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In this paper, an adaptive fuzzy containment condtrol is considered for nonlinear multiagent systems, in which it contains the
unknown control coefficient and actuator fault. -e uncertain nonlinear function has been approximated by fuzzy logic system
(FLS). -e unknown control coefficient and the remaining control rate of actuator fault can be solved by introducing a Nussbaum
function. In order to avoid the repeated differentiations of the virtual controllers, first-order filters are added to the traditional
backstepping control method. By designing the maximum norm of ideal adaptive parameters, only one adaptive parameter needs
to be adjusted online for each agent itself. An adaptive fuzzy containment controller is constructed through the backstepping
control technique and compensating signals. It is demonstrated that all the signals in nonlinear multiagent systems are bounded
by designing adaptive fuzzy containment controller, and all followers can converge to the convex hull built by the leaders. -e
simulation studies can further confirm the effectiveness of the proposed control method in this paper.

1. Introduction

With the development of science and technology, more and
more complex systems can be described as multiagent
systems (MASs), for instance, unmanned aerial vehicle
formation, sensor networks, and disaster emergency re-
sponse (see [1–3]). -erefore, the cooperative control
problem of MASs has been extensively concerned by
scholars and gradually become one of the hot issues in the
control field. According to different control objectives, the
cooperative control of MASs is classified as flocking control
[4], consensus control [5, 6], formation control [7], syn-
chronous control [8], containment control [9, 10], and so on.
Because of its wide applications, containment control is a
fundamental and important research subject of MASs
control, such as [11, 12]. For containment control, its
purpose is to design a controller so that all follower agents
can converge to the convex hull built by the leaders [9–18].
For example, the path-guided containment maneuvering
approach was proposed for networked two-wheeled mobile

robots with multiple virtual leaders moving along multiple
parameterized paths in [11]. An output feedback distributed
containment control method was investigated for marine
vessels guided by multiple parameterized paths with un-
measured velocity in [12].

In literature [13–15], all containment control methods
were investigated for linear MASs. But, for the containment
problem of nonlinear MASs, the control methods in [13–15]
were not feasible. In fact, nonlinear systems can better
describe a practical engineering problem than linear sys-
tems, such as manipulator systems [19], inverted pendulum
systems [20], and rigid robotic systems [21]. All systems
models in [16–18] and practical application systems models
in [19–26] are first- or second-order systems. For example,
under the common assumption that each agent can only
obtain the relative information of its neighbours intermit-
tently, the containment control method was proposed for a
class of second-order MASs with inherent nonlinear dy-
namics in [17]. However, many actual industrial systems
models are often high-order systems. For instance, a jerk
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system and single-link flexible manipulators [23] were
modeled as third-order and fourth-order nonlinear systems,
respectively. So, it is of theoretical and practical value to
study the containment control of high-order systems.
Some containment control approaches were studied for
high-order nonlinear MASs in [24–26]. Compared with low-
order MASs, the containment control method for high-
order nonlinearMASs is more difficult due to the complexity
of high-order systems. In [25], for nonlinear nonaffine pure-
feedback MASs, a distributed containment control was
proposed based on directed graph topology. For strict-
feedback nonlinear systems, the backstepping control
technique is an effective approach to solve the cooperative
control problem, such as [21, 27–29]. In [21], the finite-time
containment control problem was considered for nonlinear
MASs with unmeasurable states and input delay. Adaptive
neural networks (NNs) backstepping control was studied for
uncertain strict-feedback nonlinear systems with input delay
in [29].

It is well known that adaptive intelligent control (FLSs
and neural networks (NNs)) is an effective way to solve the
control problem of nonlinear systems with unknown non-
linear functions, due to the fact that FLSs and NNs can
approximate an unknown nonlinear function with arbitrary
precision in a compact set, which are called universal
approximators [21, 27–34]. In the case of full-state con-
straints, an adaptive fuzzy controller was designed for
nonlinear strict-feedback systems in [28]. Some contain-
ment control approaches based on FLSs or NNs as an
approximator were investigated for nonlinear MASs in
[35–38]. In [36, 37], the containment control approaches
were investigated for uncertain nonlinear systems with
actuator faults. Under the condition of full-state constraints,
a fuzzy adaptive containment control method was investi-
gated for nonlinear systems in [38]. But, in [35–38], the
number of adaptive laws was too many, which results in the
need to adjust too many parameters online, and the control
design is too complicated. When the system order is high,
the complexity of the control design increases exponentially.
In addition, actuator faults are inevitable in industrial sys-
tems, especially for MASs. But, so far, there have been no
results on adaptive fuzzy fault-tolerant containment control
method for uncertain nonlinear MASs with unknown
control coefficient and external disturbance.

-is article focuses on the adaptive fuzzy containment
control problem for uncertain nonlinear MASs with un-
known control coefficient and actuator fault. By using
backstepping control technique, compensating signals, first-
order filters, and Nussbaum function, some issues in the
above control methods can be solved. -e main contribu-
tions are summarized as follows:

(1) It is the first time to construct adaptive fuzzy con-
tainment controllers for uncertain nonlinear MASs
with unknown control coefficient and actuator faults.
Compared with the existing nonlinear MASs in
[27, 39], assuming that there were no actuator faults
and the control coefficient was 1, the nonlinear
MASs considered in this paper have more practical

significance. -e unknown control coefficient and
the remaining control rate of actuator faults in
nonlinear MASs will be resolved by introducing a
Nussbaum function.

(2) For the adaptive fuzzy containment control method
in the literature [21], the number of designed
adaptive laws was equal to or more than the order of
the systems. But, in this paper, instead of estimating
the optimal parameter vectors themselves but by
estimating the maximum value of the norm of the
optimal parameter vectors, the number of adaptive
laws is greatly reduced.

2. Problem Description and Preliminaries

2.1. Problem Description. Consider nonlinear MASs with N

followers and M leaders. -e dynamic equations for the τ-th
follower are described as follows:

_xτ,i � Fτ,i xτ,i􏼐 􏼑 + xτ,i+1 + ϕτ,i(t),

1≤ i≤ n − 1,

_xτ,n � Fτ,n xτ,n􏼐 􏼑 + gτ,n xτ,n􏼐 􏼑uτ(t) + ϕτ,n(t),

yτ � xτ,1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where τ � 1, 2, . . . , N. xτ,i � [xτ,1, xτ,2, . . . , xτ,i]
T ∈ Ri, and

xτ,n � [xτ,1, xτ,2, . . . , xτ,n]T ∈ Rn are the state vectors. yτ ∈ R

is the output of the τ-th follower. Fτ,i(xτ,i) is an unknown
smooth function. ϕτ,i(t) is a bounded unknown external
disturbance. gτ,n(xτ,n) represents an unknown smooth
nonlinear function. uτ(t) denotes the input of the consid-
ered system. -e leader’s signal yrj is a sufficiently smooth
function; yrj and _yrj are all bounded, where
j � N + 1, . . . , N + M.

Remark 1. In the literature [7, 24], it is assumed that the
MASs will not show actuator faults at any time. However,
due to machine aging or working environment, actuator
faults are inevitable in actual industrial production.
-erefore, it is more practical to design the cooperative
control of nonlinear MASs with actuator faults in this paper.

To model the information exchange between agents, the
graph theory is introduced. -e exchange of information
between the followers and the leaders is portrayed by
G � (v, ϱ, A). v � n1, . . . nN, nN+1, . . . , nN+M􏼈 􏼉 is the set of
agents, where the followers are labeled as τ � 1, . . . , N, while
the leaders are labeled as τ � N + 1, . . . , N + M. -us, in the
set v, the first N agents are the followers, and the last M

agents are the leaders. ϱ � (nτ , nj)􏽮 􏽯 ∈ v × v represents the
edge set, and the adjacency matrix is defined as
A � [aτj] ∈ R(N+M)×(N+M). (nτ , nj) ∈ ϱ means follower j is
able to gain the information of its neighbor agent τ. If
(nτ , nj) ∉ ϱ, aτj � 0; if not, aτj � 1. L � [Lτj] ∈
R(N+M)×(N+M) � D − A stands for Laplacian matrix, and
Lτj � −aτj if τ ≠ j; D � diag(d1, . . . , dN, dN+1, . . . , dN+M)

denotes degree matrix of agent τ, and dτ � 􏽐
N+M
j�1,j≠τaτj. Let
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vf � [n1, . . . , nN] be the follower agents’ set, and let vL �

[nN+1, . . . , nN+M] denote the leader agents’ set. Every fol-
lower agent owns at least a neighbor. On the contrary,
leaders do not own neighbors. For this condition, the
Laplacian L of the graph is partitioned as

L �
L1 L2

0M×N 0M×M

􏼢 􏼣. (2)

It is supposed that there exists at least a leader who
possesses a directed path to every follower agent. -en, each
eigenvalue of matrix L1 has a positive real part, the sum of
each line of −L−1

1 L2 is equal to 1, and all the entries of −L−1
1 L2

are nonnegative. Letting yl � [y(N+1), . . . , y(N+M)]
T, the

convex hull built by the leaders can be defined as
yd(t) � −L−1

1 L2yl. -en, the containment error can be
denoted as y − yd(t), where y � [y1, . . . , yN]T.

However, actuators may become faulty in practical en-
gineering. Bias faults and gain faults are two kinds of ac-
tuator faults that commonly occur in the practice, expressed
as [40]

u
f
τ (t) � ρτ xτ,n􏼐 􏼑uτ(t) + ζτ(t), (3)

where the remaining control rate ρτ of gain faults satisfies
0< ρτ(xτ,n)≤ 1 and ζτ(t) represents a bounded signal of bias
faults. Here, ρτ(xτ,n) at the failure time instant tf is assumed
to be unknown.

Considering (3), the follower dynamic equation (1) can
be rewritten as

_xτ,i � Fτ,i xτ,i􏼐 􏼑 + xτ,i+1 + ϕτ,i(t),

1≤ i≤ n − 1,

_xτ,n � Fτ,n xτ,n􏼐 􏼑 + Γτuτ(t) +Φτ,n,

yτ � xτ,1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

where Γτ � gτ,n(xτ,n)ρτ(xτ,n) and Φτ,n � gτ,n(xτ,n)

ζτ(t) + ϕτ,n(t).

Assumption 1 (see [40, 41]). -ere exist positive constants
gτ and gτ , and τ � 1, . . . , N, such that gτ ≤gτ,n(xτ,n)≤gτ .
Without losing generality, it is assumed that gτ,n(xτ,n) is
positive in the following adaptive fault-tolerant containment
controller design.

Assumption 2. All the signals ζτ(t) and ϕτ,i(t) are bounded
for the actual industrial control, so it is assumed that
ζτ(t)≤ ζ∗τ and ϕτ,i(t)≤ϕ∗τ,i with ζ∗τ and ϕ∗τ,i being positive
constants. Because gτ,n(xτ,n) is bounded, we shall assume
that Φτ,n ≤Φ∗τ,n with Φ∗τ,n being a positive constant.

Nussbaum Type Gain: a continuous function N(s) is a
Nussbaum-type function if

lim
s⟶+∞

sup
1
s

􏽚
s

0
N(ς)dς � +∞,

lim
s⟶+∞

inf
1
s

􏽚
s

0
N(ς)dς � −∞.

(5)

For example, ς2 cos(ς), ς2 sin(ς), and eς
2 cos((π/2)ς) are

Nussbaum-type functions. For clarity, the even Nussbaum-
type function N(ς) � eς

2 cos(π/2ς) is used throughout this
paper.

Lemma 1 (see [42]). For any positive semidefinite smooth
function V(t) and any smooth function ς(t) with t ∈ [0, tf),
if, for an even smooth Nussbaum-type function N(ς), the
inequality,

0≤V(t) ≤ c0 + e
− c1t

􏽚
t

0
g(x(τ))N(ς)_ςec1τdτ + e

− c1t
􏽚

t

0
_ςec1τdτ, ∀t ∈ 0, tf􏽨 􏼑, (6)

is true with positive constants c1 and c0 and a function
g(x(t)) taking values in the unknown closed intervals I: �

[l− , l+] with 0 ∉ I, then V(t), ς(t) and 􏽒
t

0 g(x(τ))N(ς)_ςdτ
are bounded on [0, tf).

2.2. Fuzzy Logic Systems. On the basis of [28, 30], the
knowledge base for FLS comprises a collection of fuzzy if-
then rules as follows:

R
l
: if x1 isF

l
1 and x2 isF

l
2 and . . . andxn isF

l
n, theny isG

l
,

l � 1, 2, . . . , N,

(7)
where x � [x1, x2, . . . , xn]T and y are the input and output
of the FLS, respectively. -e fuzzy sets Fl

τ and Gl are as-
sociated with the fuzzy membership functions μFl

τ
(xτ) and

μGl
τ
(xτ), respectively. N is the rules number.

-rough the singleton fuzzification, the center average
defuzzification, and product inference engine, the FLS can be
represented as

y(x) � 􏽐
N
l�1 yl

􏽑
n
τ�1 μFl

τ
xτ( 􏼁

􏽐
N
l�1 􏽑

n
τ�1 μFl

τ
xτ( 􏼁􏽩,􏽨

(8)

where yl � maxy∈RμGl
τ
(y).

-e fuzzy basis functions are designed as

φl �
􏽑

n
τ�1 μFl

τ
xτ( 􏼁

􏽐
N
l�1 􏽑

n
τ�1 μFl

τ
xτ( 􏼁􏽩,􏽨

(9)

and θT � [y1, . . . , yN] � [θ1, . . . , θN] and φ(x) � [φ1(x),

. . . ,φN(x)]T. -en, FLS (7) can be further expressed as
y(x) � θTφ(x).
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3. Adaptive Fuzzy Containment Control Design
and Stability Analysis

In this section, an adaptive fuzzy fault-tolerant containment
controller will be constructed by using the backstepping
control technique. Due to the fact that FLS can approximate
an unknown nonlinear function in a compact set, which is
called universal approximator, nonlinear function Fτ,i(xτ,i)

can be approximated by FLS. It is assumed that

􏽢Fτ,i xτ,i|θτ,i􏼐 􏼑 � θT
τ,iφτ,i xτ,i􏼐 􏼑, (10)

and the optimal parameter vector θ∗τ,i is designed as

θ∗τ,i � arg min
θτ,i∈Ωτ,i

sup
xτ,i∈Uτ,i

􏽢Fτ,i xτ,i|θτ,i􏼐 􏼑 − Fτ,i xτ,i􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎡⎢⎣ ⎤⎥⎦, (11)

where Ωτ,i is a bounded region of θτ,i and Uτ,i is a bounded
region of xτ,i. At the same time, the approximation error ετ,i

is designed as

ετ,i � Fτ,i xτ,i􏼐 􏼑 − 􏽢Fτ,i xτ,i|θ
∗
τ,i􏼐 􏼑, (12)

where ετ,i satisfies |ετ,i|≤ ε∗τ,i with ε∗τ,i being a positive
constant.

According to [43], in order to reduce the number of
adaptive laws, a new constant W∗τ is designed as follows:

W
∗
τ � max θ∗τ,i

����
����
2
: i � 1, 2, . . . , n􏼚 􏼛. (13)

Obviously, W∗τ is an unknown positive constant.
In order to accomplish the control objective, we design

the following coordinate transformations:

sτ,1 � 􏽘
N

j�1
aτj yτ − yj􏼐 􏼑 + 􏽘

N+M

j�N+1
aτj yτ − yrj(t)􏼐 􏼑, sτ,i � xτ,i − ατ,i, i � 2, . . . , n, (14)

where sτ,i denotes error surface and ατ,i represents the output
of the first-order filter.

ητ,i
_ατ,i + ατ,i � ατ,i, ατ,i(0) � ατ,i(0), (15)

with a positive constant ητ,2, which is introduced to
avoid the repeated differentiation of the virtual control
signal ατ,i.

(i) Step 1: from (14), _sτ,1 is expressed as

_sτ,1 � dτθ
∗T
τ,1φτ,1 + dτετ,1 + dτsτ,2 + dτατ,2 + dτϕτ,1 − 􏽘

N

j�1
aτj θ∗Tj,1φj,1 + εj,1 + xj,2 + ϕj,1􏼐 􏼑 − 􏽘

N+M

j�N+1
aτj _yrj(t). (16)

-e following compensating dynamics is intro-
duced to compensate the negative impact of the
filter error ατ,2 − ατ,2:

_qτ,1 � −cτ,1qτ,1 + dτατ,2 − dτατ,2 + dτqτ,2, qτ,1(0) � 0,

(17)

with a positive constant cτ,1.
It follows from (16) and (17) that sτ,1 � sτ,1 − qτ,1
satisfies the following differential equation:

_sτ,1 � dτθ
∗T
τ,1φτ,1 + dτετ,1 + dτϕτ,1 + dτsτ,2

+ cτ,1qτ,1 − dτqτ,2 + dτατ,2

− 􏽘
N

j�1
aτj θ∗Tj,1φj,1 + εj,1 + xj,2 + ϕj,1􏼐 􏼑

− 􏽘

N+M

j�N+1
aτj _yrj(t).

(18)

-e first virtual control ατ,2 is designed as

ατ,2 �
1
dτ

−cτ,1sτ,1 + 􏽘
N+M

j�N+1
aτj _yrj −

1
2
sτ,1Wτφ

T
τ,1φτ,1 + 􏽘

N

j�1
aτjxj,2 + 􏽘

N

j�1
aτjθ

T
j,1φj,1

⎛⎝ ⎞⎠, (19)

where cτ,1 is a positive design parameter. -en, _sτ,1 can be further written as

_sτ,1 � dτθ
∗T
τ,1φτ,1 + dτετ,1 + dτsτ,2 − cτ,1sτ,1 + dτϕτ,1 −

1
2
sτ,1Wτφ

T
τ,1φτ,1 − 􏽘

N

j�1
aτj

􏽥θ
T

j,1φj,1 − 􏽘
N

j�1
aτjεj,1 − 􏽘

N

j�1
aτjϕj,1, (20)
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where sτ,2 � sτ,2 − qτ,2 and 􏽥θj,1 � θ∗j,1 − θj,1.
-e Lyapunov function candidate is considered in
the following:

Vτ,1 �
1
2
s
2
τ,1 +

1
2

􏽘

N

j�1
aτ,j

1
rj,1

􏽥θ
T

j,1
􏽥θj,1, (21)

where rj,1 is a positive design parameter.
From equation (21), _Vτ,1 can be expressed as

_Vτ,1 � sτ,1
_sτ,1 − 􏽘

N

j�1
aτj

1
rj,1

􏽥θ
T

j,1θ
.

j,1

� sτ,1 dτθ
∗T
τ,1φτ,1 + dτετ,1 + dτsτ,2 − cτ,1sτ,1 + dτϕτ,1 −

1
2
sτ,1Wτφ

T
τ,1φτ,1 − 􏽘

N

j�1
aτj

􏽥θ
T

j,1φj,1 − 􏽘
N

j�1
aτjεj,1 − 􏽘

N

j�1
aτjϕj,1

⎛⎝ ⎞⎠

− 􏽘
N

j�1
aτj

1
rj,1

􏽥θ
T

j,1θ
.

j,1.

(22)

It can be easily verified that

sτ,1dτθ
∗T
τ,1φτ,1 ≤

1
2
s
2
τ,1W
∗
τ φ

T
τ,1φτ,1 +

1
2
d
2
τ ,

sτ,1 dτετ,1 + dτϕτ,1 − 􏽘
N

j�1
aτ,jεj,1 − 􏽘

N

j�1
aτjϕj,1

⎛⎝ ⎞⎠≤ s
2
τ,1 + d

2
τε
∗2
τ,1 + d

2
τϕ
∗2
τ,1 + 􏽘

N

j�1
aτjε
∗
j,1

⎛⎝ ⎞⎠

2

+ 􏽘
N

j�1
aτjϕ
∗
j,1

⎛⎝ ⎞⎠

2

.

(23)

From (23), _Vτ,1 is expressed as

_Vτ,1 ≤ − cτ,1 − 1􏼐 􏼑s
2
τ,1 + dτsτ,1sτ,2 +

1
2
s
2
τ,1

􏽥Wτφ
T
τ,1φτ,1

− 􏽘

N

j�1
aτj

1
rj,1

􏽥θ
T

j,1 θ
.

j,1 + rj,1sτ,1φj,1􏼒 􏼓 +
1
2
d
2
τ + d

2
τε
∗2
τ,1 + d

2
τϕ
∗2
τ,1

+ 􏽘
N

j�1
aτjε
∗
j,1

⎛⎝ ⎞⎠

2

+ 􏽘
N

j�1
aτjϕ
∗
j,1

⎛⎝ ⎞⎠

2

,

(24)

where 􏽥Wτ � W∗τ − Wτ .
-e adaptive law is designed as

θ
.

j,1 � rj,1 −sτ,1φj,1 − δj,1θj,1􏼐 􏼑. (25)

-en, one has

_Vτ,1 ≤ − cτ,1 − 1􏼐 􏼑s
2
τ,1 + dτsτ,1sτ,2 + ωτ,1

+
1
2
s
2
τ,1

􏽥Wτφ
T
τ,1φτ,1 + 􏽘

N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1,
(26)

where ωτ,1 � 1/2d2
τ + d2

τε
∗2
τ,1 + d2

τϕ
∗2
τ,1 + (􏽐

N
j�1

aτjε∗j,1)
2 + (􏽐

N
j�1 aτjϕ

∗
j,1)

2.
(ii) Step 2: from (14), the derivative of sτ,2 is expressed as

_sτ,2 � θ∗Tτ,2φτ,2 + ετ,2 + xτ,3 + ϕτ,2 − _ατ,2. (27)

-e impact of the error ατ,3 − ατ,3 can be reduced by
the following compensating dynamics:

_qτ,2 � −cτ,2qτ,2 + ατ,3 − ατ,3 + qτ,3, qτ,2(0) � 0, (28)

with a positive constant cτ,2.
Define sτ,3 � sτ,3 − qτ,3. -en, the derivative of sτ,2
can be determined by

_sτ,2 � θ∗τ,2φτ,2 + ετ,2 + ϕτ,2 + sτ,3 − _ατ,2 + ατ,3 + cτ,2qτ,2.

(29)

Choose the following virtual control ατ,3:

ατ,3 � −cτ,2sτ,2 + _ατ,2 −
1
2
sτ,2Wτφ

T
τ,2φτ,2 − dτsτ,1. (30)

From (30), the derivative of sτ,2 can be rewritten as

_sτ,2 � θ∗2τ,2φτ,2 + ετ,2 + ϕτ,2 + sτ,3

− cτ,2sτ,2 −
1
2
sτ,2Wτφ

T
τ,2φτ,2 − dτsτ,1.

(31)

A simple manipulation shows that the Lyapunov
function candidate,
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Vτ,2 �
1
2
s
2
τ,2 + Vτ,1, (32)

has the following derivative:
_Vτ,2 ≤ sτ,2

_sτ,2 + _Vτ,1

≤ sτ,2 θ∗2τ,2φτ,2 + ετ,2 + ϕτ,2 + sτ,3 − cτ,2sτ,2 −
1
2
sτ,2Wτφ

T
τ,2φτ,2􏼒 􏼓

− cτ,1 − 1􏼐 􏼑s
2
τ,1 + ωτ,1 +

1
2
s
2
τ,1

􏽥Wτφ
T
τ,1φτ,1 + 􏽘

N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1.

(33)

It is true that

sτ,2θ
∗T
τ,2φτ,2 ≤

1
2
s
2
τ,2W
∗
τ φ

T
τ,2φτ,2 +

1
2
,

sτ,2 ετ,2 + ϕτ,2􏼐 􏼑≤ s
2
τ,2 +

1
2
ε∗2τ,2 +

1
2
ϕ∗2τ,2.

(34)

-en, one can have

_Vτ,2 ≤ − 􏽘
2

σ�1
cτ,σ − 1􏼐 􏼑s

2
τ,σ + sτ,2sτ,3 + ωτ,2

+ 􏽘
N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1 +
1
2

􏽘

2

σ�1
s
2
τ,σ

􏽥Wτφ
T
τ,σφτ,σ ,

(35)

where ωτ,2 � ωτ,1 + 1/2 + 1/2ε∗2τ,2 + 1/2ϕ∗2τ,2.
(iii) Step i (3≤ i≤ n − 1): the derivative of sτ,i can be

expressed as

_sτ,i � θ∗2τ,iφτ,i + ετ,i + xτ,i+1 + ϕτ,i − _ατ,i. (36)

Similar to Step 2, to compensate the impact of
ατ,i+1 − ατ,i+1, the following compensating dynamics
is introduced:

_qτ,i � −cτ,iqτ,i + ατ,i+1 − ατ,i+1 + qτ,i+1, qτ,i(0) � 0,

(37)

with cτ,i being a positive design parameter.
It can be verified that the derivative of sτ,i � sτ,i − qτ,i

is given by
_sτ,i � θ∗τ,iφτ,i + ετ,i + ϕτ,i + sτ,i+1 − _ατ,i + ατ,i+1 + cτ,iqτ,i,

(38)

where sτ,n+1 � sτ,n+1 − qτ,n+1.
Define the following virtual control ατ,i+1:

ατ,i+1 � −cτ,isτ,i + _ατ,i −
1
2
sτ,iWτφ

T
τ,iφτ,i − sτ,i−1. (39)

-en, the derivative of sτ,i can be rewritten as

_sτ,i � θ∗2τ,iφτ,i + ετ,i + ϕτ,i + sτ,i+1 − cτ,isτ,i

−
1
2
sτ,iWτφ

T
τ,iφτ,i − sτ,i−1.

(40)

A simple manipulation shows that the Lyapunov
function candidate,

Vτ,i �
1
2
s
2
τ,i + Vτ,i−1, (41)

has the following derivative:

_Vτ,i ≤ sτ,i
_sτ,i + _Vτ,i−1

≤ sτ,i θ∗2τ,iφτ,i + ετ,i + ϕτ,i + sτ,i+1 − cτ,isτ,i −
1
2
sτ,iWτφ

T
τ,iφτ,i􏼒 􏼓 − 􏽘

i−1

σ�1
cτ,σ − 2􏼐 􏼑s

2
τ,σ + ωτ,i−1 + 􏽘

N

j�1
aτ,jδj,1

􏽥θ
T

j,1θj,1 +
1
2

􏽘
i−1

σ�1
s
2
τ,σ

􏽥Wτφ
T
τ,σφτ,σ .

(42)

By using Young’s inequality, the following in-
equalities can be verified:

sτ,iθ
∗T
τ,i φτ,i ≤

1
2
s
2
τ,iW
∗
τ φ

T
τ,iφτ,i +

1
2
,

sτ,i ετ,i + ϕτ,i􏼐 􏼑≤ s
2
τ,i +

1
2
ε∗2τ,i +

1
2
ϕ∗2τ,i .

(43)

Substituting (43) into (42), one has

_Vτ,i ≤ − 􏽘
i

σ�1
cτ,σ − 1􏼐 􏼑s

2
τ,σ + 􏽘

N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1 +
1
2

􏽘

i

σ�1
s
2
τ,σ

􏽥Wτφ
T
τ,σφτ,σ + sτ,isτ,i+1 + ωτ,i, (44)
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where ωτ,i � ωτ,i−1 + 1/2 + 1/2ε∗2τ,i + 1/2ϕ∗2τ,i .

(iv) Step n: the derivative of sτ,n is given by

_sτ,n � θ∗Tτ,nφτ,n + ετ,n + Γτuτ(t) +Φτ,n − _ατ,n. (45)

Define sτ,n � sτ,n − qτ,n with qτ,n being determined by

_qτ,n � −cτ,nqτ,n, qτ,n(0) � 0, (46)

where cτ,n is a positive design parameter.
-en, it follows from (45) and (46) that

_sτ,n � θ∗Tτ,nφτ,n + ετ,n + Γτuτ(t) +Φτ,n − _ατ,n + cτ,nqτ,n.

(47)

-e actual adaptive fuzzy controller is chosen as

uτ � N ςτ( 􏼁vτ , (48)

with

_ςτ � cτsτ,nvτ , (49)

and

vτ � cτ,nsτ,n − _ατ,n +
1
2
sτ,nWτφ

T
τ,nφτ,n + sτ,n−1, (50)

where cτ is a positive design parameter.
Substituting (48) and (50) into (47), _sτ,n is obtained as

_sτ,n � θ∗Tτ,nφτ,n + ετ,n + ΓτN ςτ( 􏼁vτ + vτ +Φτ,n

− cτ,nsτ,n −
1
2
sτ,nWτφ

T
τ,nφτ,n − sτ,n−1.

(51)

Consider the Lyapunov function in the following:

Vτ,n �
1
2
s
2
τ,n +

1
2bτ

􏽥W
2
τ + Vτ,n−1, (52)

where bτ is a positive design parameter.
-e time derivative of Vτ,n becomes

_Vτ,n ≤ sτ,n
_sτ,n −

1
bτ

􏽥Wτ
_Wτ + _Vτ,n−1

≤ sτ,n θ∗Tτ,nφτ,n + ετ,n + ΓτN ςτ( 􏼁vτ + vτ +Φτ,n − cτ,nsτ,n −
1
2
sτ,nWτφ

T
τ,nφτ,n􏼒 􏼓 −

1
bτ

􏽥Wτ
_Wτ

− 􏽘

n−1

σ�1
cτ,σ − 1􏼐 􏼑s

2
τ,σ + 􏽘

N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1 +
1
2

􏽘

n−1

σ�1
s
2
τ,σ

􏽥Wτφ
T
τ,σφτ,σ + ωτ,n−1.

(53)

We have

sτ,nθ
∗T
τ,nφτ,n ≤

1
2
s
2
τ,nW
∗
τ φ

T
τ,nφτ,n +

1
2
,

sτ,n ετ,n +Φτ,n􏼐 􏼑≤ s
2
τ,n +

1
2
ε∗2τ,n +

1
2
Φ∗2τ,n.

(54)

-en, _Vτ,n can be estimated by

_Vτ,n ≤ − 􏽘
n

σ�1
cτ,σ − 1􏼐 􏼑s

2
τ,σ + 􏽘

N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1 −
1
bτ

􏽥Wτ
_Wτ −

1
2

􏽘

n

σ�1
bτs

2
τ,σφ

T
τ,σφτ,σ

⎛⎝ ⎞⎠

+ ΓτN ςτ( 􏼁vτsτ,n + vτsτ,n + ωτ,n−1 +
1
2

+
1
2
ε∗2τ,n +

1
2
Φ∗2τ,n.

(55)

With the adaptive law,

_Wτ �
1
2

􏽘

n

σ�1
bτs

2
τ,σφ

T
τ,σφτ,σ − pτWτ . (56)

_Vτ,n can be further estimated by

_Vτ,n ≤ − 􏽘
n

σ�1
cτ,σ − 1􏼐 􏼑s

2
τ,σ + 􏽘

N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1 +
pτ

bτ

􏽥WτWτ + ΓτN ςτ( 􏼁vτsτ,n + vτsτ,n + ωτ,n−1 +
1
2

+
1
2
ε∗2τ,n +

1
2
Φ∗2τ,n. (57)
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It is true that

pτ

bτ

􏽥WτWτ ≤
p
2
τ

2b
2
τ
W
∗ 2
τ −

pτ

bτ
−
1
2

􏼠 􏼡 􏽥W
2
τ ,

􏽘
N

j�1
aτjδj,1

􏽥θ
T

j,1θj,1 ≤
1
2

􏽘

N

j�1
aτjδ

2
j,1θ
∗T
j,1θ
∗
j,1 − 􏽘

N

j�1
aτj δj,1 −

1
2

􏼒 􏼓􏽥θ
T

j,1
􏽥θj,1.

(58)

-en, _Vτ,n is obtained as follows:

_Vτ,n ≤ − 􏽘
n

σ�1
cτ,σ − 1􏼐 􏼑s

2
τ,σ −

pτ

bτ
−
1
2

􏼠 􏼡 􏽥W
2
τ − 􏽘

N

j�1
aτj δj,1 −

1
2

􏼒 􏼓􏽥θ
T

j,1
􏽥θj,1 + ΓτN ςτ( 􏼁vτsτ,n + vτsτ,n + ωτ , (59)

where ωτ � 1/2􏽐
N
j�1 aτjδ

2
j,1θ
∗T
j,1 θ∗j,1 + p2

τ/2b2τW
∗ 2
τ + ωτ,n−1+

1/2 + 1/2ε∗2τ,n + 1/2Φ∗2τ,n.

Remark 2. In the literature [21], by using backstepping
control technique, the adaptive containment controller was
designed for nonlinear MASs without actuator faults, and
the number of adaptive laws was greater than or equal to the
order of the system. Adaptive fuzzy containment controllers
are investigated for nonlinear MASs with actuator faults in
this paper. Meanwhile, compared with literature [21], the
number of adaptive laws that need to be designed is less, and
the amount of calculation is greatly reduced.

According to the above adaptive fuzzy fault-tolerant
containment control, themain result can be summarized as a
theorem as follows.

Theorem 1. Consider the adaptive fuzzy backstepping con-
tainment controller, composed of the compensating signals
(17), (28), (37), and (46), the virtual controllers (19), (30), and
(39), the actual controller (48), and adaptive laws (25) and
(56). If there exist the parameters cτ,σ , δj,1, pτ, and bτ, such
that cτ,σ − 1> 0, pτ/bτ − 1/2> 0, and δj,1 − 1/2> 0, then all
the signals in the closed-loop system are bounded and all
followers can converge to the convex hull built by the leaders.

Proof. Define cτ � mini�1,...,n 2(cτ,i − 1), 2pτ − bτ , 2δj,1rj,1􏽮 −

rj,1}. From (59), one has

_Vτ,n ≤ − cτVτ,n +
Γτ
cτ

N ςτ( 􏼁_ςτ +
1
cτ

_ςτ + ωτ , (60)

which has a solution of the form

Vτ,n(t)≤ c0 + e
− ct

􏽚
t

0

Γτ
cτ

N ςτ( 􏼁_ςτe
cϱ

dϱ + e
− ct

􏽚
t

0

1
cτ

_ςτe
cϱ

dϱ,

(61)

where c0 � Vτ,n(0) + 2ωτ/c. According to Lemma 1, all the
signals for follower τ are bounded. Similarly, the whole
nonlinear multiagent systems are stable.

4. Simulation Example

In order to illustrate the feasibility of the designed adaptive
fuzzy backstepping fault-tolerant containment control, the
nonlinear MASs are considered with two leaders and three
followers. -e τ-th follower is considered as

_xτ,1 � Fτ,1 xτ,1􏼐 􏼑 + xτ,2 + ϕτ,1(t),

_xτ,2 � Fτ,2 xτ,2􏼐 􏼑 + gτ,2 xτ,2􏼐 􏼑uτ(t) + ϕτ,2(t),

yτ � xτ,1, τ � 1, 2, 3,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(62)

where F1,1 � 0.5e− x1,1 , F1,2 � 0.3 sin(x1,1)cos(x1,2), F2,1 �

−0.2x2,1e
− x2,1 , F2,2 � x2

2,1 cos(x2,2), F3,1 � x3,1 cos(x3,1),
F3,2 � 0.4x3,2 sin(x3,1), g1,2 � esin(x1,1x1,2), g2,2 �

ecos(x2,2)sin(x4
2,1), g3,2 � ecos(x3,2x4

3,1), ϕ1,1 � 0.5 cos(t), ϕ1,2 �

sin(t)cos(t), ϕ2,1 � 0.2 sin(t), ϕ2,2 � sin(0.5t), ϕ3,1 � cos(t),
and ϕ3,2 � 0.5 cos(t)sin(t).

-e flow of information among leaders and followers is
elaborated through Figure 1, in which F1, F2, and F3 denote
followers and L1 and L2 represent leaders. -e actuator bias
faults are chosen as ζ1 � 0.2 sin(t), ζ2 � 0.6 cos(0.5t), and
ζ3 � 0.1 sin(0.1t), and the actuator fault appears at tf � 12s.

-e unknown nonlinear remaining control rate coeffi-
cients ρτ are chosen as ρ1 � 1/1 + e− 0.2, ρ2 � 1/1+

e− 2(sin (x2,1)2+cos (x2,2)2), and ρ3 � 1/1 + e− 0.2 sin(x3,2). -e
leaders’ signals are chosen as yr1 � sin(t) + 1 and
yr2 � sin(t) − 0.7.

From the directed communication graph, the adjacency
matrix is obtained as follows:

A �

0 1 1 0 0

0 0 1 1 0

0 0 0 1

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (63)

-e initial values are chosen as x1(0) � [0.2, 0.1]T,
x2(0) � [0.5, 0]T, and x3(0) � [−0.2, 0.3]T. -e other initial
values are set as zero. -e design parameters are tuned to be
c1,1 � 27, c1,2 � 28, c2,1 � 22, c2,2 � 27, c3,1 � 20, c3,2 � 27,
η1,2 � η2,2 � η3,2 � 0.1, and p1 � p2 � p3 � 20 by trial and
error.
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-rough the proposed controller, the simulation results
are given in Figures 2–4. Figure 2 denotes the curves of yrj

and yτ(τ � 1, 2, 3, j � 4, 5). From Figure 2, we can clearly see
that all the followers F1, F2, and F3 can converge to the
convex hull built by the leaders L4 and L5. -at is to say, all
the followers are running among the leaders. Figure 3 depicts
the curves of the controller uτ . According to Figure 3, al-
though the actuator fault appears at tf � 12, the contain-
ment control performance of the proposed control method
can still be guaranteed. Figure 4 demonstrates the curves of
Wτ . Figures 2–4 show that the stability of every follower’s
system is guaranteed through the designed adaptive fuzzy
backstepping containment controller. Besides, all followers
are able to converge to the convex hull built by the leaders.

5. Conclusion

An adaptive fuzzy containment control method has been
studied for nonlinear MASs with unknown control coeffi-
cient and actuator faults. -e unknown control coefficient
and the remaining control rate of actuator faults have been
solved by introducing a Nussbaum-type function. -e fuzzy
logic system has been used as an approximator to ap-
proximate an unknown nonlinear function. -e adaptive
fuzzy containment controller has been designed by using the
backstepping control technique and compensating signals.
Only few adaptive parameters have been designed for each
follower agent. It has been demonstrated that the designed
adaptive fuzzy containment controller can ensure that all the
signals in system are bounded and make all followers
converge to the convex hull built by the leaders. In the
future, we will investigate the adaptive cooperative con-
troller design for practical application of nonlinear MASs.
[44]

F1

F2 F3L1

L2

Figure 1: Directed communication graph.
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