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In this paper, we adapt the fractional derivative approach to formulate the flow-conservation transportation networks, which
consider the propagation dynamics and the users’ behaviors in terms of route choices. We then investigate the controllability of
the fractional-order transportation networks by employing the Popov-Belevitch-Hautus rank condition and the QR decom-
position algorithm. Furthermore, we provide the exact solutions for the full controllability pricing controller location problem,
which includes where to locate the controllers and how many controllers are required at the location positions. Finally, we
illustrate two numerical examples to validate the theoretical analysis.

1. Introduction

1.1. Motivations. Recent years have witnessed the explosive
growth of motorized vehicles in transportation networks,
which leads the transportation networks to be more and
more congested in serious traffic safety problems. So, the
transportation networks require control. In practice, the
control instruments, for instance, the traffic lights, the
ramps, and the pricing controllers, are often installed into
the key nodes in the transportation networks, so as to make
the transportation networks operate smoothly.

In order to assess whether the controlled transportation
networks are capable of reaching the desired performance,
the concept of “controllability” is introduced, which is
originated from the control theoretical concept of complex
dynamical networks. A complex dynamical network is said
to be controllable, if any other state can be reached from its
current state through a given control action. The research of
controllability of integer-order complex networks has been a
hot topic [1-5]. From a transportation networks’ perspec-
tive, for example, whether the congestion can be eased via
the first-best pricing controller on the links is actually a
controllability problem. Up till now, there are some existing
works that investigate the controllability of transportation

problem, such as the traffic signal timing plan and the
dynamics equilibrium based on traffic control, which has
been discussed in [6, 7]; the relationship between route
choice and traffic control has been discussed in [8]; the
Gramian-based optimization analysis of the traffic control
problem is considered in [9]; the route choice and controller
problem in transportation has been clear expressed in [10].
The above dynamics are represented by integer-order dy-
namics system. In practice, however, the fractional-order
systems outperform the integer-order systems, because they
are more effective to describe the memory and heredity of
dynamical systems, which are two essential characteristics
and behaviors of the real transportation networks. Because
of the advantages provided by the fractional-order dy-
namical systems, it has found wide applications but rarely
mentioned in the controllability of transportation networks.
Thus, we aim to fill this gap in this paper. Fractional-order
systems can provide natural frameworks for modeling of
many practical dynamical systems, such as economic sys-
tems [11] and variable structure hybrid energy storage
system [12]. The Caputo derivatives allow traditional, initial,
and boundary conditions to be included in the formulation
of the considered problem; its application to engineering and
modeling of complex networks attracted much attention in
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recent years. The stability of nonlinear Caputo fractional-
order systems with control vector was investigated in
[11, 13, 14], and the stability of 2D nonlinear fractional-
order systems was discussed in [15]. The numerical ap-
proximation for the expansion of Caputo fractional-order
nonlinear systems was studied in [16, 17]. Controllability is
one of the important issues in the study of fractional-order
systems; the controllability of Caputo fractional-order
complex networks is discussed in [18-20]. Transportation
networks are typical complex networks, so we introduce the
Caputo fractional derivative to describe the dynamics of the
fractional-order transportation networks. In the existing
controllability research works, the Kalman rank condition is
widely utilized. Comparing with Kalman rank condition, the
Popov-Belevitch-Hautus (PBH) rank condition has the
following advantages: Firstly, it is suitable for any directed or
undirected network structure, with or without link weight
and self-circulation [21]; secondly, it can analyze the con-
trollability of multiplex networks using multiple-relation
networks and multiple-layer networks with interlayer cou-
plings as two classes of prototypical systems [22]. Due to the
complexity nature of the fractional-order transportation
networks, we should first obtain the minimum number of
controller nodes and then check whether the PBH rank
condition is satisfied. There is a problem of insufficient
accuracy in solving eigenvalue of characteristic equation
with fractional-order transportation networks, and the QR
decomposition algorithm because it does not miss any ei-
genvalues, backward stability requiring less steps is the best
algorithm for asymmetric matrices. In this work, we in-
vestigate the problem of controllability for transportation
networks with fractional derivatives. Then, we propose a
simple control method using the PBH rank condition and
the QR to get the specific number and installation position.
In Section 2, system model and the main results are ob-
tained. In Section 3, two numerical examples are presented
to demonstrate the effectiveness of the proposed results.
Conclusions are presented in Section 4.

1.2. Literature Review. Controllability is an important
concept in modern control theory. If we can choose the
minimum number of the driver nodes and switch the system
from any initial state to the desire final state, the dynamic
system is controllable. In [23], the author proposed the
Kalman rank condition to choose the driver nodes and made
a preparation for the problem of controllability of linear
dynamic systems. As the work in [24], an algorithm inspired
by the Kalman controllability rank condition is mentioned
to study the control scheme of complex networks in infinite
time. In [21], the PBH rank condition can be introduced to
make up for the deficiency of Kalman rank condition; for the
controllability of arbitrary structure and link weight net-
work, the controllability mainly depends on the connectivity
of network nodes, instead of the exact value of network
nodes.

Since then, the research on the controllability of complex
networks has been a major consideration in many research
articles. In [22], a framework is developed to analyze the

Complexity

controllability of multiple networks using multiple-relation
networks and multiple-layer networks with interlayer cou-
plings. Based on the strong structural characteristics of
controllability and observability, the simple greedy heuris-
tics algorithm that maximizes the rank of the controllable
matrix can achieve the effective global optimization in [25].
In [26], the problem for NP-hard minimum driver nodes is
investigated, which utilizes the simple greedy heuristic al-
gorithm to find the minimum driver nodes. In [27], the effect
of degree distribution to the controllability for the consid-
ered networks is analyzed. In [28], the model about physical
controllability is proposed, which considers the costs caused
by calculation error in actual systems. In [29], the author
devises an algorithm that selects the minimum controls from
a given collection of inputs in polynomial time.

The transportation networks are typical complex net-
works due to their complex internal nodes, numerous
subsystems, and complex hierarchical structure. Addition-
ally, the controllability plays a vital role in the transportation
networks. In [30], the author first introduced a methodology
for devising optimal green splits for isolated intersections,
based on their topological characteristics and the vehicular
flows. In [31], the problem of congestion in different parts of
the networks is discussed, whose the key factors including
the departure time, route choice, and mode selection may
cause or aggravate congestion. Therefore, we take much
consideration on the related factors such as route choice in
the controllability of transportation networks.

The increasing number of motor vehicles and the limit of
urban road design have caused traffic congestion seriously.
There are two effective ways to control traffic congestion, one
is to increase infrastructure construction, and the other is to
carry out effective traffic management and control. However,
the development of urban transportation infrastructure has
reached a level of saturation, so the improved method is to
develop effective traffic control strategies. In the early 1980s,
the coordinated traffic control strategies were introduced to
align the configurations of multiple controllers in a given
network. Further research introduced by the explicit traffic
model on the coordinated control strategies has aroused
much attention. The works in [32] established the trans-
portation networks model, which considered the design of
traffic lights and the choice of user routes.

A solution technique based on the iterative optimiza-
tion and assignment method is proposed in [7], which takes
it to solve the combined dynamic user equilibrium and
signal control problem. On the basis of the complexity of
traffic models, the schemes with high efficiency and fast
calculation have been put forward successively, such as
model predictive control. In [33], the conservation of
vehicles equation is considered to estimate the highway
traffic flow. In [34], the characteristics of residents’ travel
are considered to estimate urban traffic state. In [35], a
Bayesian probabilistic model to estimate traffic states is
proposed to fuse all data to estimate urban traffic state. In
[36], the stochastic hybrid model is considered to estimate
urban traffic flow. A similar trend in the resulting com-
plexity of the related prediction model can also be ob-
served, as the work in [37-39].
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In the study of the controllability of transportation
networks, the design of appropriate control strategies that
avoid or alleviate congestion plays an important role. In [40],
urban transportation networks are modeled as a discrete-
time state-space model, and the traffic response strategy
under state and control constraints is constructed to avoid
congestion by using the H,, control method and linear
matrix inequality. Bianchin and Pasqualetti [9] mentioned a
simplified version of the classic model of urban trans-
portation networks and studied the optimization problem
about the overall efficiency of the network by controlling the
green light duration of intersections under current con-
gestion conditions. In [10], the connection between the first-
order traffic flow theory and the structural control theory is
established, which considered the congestion formation,
propagation, and dissipation, thereby generating a solid
modeling framework. In this framework, we can apply the
existing controllability theories and algorithms to give an
accurate solution to the transportation networks controller
position problem.

Compared with the above-mentioned literature, most of
the research on transportation networks is based on integer
order, and the research on fractional order is very few.
Fractional-order calculus can be regarded as an extension of
classical calculus from integer order to any order. The main
advantage is that it can describe the memory and heritability
of the system and better reveal the essential characteristics of
the system. Therefore, compared with integer-order calculus,
the related fractional-order calculus model is widely applied
in science and engineering [12, 41]. Recently, the research of
fractional-order systems has been a hot topic, as the work in
[16, 17, 42, 43]. The problem of stability with fractional-order
system, for example, has been studied in [11, 13]. In [18, 19],
the controllability of complex networks is extended from
integer order to fractional order, which shows that the control
theory is applicable to fractional-order complex networks. In
reality, many dynamic systems cannot be accurately described
by a linear system, so the study of nonlinear systems is in-
dispensable. A set of sufficient conditions that study the
controllability study of the first-order nonlinear fractional-
order dynamic system are established in [20].

The fractional-order systems more effectively describe
the memory and inheritance of dynamic systems. The
control strategy and the flow estimation are rarely men-
tioned in the controllability of the transportation networks
based on the fractional-order dynamics. Therefore, there are
some difficulties in the selection of fractional-order opera-
tors and the controller strategy of fractional-order trans-
portation networks. Mathematicians have defined a series of
classical fractional derivatives from different angles and
application requirements. Commonly used definitions for
fractional derivatives are Riemann-Liouville and Caputo.
The Caputo and the extension of Caputo fractional deriv-
ative are often used in actual engineering modeling. Making
a comparison with the existing results, the classical Caputo
derivatives because they allow traditional initial and
boundary conditions to be included in the formulation of the
considered problem were used to model the fractional-order
transportation networks in this paper.

The specific research on the location and number of
controllers is rarely considered as a major factor of the
control strategies, in the literature of traffic control network.
The controllability of fractional-order transportation net-
works and its determination of the position and number of
controllers have become a major difficulty. The traditional
Kalman rank condition is sufficient to judge the control-
lability of fractional-order complex networks, but there are
obvious problems when using the Kalman rank condition to
determine the controller of fractional-order transportation
networks. Most of the existing literatures on controllability
are based on Kalman condition, but PBH rank condition has
great advantages in dealing with the controller problem of
fractional-order transportation networks because it does not
need to consider the weight of nodes but only considers
whether nodes are connected. This paper mainly studies the
controllability of the fractional-order transportation net-
works with the PBH rank condition.

Motivated by the above discussion, the major contri-
butions of this paper are threefold:

(1) We introduce the Caputo fractional derivative to
describe the dynamics of the flow-conservation
transportation networks, which allow for traditional
initial and boundary conditions. Compared with the
integer-order system, it can better describe the self-
organization and dynamic behavior of the trans-
portation networks.

(2) We employ the PBH rank condition to convert the
fractional-order transportation networks controlla-
bility problem into an eigenvalue problem, which
indicates that the minimum number of drive nodes
in the fractional-order transportation networks is
equal to the maximum geometric multiplicity of the
incidence matrix eigenvalues.

(3) We utilize the QR decomposition algorithm to
calculate the eigenvalues of the incidence matrix, so
as to improve the problem of insufficient accuracy
when solving eigenvalues by the characteristic
equation method. In addition, the QR decomposi-
tion algorithm has backward stability and local
quadratic convergence, so that fewer steps are re-
quired to solve the eigenvalues.

2. Methods

This section outlines the steps taken to adapt the structural
controllability theory of complex networks with flow-
conservation to the specific conditions of fractional-order
transportation networks. For clarity, at the beginning of
this section, we briefly reviewed the controllability, main
assumptions, and general formulas of the flow-conserva-
tion complex networks. Then, we explained that the clas-
sical fractional-order derivative is introduced into the
framework of flow-conservation controllability and de-
duced it to the dynamics of the fractional-order trans-
portation networks, as well as the formulation of the
dynamics of standard traffic control supporting infra-
structure tools.



2.1. Flow-Conservation Complex Networks Control Theory.
To introduce the concepts of flow-conservation complex
networks control theory [44] and its application to frac-
tional-order transportation networks, we begin by the dy-
namical equations of a linear time-invariant control system
associated with flow-conservation dynamics as

X(k)y=W -X(k-1)+B-U(k-1). (1)

In the specific example of a flow-conservation complex
network, X is the state vector that captures the flow states of
N nodes, dependent on the current time K. The element W, j
of the flow transfer matrix W denotes the link weight of i
associated with its neighbors j; W;; = 0 means that node i
has no flow moving to node j. U is the vector of m con-
trollers with U = (uy,u,,...,4,,), and B is the N xm
control matrix.

The controllability of the flow-conservation complex
networks is based on the exact control theory [21], which
shows that the system is fully controllable if and only if

rank (cIy - w,B) = N, (2)

is satisfied for any complex number ¢, where I is the
identity matrix of dimension N. There are many possible
control matrices B that satisfy the controllable PBH rank
condition. The most important goal is to find a set of B
corresponding to the minimum number N, of independent
controllers required to control the whole network.

The controllability of network with flow-conservation
dynamics can be considered by just analyzing the network
flow transfer matrix W. The minimum number N of
controllers is determined by the maximum geometric
multiplicity ¢ (1;) of the eigenvalue A; of W

N, = maX{N - rank(AYVIN - W)}, (3)

where the 1} represents the eigenvalue of matrix W.

Each node in the flow-conservation networks receives
flows from other nodes through links. The number of flows
on a link depends on the link weight. The state of the nodes
will change according to the number of flows it receives and
sends out. The total flows in the network can be regarded as a
constant and can be used to approximately model trans-
portation network. In the next section, we derive the as-
sumptions and conditions upon which controllability of the
fractional-order transportation networks can be successfully
modeled through (1)-(3).

2.2. Modeling of the Fractional-Order Transportation
Networks. In order to successfully modify the dynamics of
the fractional-order transportation networks to the frame-
work introduced in the previous section, a set of definitions
and assumptions must be met. Firstly, flow-conservation
networks control theory is based on integer order, but in this
paper we apply the Caputo fractional derivative to the flow-
conservation networks to obtain the dynamic formulation of
the fractional-order transportation networks. Mathemati-
cians have defined a series of classical fractional derivatives
from different angles and application requirements, where
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the Caputo fractional derivative is often used in actual
engineering modeling which can simplify Laplace transform.
The definition of Caputo derivative is

JDi = ﬁ J; (t - T)’H‘*lf(”) (t-1)dr, (n—1<a<n),
(4)

where I'[-] is the Gamma function.

Remark 1. In this paper, the controllability of fractional-
order transportation networks is considered, where Caputo
derivatives because they allow traditional initial and
boundary conditions to be included in the formulation of the
considered problem are discussed, which is the same with
those in [11, 13, 18]. However, in [16, 17], the numerical
method for solving the extension of Caputo derivatives of
factional-order complex system was considered. The ex-
tension of Caputo derivatives in [16] is known to have both
nonlocal and nonsingular kernels properties, and in [17]
biorder contains power law and exponential decay.

Secondly, we consider that the fractional-order trans-
portation networks are modeled by the first-order traffic
flow theory method applicable to Newell’s simplified motion
wave theory. And users who entered the network have
perfect information about the network travel time, choose
the shortest route, and make the corresponding response
which has been considered. Also, due to its linearity, the
modeling framework is greatly simplified while still allowing
the correct capture of congestion dynamics.

The discrete-time dynamics of fractional-order linear
time-invariant dynamic system associated with flow-con-
servation dynamics [18] is

D*X(k) =W -X(k-1)+B-U(k-1), (5)

where D* is the operator for the Caputo fractional derivative
of order @, 0 <a<1. In this paper, the state vector X (k)
capturers the cumulative vehicle number of each node in the
networks, dependent on the current time k. The matrix W
denotes the link weight. The matrix B expresses the coupling
between the M controllers equipped on a network and the
controlled nodes, called input matrix. U (k) is the effect of
controllers action on its controlled nodes.

We begin to derive the equation captures vehicle
propagation dynamics; the small road node diagram of the
universal fractional-order transportation networks is shown
as in Figure 1(a). Figure 1(b) is a small network cutout of
Figure 1(a), ignore the number of vehicles entering or
outputting from other nodes at this time, and only consider
the node 1 and node 2. The cumulative vehicle number of
nodes 2 follows first-order dynamics [10]; the equation can
be shown as follows:

DX, (k) = w, X, (k - t,, (k- 1)), (6)
where the t; ; (k — 1) represents the time difference of node i

and node j reached the same number of vehicles. This value
is related to the congestion level of the networks; in the case
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(a)

()

FIGURE 1: (a) A small cutout fractional-order transportation network with six nodes. (b) Five links networks cutout.

of congestion, the value will increase when the road is
congested and vice versa.

The fractional-order transportation networks exhibit a
certain degree of self-organization, so we have specially
considered the influence of route choice. Specifically, we
assume that the system operates according to the principle of
deterministic user equilibrium; that is, we hope that each
user will enter the system through choosing the cheapest
route appropriately at that moment to minimize his/her own

DX, (k) = X, (k—t,5(k-1)) -
DX, (k) = X, (k—t,,(k-1)) -

travel time. By introducing the probability distribution of
the travel time variable ¢, ; (k), stochastic user equilibrium
can also be considered.

Explicit consideration of route choice dynamics in the
problem allows us to extend the above system dynamics.
Consider the small network in Figure 1(b); the route from
node 1 to node 5 has two possible routes. We can easily
extract the following relationships between the state vari-
ables of nodes 3, 4, and 5:

Xy(k—tys(k=1)+t,, (k- 1)),
Xy(k=tyy(k=1)+ty5(k - 1)), (7)

DXy (k) = wy s Xy(k = ty5(k = 1)) + w, s Xy(k =ty (k- 1)).

Remark 2. By applying the path flow-conservation effect at
each node, the first two equations of (7) state that the sum of
vehicles passing through nodes 3 and 4 at time k must be
equal to the sum of vehicles passing through node 2 at the
appropriate previous time. When only a certain route is
used, the equation will collapse into simple node-to-node
propagation dynamics.

So far, fractional-order networks dynamics can be
summarized by the following equation:

D*X(k)=W -X(k-T). (8)

The dynamics of (8) includes travel time dependence T,
which represents the pure delay component. However, this
dynamic cannot be directly captured within the framework
of the controllability of a complex network with flow-
conservation. Moreover, it is more complicated to model
any node in the network to obtain the appropriate weight
value w; ;. Based on this consideration, in order to evaluate

i,j*
the control possibility of the fractional-order transportation

networks, we can assume that the vehicle flow characteristics
of the fractional-order transportation networks are modeled
by an effective conversion method:

D*X(k)=A-X(k-1), 9)
where the vector A can be derived as follows:

X(k—t,;(k-1))
X;(k)y

a,; (k) = w; (k- 1) (10)

Remark 3. The element a; ; (k) of matrix A, except the time
dynamic routing split information w; ; (k — 1), and the ratio of
preceding vehicle cumulative between time (k —t; ; (k-1))
and time (k — 1) of the node, are also captured. Therefore, this
ratio can be viewed as the ratio of congestion. The smaller the
coefficient, the more the crowd. aj; (k) = 1 means that the
two-node road is unobstructed without congestion; for real
complex networks, the ratio of congestion collapse to zero is
rare, s0 0 <a;; (k)<1.



In addition to modeling the dynamics of vehicle prop-
agation and route choice, in order to construct the con-
trollable structure of fractional-order transportation
networks, it is necessary to accurately capture the dynamics
of various control support infrastructures of the above
network operation. There are many controllers in the real
traffic system, but this paper mainly discusses the pricing
controller. Next, we mainly consider the example of Figure 2
and install pricing controller with the link between node 2
and node 4.

The dynamics equation on node 4 can be described as
follows:

DX, (k) =[ays — 954 (k= 1] X, (k- 1),

(11)
$r4(k) = f(P2,4 (k))’ $r4(k) € [—02,4,0],

where the ¢, , (k — 1) represents the impact of the number of
vehicles between two nodes after the link is installed with a
controller. In other words, imposing a toll p, , (k) on the link
between nodes 2 and 4 will result in a reduction effect ¢, 4 (k)
of the cumulative number of vehicles moving from node 2 to
node 4, which is a function of the toll level itself. So as to
satisfy the structure required by (5), we should simplify (11)
as

DX, (k) = Ay, Xy (k=1)=@y4(k—-1)- X, (k- 1),
(12)
where

byy =1,

(13)
U, (k=1) = =, , (k—1) - X, (k - 1).

According to the above formula of route choice, road
congestion, and pricing controller model, we can finally
obtain the system as

D*X(k)=A-X(k-1)+B-U(k-1),

X,(kt,, (k= 1))
A={a,;0k) = w,; () —— ’
{a,,]( ) = w;; (k) X; (k) } (14)

B= {bi,j ={1 0}},

Ui (k) = =, ; (k) - X; (k).

2.3. Controllability of Fractional-Order Transportation
Networks. The controllability of the complex networks with
flow-conservation and even the fractional-order trans-
portation networks can be determined by the Popov-Bele-
vitch-Hautus (PBH) rank condition. It is saying that the
system is fully controllable if and only if

rank (cIy — AB) = N. (15)
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FiGure 2: Four nodes cutout, installing pricing controller with the
link between node 2 and node 4.

Remark 4. For a linear time-invariant system, Kalman rank
condition [B AB A’B ... AN‘lB] = N is sufficient and
necessary principle to ensure controllability [1]. But we
cannot make a judgment through classical controllability
theory in many cases, especially in the system with very large
size or unknown parameters. The work in [21] introduces an
exact controllability paradigm to identify the minimum set
of driver nodes to achieve full control with arbitrary
structures and link weight distributions.

The minimum number of driver nodes of N, is gen-
erally defined in terms of B as N, = min{rank (B)}. In one
word, system controllability is to find the minimum number
of driver nodes to satisfy this condition. So, to some extent,
the PBH rank condition is equivalent to the Kalman rank
condition.

The PBH condition proved that the minimum number of
independent driver nodes is equal to the maximum geo-
metric multiplicity of all eigenvalues of the network matrix,
as

Np = max{u (1)} (16)
and p();) is given as follows:
#(A;) = dimV, = N - rank (LI - A), (17)

where A; represents the eigenvalue of matrix A. This con-
dition transforms the network controllability problem into
an eigenvalue problem, which greatly facilitates the analysis,
provides a more comprehensive understanding of the net-
work controllability, and is more suitable for the research of
controllability of fractional-order transportation networks.

In the calculation of matrix eigenvalue problems, a
simple idea is to solve the characteristic equation
det(A — AIy) = 0. Because the coefficients of characteristic
equation cannot be calculated by stable numerical method,
even if the coefficient of characteristic equation can be ac-
curately calculated, the root of characteristic polynomial
f(A) =det(A—-AIy) may be particularly sensitive to the
coefficients of polynomial under limited precision, and when
the order of determinant is large, the calculation of
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determinant is large. This needs to find a more suitable way
to solve the eigenvalue.

The typical methods to solve eigenvalues are power
method, the QR algorithm, homotopy method, Lanczos
method, Rayleigh algorithm, and so on. The most basic and
simplest method is the power method, but for asymmetric
matrix the power method only obtains the maximum ei-
genvalue of the matrix. In this paper, finding the maximum
geometric multiplicity of matrix eigenvalue requires us to
find all eigenvalues of matrix, so we need a method to find all
eigenvalues. Here, all eigenvalues and eigenvectors of the
matrix can be obtained by finite iterations using the QR, and
the results have rear stability; therefore the QR is chosen as
the main method of fractional-order transportation net-
works controllability research. Next is a simple explanation
of the QR.

For the matrix A, = A, basic iterative scheme for the QR
is

A = ‘R,
{ m—1 Qm m (18)

Am :Rm ‘Qm’

where Q,, is the unitary matrix and R,, is the upper tri-
angular matrix. It takes a lot of computations to complete an
QR iteration, so we should make appropriate transformation
before QR iteration to make the matrix have more zero
elements. In this paper, we mainly use householder trans-
formation before iteration.

First, select the appropriate H, to make the first column
of H,AH, have as many zero elements as possible (but it
must satisfy the number of zero elements less than n — 1);
then, select the appropriate H,; the same consideration is
given to the N — 1 order principal subformula, until the N —
2 order H,,_, is obtained. The householder transformation is
to find the nonsingular matrix Q, = H,H, ... H,_,, s.t

Qi -A-Qy=H, (19)

which is called upper Hessenberg decomposition of A, and
H is the upper Hessenberg matrix.

Perform QR iteration on the upper Hessenberg matrix
H; ie.,

{H:Q.R’ (20)

H=R-Q

and because of the special format of H, we can use the given
transformation replacing QR iterative. In this way, the
householder transform is carried out first, and then the given
transform is performed. Finally, all eigenvalues of the matrix
can be obtained.

Based on the PBH rank condition, the degree of con-
trollability for a given network can be converted as follows:

_ i (21)

2.4. The Pricing Controller Location Problem on the Fractional-
Order Transportation Networks. At present, there are two
typical controllers: one is the traffic signal controller, which
influences the vehicles passing through the links by im-
posing constraints on the natural behavior of the system; the
other is the pricing controller, which directly affects the
network travel cost and the number of vehicles passing
through these links by collecting tolls on the links of a given
network. But in this paper the number and installation of the
pricing controller are discussed.

According to the PBH rank condition, we know that the
minimum number of driver nodes is equal to the maximum
geometric multiplicity of all eigenvalues of the state matrix
A. As mentioned in Section 2.2, the elements a;; can be
viewed as the ratio of congestion, where 0 < g;; (k) < 1. From
the perspective of structural controllability theory, our focus
is not on the exact value of the element g, i but on whether
there is a connection between nodes for given fractional-
order transportation networks. The capture of state matrix
mainly focuses on the relationship between nodes and
whether the exact value of the elements a;; will collapse to
zero; that is, there is no connection between two nodes. The
exact framework of fractional-order transportation net-
works control theory is established based on the fact that the
PBH condition is not related to the current network con-
gestion; also all links in the network are in a stable state in
discrete time, regardless of congestion or not.

According to the given network, the connection matrix
between nodes is obtained: If node i is the upstream of node
j» the element s;; will be equal to 1; also s;; = 0 means that
two adjacent nodes are not directly connected. The con-
trollable structure shows that our focus should not be on the
exact value of A, but on the incidence of node connections,
so the definition of state matrix A is as follows:

A=dxS0<d<1). (22)

The QR iterative algorithm is used to obtain all eigen-
values A; of state matrix A and their corresponding eigen-
vectors. The corresponding geometric multiplicity is
obtained by N —rank (A —A,Iy). Get the maximum geo-
metric multiplicity M, and return the corresponding ei-
genvalue A, The minimum number of independent driver
nodes is equal to the maximum geometric multiplicity of all
eigenvalues of the network matrix.

The minimum number of driving nodes has been ob-
tained, and the next step is to determine the position of the
controller. The column canonical form is obtained by col-
umn transformation of matrix C, where C= A —AMI,,.
After the column canonical forms are obtained, the linear
dependence between rows can be clearly revealed, and the
rows that are linearly dependent on other rows correspond
to the driving node positions that need to be controlled, so as
to ensure that the conditions are met and the fractional-
order transportation networks can be controlled. Note that
driver nodes are not unique because they depend on the
order in which the basic transformations are implemented,
and there are many possible choices for linearly related rows.



This part mainly gives an accurate framework for the
number and location of driving nodes in the fractional-order
transportation networks, which will be verified by examples
later.

3. Case Test

3.1. Case Test 1. In order to verify whether it is feasible to
place the controller according to our proposed network
controllability method in the performance of the control
strategy within the network, we summarize the simula-
tion experiments based on the artificial network in this
section. We first consider a six-node artificial network,
and the corresponding network diagram is as shown in
Figure 3.

As shown in Figure 3, if there is direct connection with
two adjacent nodes S;; = 1, other is filled with zero elements.
We can get the incidence matrix S based on the previous
knowledge as follows:

00100
00100
11011
00100
00100
00111

(23)

S == = O O

Here, we can define d = 0.5 and get the expression of the
state matrix A
0 0 05 0 0 O
0 0 05 0 0 O
0505 0 0505 0.5
A=d=S , (24)
0 0 05 0 0 05
0 0 05 0 0 05

0 0 050505 0

and based on the above state matrix the QR algorithm is used
to obtain all eigenvalues and their corresponding eigen-
vectors; then the geometric multiplicity is obtained for each
eigenvalue and for a given state matrix A; the maximum
geometric multiplicity is

Np = max{u (L)} =2, (25)

where the AM =0, so the matrix C = A — AMI, can be de-
duced as follows:

Complexity

O,

5

FIGURre 3: Small fractional-order transportation network with 6
nodes.

0 0050 0 0

0 0050 0 0

0505 0 0.5 0.5 0.5

C=A-0I, = . (26)
0 0050 0 05

0 0050 0 05

0 0 050505 0

The simplest form of column is obtained by column
transformation of the obtained C matrix. So, the results are
shown in Figure 4.

From the eigenvalue of state matrix, we can get
M)y = Np = 0. So, we should at least install two controllers,
which make sure that the system satisfies the condition that
makes the network controllable. Let A — A1 be an ele-
mentary column transformation and get the column ca-
nonical form; it can be seen from Figure 4 that the first
column that row 1,2,4,5 has parameters, so we should
randomly select three nodes in nodes 1,2,4,5 to install
controllers, and the installation in the above small network is
as shown in the figure. Select one of the two links marked in
red and one of the two links marked in green. For the small
fractional-order transportation networks, the algorithm of
controller location and quantity is completely valid in the
small network. However, based on the complexity of frac-
tional-order transportation networks, we need to analyze the
feasibility of large-scale network.

3.2. Case Test 2. In this part, we consider larger fractional-
order transportation networks. Our analysis is based on the
classic OD network (where the starting node is from node 1
to node 3; the end node is from node 26 to node 28) in
Figure 5, and the nodes in the network are interconnected (if
nodes i and nodes j are connected, not only from node i to
node j, but also from node j to node 7). Here, we call it



Complexity

Eigenvalues C=A-MIy, Column canonical form
-1 T o o 05 0 0 0] [0 01 0 0 0]
-0.6715 0 0 05 0 0 0 001 00 0

M@Q)=2
0 05 05 0 05 05 05| S [1 0 0 0 0 0
M _
0 AT=0 0 0 05 0 0 05 000 0 0 1
0.2647 0 0 05 0 0 05 000 0 0 1
| 14068 | 0 0 05 05 05 0 000 0 1 0

FiGure 4: Eigenvalues and their corresponding matrix transformation process.
1 2 3
4 / \A 5/ \ 6 / \ 7
8 \ 11
\1/ \13/ lg\“/
15 16 17
18/ \1/ \20/ \ 21
25
22\ /23\ /24\ /
26 27 28

FIGURE 5: OD networks.
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bidirectional direction. Similarly, we need to get the adjacent
matrix S according to the network topology shown in
Figure 5, giving the result as follows:

_ o O o o o

- o O O O o O = O o o o

SO O O O O O O O O O O O O O O O O O o o o o = = O O o o
O O O O O O O O O O O O O O O O O O O O = O O O oo o o =
S O O O O O O O O O O O O o O o o o o = O O O O O O = M
SO O O O O O O O O O O O O O O O O O ~+H O O O ©o o o = = ©o
SO O O O O O O O O O O O O O o o o ~ O O O o o o o ~= o o
O O O O O O O O O O O O O O O O +=2H O O O O O OO O = o o o
SO O O O O O O O O o O o o o o~

O O O O O O O O O O O O O O M= - O O O O O O = O O o o o
SO O O O O O O O O O O O o O +H O O O O o o = o O o o o o
O O O O ©O O O O O O O O O = O O O O O H H O O O O O o o
O O O O O O O O O O O O B O O O O O M= = O O O O o o o o
SO O O O O O O O O o o ~ O O o o o ~

O O O O O O O O O O O O O O O O O O O O o o o = = O O ©
SO O O O O O O O O O O O o o o o o o o o o~

Here, we still define d = 0.5 and get the expression of the
state matrix A = d * §; then the eigenvalues are obtained by
the QR method and the maximum geometric multiplicities
are obtained:

Np = miax{y M)} = 2(where/\M = 1). (28)

The eigenvalue corresponding to the maximum geo-
metric multiplicity is substituted into the matrix C = A -

MM, and transformed into the column canonical form.
Here, there is a problem that the method of column

—_ o O O O O o o o o

Complexity

(27)

—_ O O O O O O O O O O O O o O o o o o o o o©

_ O O O O O O +H O O O O O O O O o o o o o o o o o o o
— O O O O O O = O O O O O O O O O O O O O o oo o o o o o

SO O O o o -~

SO O O O O O O O O ~H B O O O O O +H O O O O O o o o o o o
SO O O O O O o O B +H O O O O O +H O O O O O O O o o o o o
O O O O O O O = M= O O O O O =M O O O O O O O o o o o o o
SO O O O O O B O O O O O O ~H O O O O O O O o o o o o o o
SO O O O O +H O O O O O O B +H O O O O O O O O o o o o o o
SO O O O = O O O O O O +~H +H O O O O O O O O O o o o o o o
SO O O = O O O O O O O 2 O O O O O O O O O O oo o o o o o
SO O =B O O O O O O O B O O O O O O O O O o o o o o o o o
S = =2 O O O O O O +H O O O O O O O O O O o o o o o o o o
SO O O O = = O O O O O O O O O O O O O O o o o o o o o o
S O O = B O O O O O O O O O O O o O o o o o o o o o o o

—

transformation for matrix is not unique, which will lead to a
little change in the final result. Because the complexity of
large fractional-order network does not listen to the method
of realizing the basic transformation sequence, there is no
connection with the installation position of the driving node
which is linearly dependent on other rows in the original
topology structure. At this time, we need to filter the un-
related nodes to get the final position where we need to
install the controller, so as to ensure that the conditions are
met and make the fractional-order transportation system
controllable.



NN

NN N

L L
N NN

I
NN

FiGUure 6: The result of OD networks. We need to install two
controllers to make the system controllable, and the corresponding
positions are as follows: link g ,; or linkyg 35 link,, 5 or linkys .

The interception matrix obtained by substituting the
maximum multiplicity eigenvalue and column transfor-
mation is

23 24 25 26 17 28
19
20
21
22
A=] 23
24
25
26
27
28

(29)

o O O O = O O o o

S O =B O O O O O o =
o O O O ©O o o o +~= o
S ©O O ©O o o o ~= O o
S O O O O O = O o O
S ©O O = = O O O O o

o

We can see the linear dependence between rows, so the
final result diagram also confirms that for the OD network
diagram like Figure 5 we need to install two controllers to
make the system controllable, and the corresponding po-
sitions are as follows: link g,; or link,s; link,,,s or
link,s ,¢. The results are shown in Figure 6.

Remark 5. The nodes in Figures 1-3 and 7 can be regarded
as symbolic geographical locations in the transportation
networks, while the links mark the road infrastructure be-
tween the two locations. The direction of the link can
represent who is the upstream of the vehicle flow in two
nodes. Figure (4) shows the eigenvalue and its maximum
geometric multiplicity of case test 1 and substitutes it into

11

FiGUure 7: Small fractional-order transportation network with 6
nodes. ,u()tM ) = 2 means that we should at least install two con-
trollers; one of the two links is highlighted in red and green is
selected to install the pricing controller.

the matrix for simplification to obtain column canonical
form. And Figures 5 and 6 show the classic OD network and
its controller result diagram.

4. Conclusion

In this work, we study the controllability of the flow-con-
servation transportation networks with fractional-order
dynamics and the location and number of controllers based
on the controllability of a complex network with flow
conservation.

In order to achieve this goal, we introduce the Caputo
fractional derivative on the basis of the flow-conservation
complex system to obtain the flow-conservation trans-
portation networks with fractional-order dynamics. The
basic modeling assumptions required for the fractional-
order transportation networks to correctly capture the traffic
behavior in terms of vehicle propagation and route choice
are explained in detail. The relationship between the cu-
mulative number of vehicles, the weight matrix, and the
controller matrix and its influence is given.

In traditional control theory, the Kalman rank condition
is the main discriminant method. But in many cases, clas-
sical controllability theory cannot be used to judge, espe-
cially in systems with large sizes or unknown parameters.
Based on the exact control theory, the PBH rank condition is
proposed to be applicable to arbitrary structure and link
weight distribution. Therefore, the controllability research of
the fractional-order transportation networks mainly adopts
the PBH rank condition; that is, the number of driver nodes
is equal to the maximum geometric multiplicity of the ei-
genvalues of the state matrix, and the installation controller
position matrix is obtained through transformation. How-
ever, in practical applications, the traditional eigenvalue
method has the problem of insufficient accuracy when the
matrix order is large. Therefore, this paper introduces QR
iteration to obtain the system algorithm of the number and
location of the fractional-order transportation networks
controller.

Finally, this paper analyzes the effectiveness through two
cases. In a small network with fewer nodes, the number and
location of controllers have obtained accurate results. On the
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basis of structural theory, using our algorithm can also get
the number and location of the controller of the second OD
network, which shows that this is feasible for the fractional
traffic system.
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