features in each unit.

3.1. Combining High-Dimensional Data with Prior
Knowledge. We use high-dimensional microarray data
combined with pathway knowledge to generate different
subsets. *e pathway biological knowledge is downloaded
from https://www.arabidopsis.org/biocyc, which was de-
rived from KEGG by Kanehisa [27]. *e KEGG pathway
database integrates current knowledge on molecular inter-
action networks, including graphical cellular biochemical
processes such as metabolism, cell cycle, signal transduction,
membrane transport, and conservative subchannel infor-
mation. It is a collection of hand-painted metabolic path-
ways, containing the following aspects of intermolecular
interactions and response network: (1) metabolism; (2)
genetic information processing; (3) environmental infor-
mation processing; (4) cellular processes; (5) biological
system; (6) human diseases; (7) drug development.

For classification of microarray data, traditional classi-
fication models are usually designed based on a single data
source of microarray data. Because of the biological inter-
action between genes, fusion of existing biological knowl-
edge into the classification model can improve its
classification performance. Gene Ontology (GO) knowledge
was first applied to cancer prediction. Related experiments
show that combining biological knowledge can improve the
accuracy of prediction results and enhance its biological
interpretability and credibility [28]. After that, the predic-
tion model combined with pathway knowledge was also
applied to the prediction of cancer [29]. In recent years, a
classification model at the pathway level combined with the
superbox principle was applied to disease classification [30].

*e proposed ECHDNRS model eliminates the ran-
domness of the traditional Random Subspace, without using
prior knowledge; it randomly extracts features to form
feature subsets. Feature selection integrated with biological
knowledge for plant stress response improves the biological
interpretation of the results [18]. *ree examples of pathway
are shown in Figure 3, where pij represents the jth feature
contained in pathway i. For pathway units, the number of
features ranges from 1 to more than 200.

*ere exist features that are contained inmicroarray data
but without corresponding pathway. Wilcoxon rank sum is
employed in preselection for features that are not associated
with any pathway annotation, and then 200 top-ranked
features are used to generate unit P0. Wilcoxon rank sum test
is suitable for ranking of samples that do not meet specific
probability distribution such as Gaussian distribution and it
is suitable for binary classification samples.

Complexity 3
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For each feature, the expression quantity of every sample
in microarray data is viewed as observations in statistical
test. *us, each feature has two groups of observations
depending on the class labels of the sample, respectively
denoted by X� {xi | i� 1, 2, . . ., n1} which represent ex-
pression quantity corresponding to samples belonging to
class 1 and Y� {yj | j� 1, 2, . . ., n2} which represent

expression quantity correspond to samples belong to class 2,
where n1 and n2 are the number of samples belonging to
class 1 and class 2, respectively. All of the (n1 + n2) samples
are ranked based on the expression quantity in ascending
order. Since it is possible that many samples have the same
expression quantity, they need to be adjusted, so as to obtain
the same rank which is the average of all the ranks. For two
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Figure 1: Flowchart of the proposed model ECHDNRS.
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Figure 2: An overview of classifying microarray data.
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groups of observations X� {xi |i� 1, 2, . . ., n1} and Y� {yj|
j� 1, 2, . . ., n2}, when n1, n2> 10, the test statistic of Wil-
coxon rank sum test for each feature is defined as follows:

Z �
U − n1n2/2�������������������

n1n2 n1 + n2 + 1(  /12
 ∼ N(0, 1). (1)

U is the smaller one of U1 � n1n2 + [n1(n1 + 1)]−T1 and
U2 � n1n2 + [n2(n2 + 1)]−T2. T1 and T2 are the sum of rank of
class 1 and class 2, respectively. *e test statistic Z obeys
standard normal Gaussian distribution with mean 0 and
variance 1. *e P-value for feature g is as follows:

p � P |Z|> Zg



 , (2)

whereby Zg is the test statistic Z based on Wilcoxon rank,
the sum test for feature g, and P(|Z|> |Zg|) represents the
probability of |Z|> |Zg|. *e smaller p is, the bigger the
diversity of feature g in two classes is. Finally, all features are
ranked based on p in descending order, and then top-N
features are selected as the output of feature preselection.

By combining microarray data with pathway knowledge,
information table is obtained and shown in Table 1.In the
table, P0 contains features which are not associated with any
pathway annotations and are preselected by Wilcoxon rank
sum test. Pi (i� 1, 2, ..., m) is a biological knowledge unit
including features of a pathway corresponding tomicroarray
data, and m is the number of pathways selected as prior
knowledge. For a feature pij ∈ Pi (j� 1, 2, ..., |Pi|) and a
sample sk (k� 1, 2, ..., n), the value vijk is the expression
quantity of feature pij in sample sk. *ere exist some re-
dundant features in some pathway for classification, so
further feature selection is needed. After the process of
forming these units, feature selection model based on INRS
is employed to delete redundant features in each unit.

3.2. Feature Selection Based on Intersection Neighborhood
Rough SetModel. For GEDT� {S, Pi∪D, V, f}, S(s1, s2 ,. . ., sn)
is the microarray sample set, Pi represents the unit of
pathway knowledge which contains related features, and
D� {d} is the class label. For each feature pij ∈ Pi and sample
sk ∈ S, vijk is the expression value of feature pij for sample sk,
and dk is the class label of sk.

R is binary relation on data spaceU for objects x and y. If
y is included in the neighborhood of x, the neighborhood of
x is defined as follows [31]:

NR(x) � y | xRy, y ∈ U . (3)

Since all the gene expression microarray data is nu-
merical, we focus on the tolerance relation defined for
numerical features. We use the intersection neighborhood as
the binary relation. For object x ∈ U, based on Pi the re-
lation is defined in [7, 18]

NPi
(x) � y |∀pij ∈ Pi, fpij

(x) − fpij
(y)



≤ δpij
, y ∈ U .

(4)

In order to simplify the process of feature selection, we
assume that each feature has the same threshold δ. For
objects x and y, when the distance between each feature
pij ∈ Pi is less than or equal to δ, then y is in the neigh-
borhood based on Pi of x.

Based on the above binary relation, for a subset of objects
X⊆U, the definitions of lower and upper approximations in
the extended rough set theory are defined in (3) and (4),
respectively [31]:

apr
Pi

(X) � x|NPi
(x)⊆X, x ∈ U ,

aprPi
(X) � x|NPi

(x)∩X≠Φ, x ∈ U .
(5)

*e definitions of positive, negative, and boundary re-
gions based on intersection neighborhood relation are as
follows [31]:

POSPi
(X) � apr

Pi

,

NEGPi
(X) � U − aprPi

,

BNPi
(X) � aprPi

− apr
Pi

.

(6)

*e principle of feature selection model based on the
rough set is to keep classification ability unchanged. *e
classification ability in rough set is defined as the number of
training samples included in the positive region based on
decision feature; for each unit Pi, it is represented by
POS RE D(D) � POSPi

(D). It is a kind of NP-hard problem
to find an optimal subset of features. Features in each unit Pi
are ranked using Wilcoxon rank sum test. *erefore, the
proposed feature selection model takes backward strategy in
which the rank of features is employed as heuristic infor-
mation. Every feature ranked from top to bottom in the unit
is evaluated such that when deleting a feature from the
feature set, if it meets the condition of unchanging the
classification ability, it is removed from the unit; otherwise,
it cannot be removed. *is method can maintain features
which have better classification ability, and it can also in-
clude fewer features in the selected feature subsets. *e
feature selection algorithm based on the INRS is described in
Algorithm 1.

*e computational complexity of the intersection
rough set-based algorithm is O(|Pi|2|S|2), whereby |Pi| is
the number of features contained in Pi and |S| is the
number of samples. *is feature selection method takes
full advantage of global information of each feature subset
Pi.
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Figure 3: Schematic diagram of pathway.
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3.3. Ensemble Pruning Based on Clustering. For ensemble
classification, many base classifiers are generated for the
same problem, a large amount of memory and considerable
computational cost are needed [32]. *erefore, classifier
pruning is essential to ensemble model. Additionally, Zhou
revealed that the ensemble of a proper subset of base
classifiers sometimes outperforms the original ensemble
[33, 34].

3.3.1. Classifier Distance Based on Diversity and Accuracy.
In order to improve the performance of the ensemble
classifier, classifiers with significant diversity are selected.
Diversity can be viewed as a measure of dependence,
complement, or orthogonality among classifiers [35]. Di-
verse classifier ensembles are preferred. *ere exist many
approaches to measure diversity among binary classifier
output including the Q statistic, the correlation, the dis-
agreement, the double fault, the entropy of the votes, the
difficulty index, the Kohavi-Wolpert variance, the interrater
agreement, and the generalized diversity [36].

Cohen proposed Kappa statistic as the index for con-
sistency judgment. In practice, it can measure the consis-
tency of diagnosis well; therefore, it has been widely used in
clinical trials. Kappa is also used to evaluate the classification
performance of base classifier. *is index compensates for
classifications that may be due to randomness. It is con-
sidered as a standard statistically robust metric for mea-
suring the accuracy in multiclass problems [37].

In our method, diversity is measured based on Kappa
coefficient. *e evaluation method implemented in the
proposed method does not compute the Kappa index as a

global performance measure for each candidate classifier.
We calculate the specific Kappa value for the similarity
between two candidate classifiers (kappa by similarity).
Kappa coefficient of the output of two base classifiers is
calculated as follows [38]:

Kappa �
Pr(a) − Pr(e)

1 − Pr(e)
,

Pr(a) �
C

tt

N
+

C
ff

N
,

Pr(e) �
C

tt
+ C

tf

N
×

C
tt

+ C
ft

N
+

C
ft

+ C
ff

N
×

C
tf

+ C
ff

N
.

(7)

*ere are two base classifiers hi and hj which are the i-th
and the j-th classifiers, respectively. N is the total number of
samples. Ctt represents the number of samples which were
correctly classified by hi and hj; on the contrary,Cff stands for
the number of samples that were incorrectly classified by hi
and hj; Ctf is the number of samples that were correctly
classified by hi but were incorrectly classified by hj, and Cft is
the number of samples that were incorrectly classified by hi
but were correctly classified by hj.

*e value of Kappa ranges from −1 to 1, and kappa
stands for the value of Kappa coefficient. When kappa< 0, it
means that the consistency is worse due to randomness;
when kappa> 0, it means that the bigger the value, the better
the consistency. We define the diversity distance between
two base classifiers as follows: when kappa≤ 0, the distance is
1; when kappa> 0, the distance is 1− kappa. *e diversity

Table 1: Information table formed by combing microarray data with pathway knowledge.

Sample
P0 P1 P2 . . . Pm

p01 p02 . . . p11 p12 . . . p21 p22 . . . pm1 pm2 . . .

s1 v011 v021 . . . v111 v121 . . . v211 v221 . . . vm11 vm21 . . .

s2 v012 v022 . . . v112 v122 . . . v212 v222 . . . vm12 vm22 . . .

. . .

sn v01n v02n . . . v11n v12n . . . v21n v22n . . . vm1n vm2n . . .

Input: GEDT� {S, Pi∪D, V, f}
δ //the list of intersection neighborhood threshold

Output: RED // a set of features which is a reduction of unit Pi
Step 1: For each sample sk∈S, calculate the intersection neighborhood NPi

(sk) based on different threshold δ
Step 2: Divide the sample set S based on the class label D� {d} to obtain the equivalence classes which are represented as S/IND(D)
(where samples with the same class label contained in one equivalence class).
Step 3: Calculate the positive region defined on intersection neighborhood POSPi

(D) � ∪ X∈S/IN D(D)POSPi
(X) based on all of the

features in Pi.
Step 4: Start with RED�Pi.
Step 5: As Step 1 for sample sk∈S, calculate the intersection neighborhood N

RE D− pij 
(sk). *en as Step 3 calculate the positive region

based on RED-{pij}, POS
RE D− pij 

(D) � ∪ X∈S/IN D(D)POS
RE D− pij 

(X);

If POS
RE D− pij 

(D) � POSPi
(D), then make RED�RED−{pij}.

Step 6: Repeat Step 5 until all the features pij in the subset Pi are validated, then use final RED as a reduction of Pi, marked as Pi
′�RED.

ALGORITHM 1: Feature selection.
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distance is symmetric for each pair of classifiers, since
D(d)ij �D(d)ji.

D(d)ij �
1, kappa≤ 0,

1 − kappa, kappa> 0.
 (8)

Giacinto and Roli stated that ensemble classifiers should be
accurate and diverse [39].*us, when considering the diversity
between two base classifiers, it is also essential to consider their
classification accuracy. Suppose that there are m samples in
pruning set; cik denotes the actual output of the i-th classifier on
the k-th sample; when cik� 0, the k-th sample is correctly
classified by the i-th classifier; otherwise, it represents the
sample that is incorrectly classified. If the actual output cik is 0
as well as cjk� 0, then cikcjk� 1; otherwise, cikcjk� 0. Accuracy
distance between them is defined as follows:

D(a)ij �

1 −
1
m



m

k�1
cikcjk, i≠ j,

0, i � j.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

We consider both of the diversity distance and accuracy
distance in one distance function and define the distance
between base classifiers hi and hj as follows:

Dij � αD(d)ij +(1 − α)D(a)ij, (10)

where α[0, 1] is the weight for diversity distance, Dij[0, 1] is
also symmetric and nonnegative, and Dii equals 0 for each I;
therefore, it meets the requirements of the distance definition.

3.4. Pruning Base Classifiers Using K-Means. An ensemble
pruningmethod based on k-means clustering is proposedwhich
considers bothKappa-based diversity and accuracy of classifiers.
*e objective of clustering is to partition base classifiers into
many homogenous clusters in which classifiers within a cluster
are more similar to each other than those belonging to different
clusters. *is means that classifiers belonging to different
clusters are more diverse. *en an exemplar is selected from
each cluster to participate in the ensemble model.

An improved k-means clustering is used to partition the
set of base classifiers H� {h1, h2, ..., hN} into k clusters based
on the distance we defined. Firstly, k cluster centroids labeled
as Cj 

k

j�1 are randomly selected from all the base classifiers.
Secondly, calculate the distance of each classifier between it
and every centroid; then it belongs to the cluster of the
nearest centroid. *irdly, in normal k-means clustering, in
order to adjust the centroids, the average of all members in
one cluster is viewed as the calculated centroid. However, in
this situation, these calculated centroids may not stand for
the real base classifiers. For each calculated centroid, the
original method is improved by selecting one classifier with
the smallest distance between them as the new centroid.
Finally, repeat the above operations until reaching the it-
eration that gives the best output or until centroids of all base
classifiers are unchanged. To obtain the optimal number of
clusters, the number of clusters k is increased gradually until

min
N
i D(hi, Chi

) starts to deteriorate. When the optimal
number k of the clusters is obtained, according to the as-
sumption in [40], the agreement among the classifiers from
the same cluster is large, so the majority of the classifiers can
be removed. *en the classifier with the best classification
performance in each cluster is selected as the exemplar to
participate in the ensemble model.

We use a group of selected classifiers to classify test
samples and integrate the results by majority vote method.
Since among the selected base classifiers there exists sig-
nificant diversity, if most of the base classifiers are consis-
tent, then the result will have a higher credibility. If the
differences among the base classifiers are not obvious, in
some cases it is possible that most of the classifiers mis-
classify the samples, and then the ensemble classifier will also
incorrectly classify the samples.

Training time includes feature selection time, base
classifiers generation time, and classifier pruning time. *e
feature selection based intersection neighborhood rough set
is very time consuming, since it needs to calculate positive
region for each feature unit. Base classifiers generation time
is related to classification algorithm. Classifier pruning is to
reduce the classification time; thus, it is necessary for en-
semble classification. After the training process, inference
time associates with the base classifier number selected by
the ensemble in our proposed model. *erefore, ensemble
pruning based on k-means can reduce the inference time.

4. Experimental Results and Discussion

4.1. Dataset and Experiment Settings. Arabidopsis thaliana is
usually used to study the responses of plants to different types
of stress [41], because of its abundant biological experiment
data and information encoded in gene annotations. In this
paper, three plant stress response datasets about Arabidopsis
thaliana and corresponding pathway knowledge are applied
in the experiment to test the performance of the proposed
ECHDNRS model. *e datasets are Arabidopsis-Drought,
Arabidopsis-Oxygen, and Arabidopsis-TEV, which are re-
sponses to drought, oxygen, and Potyvirus (TEV) stress, re-
spectively. All the three datasets can be downloaded from
GEO (Gene Expression Omnibus) website (http://www.ncbi.
nlm.nih.gov/geo/). Each dataset has two classes. Detailed
information about the three Arabidopsis thaliana datasets is
shown in Table 2, and the experimental group and the control
group are denoted by Class A and Class B, respectively.

*e data values are normalized into the range of [−1, 1]
before intersection neighborhoods of objects are con-
structed, to eliminate the deviation of the classification result
caused by different property ranges. In order to observe the
impact of the change in δ threshold of intersection neigh-
borhood on the classification performance, δ is set ranging
from 0.05 to 0.95 with a difference of 0.1. *e weight of
Kappa-based diversity distance α in the process of ensemble
pruning ranges from 0.1 to 0.9 with a step of 0.1. For all
samples, 60% of them are used as training samples, 20% as
pruning samples, and the rest as testing samples. *e
number of samples is limited in microarray data, and in
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order to eliminate the coincidence caused by random
sampling, the average classification performance of 10 times
sampling is used as the final result. In this paper, SVM is
used to classify the microarray data. We set the kernel
function of SVM classifier as RBF function (K(x, y)�

exp(−c||x−y||2)) which has a strong ability to adapt to dif-
ferent datasets and use libSVM to implement SVM.

4.2. Experiment Result Analysis. *e classification accura-
cies of method ECHDNRS are shown in Figures 4–6. For
three datasets, when α is set to 0.1, 0.2, 0.8, and 0.9, the
ensemble model achieves better performance. For Arabi-
dopsis-Drought, Arabidopsis-Oxygen, and Arabidopsis-
TEV dataset, the ensemble model achieves the best per-
formance when δ is set to 0.65, 0.55, and 0.55, respectively.
When δ is smaller than peak-value, the performance is
more stable and better than that when δ is bigger than the
peak-value.

Feature selection, training, classifier pruning, ensemble
classification without pruning, and pruning ensemble
classification time are shown in Table 3.*e feature selection
process is very time consuming; it takes at least 1820s. On
these datasets, classifier pruning reduces the classification
time and improves classification performance; thus, it is
necessary for ensemble classification.

Hence, ECHDNRS selects many feature units. *e av-
erage p-value of these selected features on three datasets are
shown in Table 4. ECHDNRS makes the ensemble model
obtain a good classification performance, and some of the
selected features are not performed very well on p-value.

*e sum of distance between all base classifiers and its
centroid is shown in Figure 7. When k is bigger than 7, it
begins to deteriorate. *erefore, we set k to 7.

*e evaluation criterion of binary classification is based
on four simple criteria: True Positives (TP), False Positives
(FP), True Negatives (TN), and False Negatives (FN). In this
paper, four evaluation criteria are used to evaluate the
comparison results; they include accuracy (ACC), sensitivity
(SN), specificity (SP), and geometric mean (G-mean). *ey
are defined as follows:

ACC �
TP + TN

(TP + TN + FP + FN)
,

SN �
TP

(TP + FN)
,

SP �
TN

(TN + FP)
,

G − mean �
�������
SN∗ SP

√
.

(11)

ACC evaluates the classification accuracy of all the
samples. SN and SP measure the classification accuracies of
the samples belonging to positive and negative classes, re-
spectively. G-mean comprehensively evaluates the classifi-
cation ability of positive and negative classes.

*e comparisonmethods include four classical ensemble
models and one single model; they are Random Subspace,
Bagging, AdaboostM1, Stacking, and SVM; they are
implemented in Weka [42]. Two single distances, diversity
distance based on Kappa and accuracy distance for clus-
tering base classifiers, are compared with ECHDNRS; they
are named as DECHDNRS and AECHDNRS, respectively.
*e accuracy distance is a general calculation formula of the
distance between the base classifier. Kappa coefficient is a
common evaluation index for the performance of classifier.
*erefore, ensemble pruning methods, which are based on

Table 2: Detailed information about the three Arabidopsis thaliana datasets.

Dataset Feature Sample Class A Class B
Arabidopsis-Drought 20728 59 29 30
Arabidopsis-Oxygen 22810 79 43 36
Arabidopsis-TEV 32916 53 28 25
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Figure 4: Average accuracies of ECHDNRS on Arabidopsis-Drought dataset.
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them, are also compared with ECHDNRS. SVM is used as
the base classifiers for all ensemble models. All of the
methods based on ensemble pruning employ the same
method as ECHDNRS to generate base classifiers. *e in-
tersection neighborhood threshold δ has different effect on
the performance of different ensemble models; therefore, the
average classification performance of different δ is used to
compare with other methods. *e comparison results of

ECHDNRS with other ensemble methods are shown in
Tables 5–7.

For each dataset, for example, we rank these nine
classification methods according to the classification accu-
racies: the classification method with the best accuracy is
ranked the 1st, and the method with the worst accuracy is
ranked 9th. *en, for each classification method, calculate
the average ranking over the three datasets. *e average
rankings of three datasets are listed in Table 8.

From the performance of all methods on three datasets
and the rankings of them, the ECHDNRS obtains the best
performance on SP and G-mean, and it is similar to
DECHDNRS on accuracy. On SN, ECHDNRS is worse than
other methods, but it balances the classification ability of
positive and negative classes in a better way. Since it can
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Figure 5: Average accuracies of ECHDNRS on Arabidopsis-Oxygen dataset.
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Figure 6: Average accuracies of ECHDNRS on Arabidopsis-TEV dataset.

Table 3: Runtime on three datasets.

Datasets Feature selection Training Pruning Ensemble Pruning ensemble
Arabidopsis-drought 1820.4645 0.1344 0.0184 0.0099 0.0006
Arabidopsis-oxygen 4450.6792 0.1343 0.0188 0.0284 0.0016
Arabidopsis-TEV 1824.7600 0.0945 0.0618 0.0125 0.0007

Table 4: Average p-value of selected features.

Datasets p-value
Arabidopsis-drought 0.5164
Arabidopsis-oxygen 0.3765
Arabidopsis-TEV 0.2043
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Table 5: Classification results on Arabidopsis-Drought dataset.

Ensemble ACC (%) SN (%) SP (%) G-mean
SVM 91.67 100.00 83.33 0.9129
Random 91.67 100.00 83.33 0.9129
Bagging 87.50 100.00 75.00 0.8660
AdaboostM1 95.83 100.00 91.67 0.9574
Stacking 91.67 100.00 83.33 0.9129
Kappa 93.54 94.67 92.57 0.9360
DECHDNRS 96.15 97.33 95.14 0.9623
AECHDNRS 95.77 97.67 94.14 0.9587
ECHDNRS 96.08 96.71 95.54 0.9611

Table 6: Classification results on Arabidopsis-Oxygen dataset.

Ensemble ACC (%) SN (%) SP (%) G-mean
SVM 87.50 100.00 66.67 0.8165
Random 87.50 100.00 71.44 0.8452
Bagging 96.88 100.00 91.67 0.9574
AdaboostM1 96.88 100.00 91.67 0.9574
Stacking 87.50 100.00 66.67 0.8165
Kappa 96.18 98.80 92.87 0.9570
DECHDNRS 96.67 98.60 91.75 0.9505
AECHDNRS 96.28 98.30 93.13 0.9565
ECHDNRS 96.61 99.13 93.44 0.9619

Table 7: Classification results on Arabidopsis-TEV dataset.

Ensemble ACC (%) SN (%) SP (%) G-mean
SVM 33.33 100.00 0.00 0.0000
Random 33.33 100.00 0.00 0.0000
Bagging 33.33 100.00 0.00 0.0000
AdaboostM1 52.38 85.71 35.71 0.5533
Stacking 33.33 100.00 0.00 0.0000
Kappa 66.83 75.00 55.40 0.6422
DECHDNRS 75.58 80.86 68.20 0.7415
AECHDNRS 74.42 78.43 68.80 0.7331
ECHDNRS 75.65 82.21 66.45 0.7378
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classify the samples belonging to negative class well, other
methods performmuch worse on them.*erefore, it obtains
better performance on G-mean, which comprehensively
evaluates the classification ability of positive and negative
classes. Generally, these methods based on ensemble
pruning perform better than classical ensemble models.

5. Conclusions

An ensemble classification method ECHDNRS for plant
stress response is proposed in this paper. Combining
microarray data with pathway knowledge to eliminate
randomness of the traditional Random Subspace, then the
feature selection model based on intersection neighborhood
rough set reduces redundant features in each feature unit.
Furthermore, in order to improve the classification per-
formance of the ensemble model, the hybrid approach of
classification and clustering is employed to select base
classifiers. *e k-means clustering algorithm that employs
the proposed distance function which is the combination of
Kappa-based diversity and accuracy groups all base classifies
into several clusters, and the base classifier with the best
classification accuracy in each cluster is selected. Experi-
mental results on three Arabidopsis thaliana stress-related
datasets show that the proposed method obtains better re-
sults than classical ensemble methods including Random
Subspace, Bagging, AdaboostM1, and Stacking, and it also
performs better than traditional Kappa pruning and clus-
tering pruning methods based on single distance. How to
reduce the time consumption when performing feature
selection based on intersection neighborhood rough set is
the topic of our future work.
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