
Research Article
A Reputation Value-Based Task-Sharing Strategy in
Opportunistic Complex Social Networks

Jia Wu ,1,2 Fangfang Gou,1,2 Wangping Xiong ,1 and Xian Zhou 1

1School of Computer, Jiangxi University of Chinese Medicine, NanChang 330004, JiangXi, China
2School of Computer Science and Engineering, Central South University, Changsha 410083, China

Correspondence should be addressed to Wangping Xiong; 20030730@jxutcm.edu.cn and Xian Zhou; 20030731@jxutcm.edu.cn

Received 10 October 2021; Accepted 5 November 2021; Published 26 November 2021

Academic Editor: Xuyun Zhang

Copyright © 2021 Jia Wu et al. +is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the Internet of +ings (IoT) smart mobile devices explode in complex opportunistic social networks, the amount of data in
complex networks is increasing. Large amounts of data cause high latency, high energy consumption, and low-reliability issues
when dealing with computationally intensive and latency-sensitive emerging mobile applications. +erefore, we propose a task-
sharing strategy that comprehensively considers delay, energy consumption, and terminal reputation value (DERV) for this
context. +e model consists of a task-sharing decision model that integrates latency and energy consumption, and a reputation
value-based model for the allocation of the computational resource game. +e two submodels apply an improved particle swarm
algorithm and a Lagrange multiplier, respectively. Mobile nodes in the complex social network are given the opportunity to make
decisions so that they can choose to share computationally intensive, latency-sensitive computing tasks to base stations with
greater computing power in the same network. At the same time, to prevent malicious competition from end nodes, the base
station decides the allocation of computing resources based on a database of reputation values provided by a trusted authority.+e
simulation results show that the proposed strategy can meet the service requirements of low delay, low power consumption, and
high reliability for emerging intelligent applications. It effectively realizes the overall optimized allocation of computation sharing
resources and promotes the stable transmission of massive data in complex networks.

1. Introduction

In recent years, with the deep integration and development
of IoT technologies and industries, various revolutionary
mobile devices have penetrated into infrastructure, life
services, national defense, and military, giving rise to new
IoT smart applications such as smart home, driverless,
augmented reality/virtual reality (AR/VR), and face recog-
nition [1].+ese applications generate large amounts of data,
and at the same time, they are computationally intensive and
time-sensitive. In particular, some new applications based
on big data and artificial intelligence have high requirements
for low-latency transmission of large-capacity data, making
mobile devices face huge challenges in terms of computing
resources and computing capabilities.

In complex opportunistic social networks, both mobile
smart terminal devices and servers can be considered as
social nodes. +ese social nodes can communicate and share

computing and storage resources [2–4]. However, frequent
communication between these nodes leads to the surge in
traffic and high multivariate of data-type, which poses a
challenge to network management. When processing
computation-intensive and latency-sensitive services, mo-
bile terminals can share the computation task to servers with
greater computing power at base stations, instead of per-
forming computation by themselves. +en, the servers can
provide the communication, storage, and computation re-
sources needed to process these functions and services
through networks. Meanwhile, through the management
and mining of the hidden knowledge in the massive data, the
end-users can obtain high-quality, low-latency, low-con-
sumption, and highly personalized services [5, 6].

However, in the process of sharing a large number of
computing tasks from the terminal device to the server, how
to allocate the server’s computing resources to ensure the
service performance of smart mobile terminals is an urgent

Hindawi
Complexity
Volume 2021, Article ID 8554351, 16 pages
https://doi.org/10.1155/2021/8554351

mailto:20030730@jxutcm.edu.cn
mailto:20030731@jxutcm.edu.cn
https://orcid.org/0000-0001-9013-0818
https://orcid.org/0000-0003-4992-8558
https://orcid.org/0000-0002-2281-7308
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8554351


problem to solve [7]. In addition, wireless sensor networks
have some inherent characteristics, such as limited node
energy, storage space, and computational processing capa-
bilities.+ese characteristics can record nodes movement, so
the bad behavior nodes [8, 9] are prone to exist in the
network. Bad behavior nodes are further divided into selfish
behavior nodes and malicious attack behavior nodes. +e
selfish behavior node uses the network resources as much as
possible, and it does not make any/makes very little con-
tribution to the network. +e sole purpose of malicious
nodes is to attack other nodes in the network or the entire
peer-to-peer network. Malicious nodes forge false hotspot
resources and provide malicious resources to other nodes in
the network to download or forward them to achieve the
purpose of invading, controlling nodes, or even destroying
the entire network. Malicious nodes are the direct source of
security problems in peer-to-peer networks. Mass data have
higher requirements for data transmission on complex
networks. How to exclude malicious nodes from a large
number of nodes is a big challenge.

+ese problems can be solved in two steps: firstly, to
solve the decision problem of whether and when to share the
tasks under latency and energy consumption demand.
Secondly, to solve the problem of reliable sharing allocation
arising from malicious competition for computing re-
sources. By using the cooperation between nodes, the rep-
utation value of each node is updated and themalicious node
is finally derived. +erefore, we try to allocate server
computing resources based on the reputation value of smart
mobile terminals to prevent malicious behaviors and realize
the optimal allocation of overall resources from the per-
spective of the benefits of a larger smart mobile terminal, not
just from the perspective of the economic benefits of a larger
service provider.

To solve the above problems, this paper proposes an
advanced task-sharing model (DERV), which consists of a
task-sharing decision model that takes into account the
delay and energy consumption requirements of new IoT
applications, and a resource game allocation model that
allocates server computing resources based on reputation
values. Among them, the shared decision model adopts an
improved PSO algorithm to realize multi-task sharing
among multiple mobile terminals, which meets the low
latency and low energy consumption requirements of new
applications of the Internet of +ings. +e resource allo-
cation model aims to prevent unreasonable resource al-
location caused by malicious terminal competition, and it is
mainly realized by the Lagrangian multiplier method. In
this way, computing resources are allocated reasonably and
the overall utility is maximized. +e DERV model realizes
the stable transmission of massive data in complex social
networks.

+e contributions to this paper are listed as follows:

(1) We focus on providing low-latency, low-energy, and
highly reliable service quality guarantees for time-
delay and energy-sensitive, computing-intensive
smart mobile terminals in the big data environment.
We first propose a network model composed of

users, MEC servers, and trusted authorities.+en, we
formulate the optimal configuration of the overall
resources as how to allocate the computing resources
of the MEC server. Finally, we transform the opti-
mization problem as offloading decision and off-
loading allocation subproblems.

(2) For offloading decision issues, this paper proposes a
task-sharing decision model for multiple smart
mobile terminals in a complex opportunistic social
network environment. It considers time delay and
energy consumption comprehensively. +e purpose
is to achieve an optimal task-sharing solution with
low latency and low energy consumption.

(3) For offloading allocation issue, a dynamic task-
sharing allocation game based on the reputation
value of smart mobile terminals is proposed, and it is
achieved by the Lagrange multiplier method.

+e rest of the paper is arranged as follows: +e second
part introduces the related research of data transmission
routing algorithms in opportunistic social networks, the
third part introduces related theoretical concepts and al-
gorithm models, and the fourth part verifies the perfor-
mance of the model on various standards through
simulation experiments. At the end of the paper, we dis-
cussed and summarized the full text.

2. Related Work

Since the task-sharing strategy promises to solve the per-
formance bottlenecks faced by mobile smart terminals in
opportunistic complex social networks when dealing with
novel smart applications such as computation-intensive and
latency-sensitive applications, it has received widespread
attention from scholars and has gradually become a research
hotspot. +erefore, in this section, we will give a brief in-
troduction to the task-sharing study of whether and how
much mobile smart terminals share computational tasks and
how to allocate the macro base station computational
resources.

2.1. Task-SharingModel. In terms of task sharing, there are a
large number of researches’ results on whether mobile smart
terminals share tasks to macro base stations. Task-sharing
decision schemes often use delay and energy consumption as
benchmarks. Different environments and systems have
different requirements for task-sharing decisions, and some
applications require a good balance between latency and
energy consumption. Paper [10] presents the Lyapunov
optimization-based dynamic computation offloading algo-
rithm (LODCO), a dynamic computational task-sharing
algorithm based on Lyapunov’s optimization theory. It
optimizes task-sharing decisions in terms of both task
running delay and task running failure, minimizing task
processing delay, and ensuring the success rate of the data
transfer process, but ignoring influencing factors such as
energy consumption and cost. Paper [11] adopts an artificial
fish swarm algorithm to design a task-sharing strategy for
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energy consumption optimization under delay constraints.
+e strategy takes full account of the link conditions in the
task data transmission network and effectively reduces the
energy consumption of the device, but the disadvantage is
that the algorithm is too complex. +e paper [12] designs an
energy-efficient computational task-sharing scheme, which
is based on deep learning, to solve the problem of selective
sharing of mobile application components. Experimental
results show that the solution has high accuracy and low
energy consumption, but the computationally intensive task
remote interaction brings about high latency problems. +e
influential factors considered in the above paper in the task-
sharing decision modeling process are not comprehensive
enough, which affects the rational execution of task-sharing
decisions.

+e paper [13] considers a multi-user MEC system in
which a single MEC server can handle the computational
tasks shared by multiple user devices over wireless channels.
+is solution has a significant reduction in the sum of delay
and energy consumption. Paper [14] presents a Lyapunov
optimization theory combined with an adaptive e-learning
approach to the problem of optimal sharing of trade-offs
between response latency and energy costs in IoT scenarios.
Paper [15] optimizes multi-user mobile edge computing
task-sharing systems, constructs Markov decision problems
with the long-run average overhead of delay and power
consumption as optimization goals, and solves them using
convex optimization theory. Although the above paper treats
the delay and energy consumption as important components
in the computational task-sharing process, the method of
reducing energy consumption by constraining the delay
makes the task-sharing strategy lack generality. We noticed
that there are many excellent energy-saving strategies in the
Internet of +ings (IoT) paradigm.+e energy consumption
models proposed by scholars have all been proved to be
effective in important IoT applications such as organiza-
tional collaboration, staff track, and logistics positioning.
Many strategies emphasize the realization of potential
benefits in terms of energy and cost, and have been
implemented on real test beds [16–18]. +erefore, based on
summarizing previous studies, this paper introduces delay
and energy demand coefficients to consider more com-
prehensively the delay and energy consumption of intelli-
gent terminal node computing task sharing.

2.2. Resource Allocation Model. In terms of resource allo-
cation, the current research work focuses on the design of an
allocation strategy for the problem of how to allocate
computing resources for macro base stations. Paper [19]
enabled MEC’s LTE-V network using a deep Q-Learning
approach and proposed an optimization goal of maximizing
the utility of the sharing system under a given delay con-
straint. +e results show that the scheme can share vehicle
tasks with optimal utility while also satisfying the reliability
and wait time constraints but ignores the important resource
allocation aspect of the task-sharing problem. Huang et al.
[20] proposed a computing task plan based on mobile user
security and cost awareness in a mobile edge computing

environment. Its goal is to minimize the total cost under the
constraint of risk probability and provide security and cost
efficiency for mobile users. However, it ignores the actual
needs of the end nodes, which is not conducive to the overall
optimization of resource allocation. +e paper [21] studies
the sharing strategies for computationally intensive tasks
(data processing tasks and blockchain mining tasks) in
blockchain scenarios, addressing the failure of traditional
task-sharing strategies (e.g., auction and game theory
strategies) to adjust the sharing strategies to changes in the
environment, but the efficiency and reliability of the average
resource allocation scheme are difficult to meet the quality of
service (QoS) needs of users.

+e above paper has achieved some results in the study
of resource allocation in opportunistic complex networks,
but it ignores the problem of smart mobile terminal nodes
competing for resources, whichmakes it difficult to achieve a
reasonable and reliable allocation of computing resources in
opportunistic social IoT systems. If the malicious resource
competition behavior of terminal nodes is regulated and the
overall optimal allocation of computational task-sharing
resources is achieved, low latency, low energy consumption,
and highly reliable QoS guarantees can be provided for
experimental and energy-sensitive terminal nodes [22]. We
have noticed that trust models of wireless sensor networks
(WSNs) security have flourished due to the day-to-day at-
tack challenges, which are most popular for the Internet of
things [23]. Many strategies have introduced a reputation
mechanism to solve this problem, and achieved good results
[24, 25]. For example, Han et al. [24] supplemented the
fence-sitter group to the existing rumor dissemination
model, and then proposed a novel SIFR rumor dissemi-
nation model, which effectively realizes the security moni-
toring of rumors dissemination in the network. +erefore,
this paper innovatively introduces smart mobile terminal
node reputation values to allocate computational resources
in macro base station servers to effectively achieve the op-
timal allocation of computational resources [26].

To summarize, this paper builds a model (DERV) to
address the shortcomings of task-sharing decision-making
and resource allocation methods in complex social networks
of things. +e model takes into account the time delay and
energy consumption of computational tasks and allocates
computational resources based on the reputation value,
which effectively achieves overall optimization, and rational
and reliable allocation of computational resources.

3. System Model Design

3.1. Network Model. +e MEC server allocates computing
resources to perform the different computational task-
sharing processes for users in the environment of oppor-
tunistic social networks of things based on different com-
putational task requirements and reputation values of smart
terminals [27]. +e mobile edge intelligent computing
network model based on reputation value consists of users
holding smart mobile terminals (VR/AR, smart cars, video
game consoles, PC monitors, drones, smart home, etc.),
MEC servers, and trusted institutions. +ese devices
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generate massive amounts of data, posing a challenge to
network management. +e network model is shown in
Figure 1. And, a list of all acronyms used in the paper is
shown in Table 1.

3.1.1. Users. +e users who need to perform computation-
intensive computing tasks in this paper have the compu-
tation, GPS, and wireless communication modules. +e
computing module performs computational tasks, the GPS
module acquires location information in real-time, and the
wireless communication module enables data transmission.
When a user needs to run emerging applications such as
augmented reality, image processing, etc., and it is difficult
for the computation module to complete the corresponding
computation and storage tasks, the computation task-
sharing request is initiated by the wireless communication
module and the computation task is sent to the specified
MEC server.

3.1.2. MEC Servers. Distributed MEC servers are deployed
in the vicinity of users and are responsible for allocating
computation resources to perform different computation
shares and returning data to users after completing com-
putation tasks. Users have different reputation requirements
for computing task sharing. In the case of partial sharing,
when more computing tasks are shared, a small base station
is set up to store the queued waiting tasks, and the stored
tasks are uploaded to the macro base station when the macro
base station is idle. In this paper, we use the full sharing
decision, so we do not consider the case of deploying a small
base station, but only the macro base station of the MEC
server, and each user chooses a different task-sharing
method according to different requirements.

3.1.3. Trusted Authority. A trusted authority is responsible
for recording events and updating the reputation value
database. All users must register their legal identity with the
trustworthy authority, and users with legal identity have
valid reputation value and obtain the public and private key
pairs and certificates required for secure communication.
+e trusted authority updates the reputation value in real-
time through the user’s behavior records at different times
and provides the service provider with access to the whole
network reputation value database.

3.2. Mathematical Model. +e nodal users connected to the
complex social networks of things have different compu-
tational task-sharing needs, and in addition to performing
local computation, they can also share the computational
task to the macro base station where the MEC server is
deployed [30]. In a multi-user participation scenario,
whether to choose to share and how to allocate resources
effectively after task sharing are issues that need to be
addressed [31]. To solve these problems, this paper proposes
an intelligent computing task-sharing method that jointly
considers delay and energy consumption. We select an
appropriate task-sharing strategy according to the

performance benchmarks of different smart mobile termi-
nals held by users and the needs of smart mobile terminals to
realize low-latency, low-energy-consumption computing
task-sharing decision-making. In addition, to achieve the
overall optimal allocation of computing resources, this paper
proposes a reliable computing resource allocation model to
realize a bargaining game based on user reputation values
and maximize user benefits [32].

3.2.1. Shared Decision-MakingModels. In this paper, a single
cellular network model with multiple users and the de-
ployment of MEC servers for macro base stations is con-
structed. Assuming M � 1, 2, . . . , m{ } denotes m users
holding different kinds of smart mobile terminals. Each user
has one computation-intensive or latency-sensitive com-
putation task. +e computational task owned by user i is
denoted as

Ui � Ai, Bi, T
max
i􏼈 􏼉, i ∈M. (1)

In this equation, Ui indicates the computational task
owned by user i. Ai indicates the data size of the compu-
tational task. Bi indicates the number of CPU cycles required
to complete the computational task, and Tmax

i indicates the
maximum latency that user i can tolerate completing the
computational task.

According to the different needs of smart mobile ter-
minal users, delay-sensitive smart mobile terminal users
have a higher demand for time delay, while energy-sensitive
smart mobile terminal users have a higher demand for
energy-saving due to their power shortage, so a trade-off
mechanism is introduced, and the time demand coefficient
zt

i and energy demand coefficient ze
i indicate the bias degree

of the user’s demand for delay sensitivity and energy-saving,
respectively. +e computational tasks for each user can ei-
ther be shared with the MEC server or performed locally.
+is paper introduces the decision mechanism di,j � 0, 1{ },
where j � 1, 2{ } indicates the decision mode, j � 1 indicates
that the user chooses the local computational model to
perform the computational task, and j � 2 indicates that the
user chooses to share the computational model to the macro
base station to perform the computational task. In this
paper, we construct a task-sharing decision model with the
goal of global system consumption involving multiple smart
mobile devices, as shown in equation (2).

min􏽘
m

i�1
z

t
i di,1F1 + di,2F2􏼐 􏼑 + z

e
i di,1G1 + di,2G2􏼐 􏼑􏽮 􏽯. (2)

In this equation, F1 and F2 denote the total latency of
local and shared to macro base station calculations, re-
spectively, G1 and G2 denote the total energy consumption
of local and shared to macro base station calculations, re-
spectively. +e task-sharing decision process is shown in
Figure 2.

(1) Local Computational Model. +e local computing power
of different smart mobile devices held by users varies, and
the computational delay TP

i(z) and computational energy
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Figure 1: +is diagram depicts the network model on which this paper is based.

Table 1: List of all acronyms used in the paper.

Acronym Meaning
AR Augmented reality
VR Virtual reality
MILECR Message importance based low energy consumption routing algorithm [28]
FCNS Fuzzy routing-forwarding algorithm exploiting comprehensive node similarity [29]
DERV +e model we proposed in this paper
LODCO +e Lyapunov optimization-based dynamic computation offloading algorithm
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Figure 2: +is diagram depicts the task-sharing decision-making process.
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consumption NP
i(z) of the smart mobile device i when

computing is

T
P
i(z) �

Bi

J
P
i

, (3)

N
P
i(z) �

Bi

K
P
i

. (4)

In this equation, JP
i denotes the local computing power

of the smart mobile terminal held by user I, and KP
i

denotes the energy consumption of this terminal i in a
single local CPU cycle. For the local computing mode,
since there is no other form of time consumption and
energy consumption, equations (3) and (4) denote the
total time delay and total energy consumption of user i’s
local computing, respectively.

(2) 1e Task-Sharing Model. +e MEC model constructed in
this paper is a heterogeneous network with orthogonal
frequency division multiplexing, where the channels be-
tween users accessing the same base station are orthogonal
to each other, and there is only interference between
accessing macro base stations. +erefore, the entire task-
sharing computation process includes transmission and
computation delays, and energy consumption includes
transmission and execution energy consumption.

(1) Task Sharing Delay
We denote the data rate of user i choosing to access
server h as

s
M
i⟶ h � Hi⟶h 1 +

P
h
i Q

h
i

X
h
i + z0

⎛⎝ ⎞⎠. (5)

In this equation, H denotes the actual data transfer
rate at which user i sends an uplink computation
request to server h. Ph

i denotes the power between
user i and server h. Qh

i denotes the gain between
terminal i and server h. Xh

i denotes the interference
that exists between other users accessing the server
and user i. z0 denotes the background noise power.
+e transmission latency for user i to share the
computational task directly to the MEC server is

T
P
i⟶ h �

Ai

S
M
i⟶ h

. (6)

+e calculated delay in performing the completed
tasks is

T
P
i(z) �

Bi

R
h
i

. (7)

In this equation, Rh
i denotes the computational ca-

pacity of user i located at server h. Since there is no
further form of delay in the entire computational
task-sharing process, the total delay for user i to
choose to share the computational task directly to the
server is

T
P
i �

Ai

S
M
i⟶ h

+
Bi

R
h
i

. (8)

Substituting the decision mechanism di,j into the
delay of the server shown in equation (6) yields

T
P
i⟶ h �

Ai

Hi⟶h 1 + P
h
i Q

h
i /􏽐

M
l�1,l≠ i dl,2P

h
l Q

h
l + z0􏼐 􏼑􏼐 􏼑

.

(9)

In this equation, l denotes the user accessing the
server, Ph

l denotes the transmission power of l de-
termined by server h based on some power control
algorithm, and Qh

i denotes the channel gain between
user i and server h.

(2) Task-Sharing Energy Consumption
+e energy consumption of user i directly sharing
the computing task to the MEC server consists of
both transmission energy EP

i⟶ b and execution
energy EP

i(z), as shown in equations (10) and (11).

E
P
i⟶ b �

P
h
i Ai

T
P
i⟶ h

, (10)

E
P
i(z) � BiL

h
i . (11)

In this equation, Lh
i represents the energy con-

sumption of user i over a single CPU cycle of the
macro base station.
Since there is no further form of energy consumption
in the entire computational sharing process, the total
energy consumption EP

i that user i chooses to share
the computational task directly to the server can be
expressed as follows:

E
P
i �

P
h
i Ai

T
P
i⟶ h

+ BiL
h
i . (12)

(3) Task-sharing Calculation

+e MEC task-sharing computational model for joint
consideration of latency and energy consumption is
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min􏽘
M

i�1
z

t
i di,1

Bi

R
L
i

+ di,2
Ai

Hi⟶h 1 + P
h
i Q

h
i /􏽐

M
l�1,l≠ 1 dl,2P

h
l Q

h
l + z0􏼐 􏼑􏼐 􏼑

+
Bi

R
h
i

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

+ z
e
i di,1BiL

L
i + di,2

P
h
i Ai

Hi⟶h 1 + P
h
i Q

h
i /􏽐

M
l�1,l≠ 1 dl,2P

h
l Q

h
l + z0􏼐 􏼑􏼐 􏼑

+ BiL
h
i

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
⎫⎪⎬

⎪⎭
,

(13)

s.t. T
L
i(z) ≤T

max
i , (14)

T
N
i ≤T

max
i , (15)

z
T
i + z

E
i � 1, . . . , z

T
i , z

E
i ∈ [0, 1], (16)

di,1 + di,2 � 1, . . . , di,1, di,2 ∈ [0, 1]. (17)

In this equation, the time delay TL
i(z) of the local execution

method and the time delay TN
i of the direct sharing of the

computational task to the MEC server are given in the con-
straints, both of which are less than the maximum delay de-
mandTmax

i .+e time demand factor zT
i and the energy demand

factor zE
i in the trade-off mechanism take values in the range of

[0, 1] and their sum is 1. +e decision mechanism di,1 � 1,
di,2 � 0 means that user i chooses the local computational
model to compute, di,1 � 0, di,2 � 1 means that user i chooses
the task-sharing computational model to compute to the server.

3.2.2. Resource Allocation Model. Considering the problem
of irrational resource allocation due to malicious competi-
tion caused by irregular behavior, this paper attempts to
introduce a bargaining game model based on reputation
value to achieve an overall optimal allocation of computa-
tional resources [33].

Assume that the MEC server computes resources to
meet all demands, a MEC server receives compute share
tasks from M users in one work cycle, and the MEC server
has the compute capacity to perform K CPU cycles per
second. We assume that Ei represents the computational
resources allocated by the MEC server for the corresponding
user i. Each user competes for the computational resources
on the MEC server through a bargaining game process and
gives greater priority to the one with the higher reputation
value, then the resource allocation model [34] is

max 􏽙 Ei − Ei(min)􏼐 􏼑
θi

s.t. 􏽘
M

i�1
Ei ≤E.

(18)

In this equation, Ei(min) represents the minimum
computational resource allocated to user i by the MEC
server, and θi represents the user’s authoritative decision
factor for theMEC server’s computational resource, which is
related to the user’s current reputation value Gi, as shown in
equation (19).

θi �
Gi

􏽐
M
i�1 Gi

. (19)

We adopt the Verifiable Caching Interaction Digest
schema (VCID) proposed in Ref. [35] to get reputation value
Gi. +is mechanism is suitable for new applications gen-
erated by intelligent terminals in the Internet of +ings
environment, and has good convergence and scalability. It
assesses credibility based on hosts’ behavior. +e calculation
process is

Gi � αT(i, O) +(1 − α)T(O). (20)

In this equation, T(i, O) represents the direct credibility,
its value depends on previous interaction experience. T(O)

represents the indirect credibility, and its value is based on
the reputation of the authority O; i and O can be gotten from
the credit institutions. α is the factor used to regulate specific
gravity. When Gi is less than a certain threshold, i will be
rejected for authorization.

+e resource allocation model can also be modeled as a
benefit function for different reputation values, where the
higher the reputation value, the larger the computational
resources allocated. In order to maximize the benefits, this
paper adopts the Lagrange multiplier method to solve the
task-sharing resource allocation game model based on the
reputation value in the MEC environment. Taking the
logarithm of the resource allocation and introducing a
Lagrange factor of τ, the Lagrange function is constructed, as
shown in equation (20).

T � 􏽘
M

i�1
θi ln Ei − Ei(min)􏼐 􏼑⎛⎝ ⎞⎠ + τ 􏽘

M

i�1
Ei − E⎛⎝ ⎞⎠. (21)

4. Model Solution

+e computational task-sharing decision model developed
in Section 3 includes a task-sharing decision model and a
resource allocation model, corresponding to the task-
sharing decision problem and the resource allocation
problem, respectively. +e task-sharing decision problem is
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nondeterministic polynomials (NP) in terms of mathe-
matical modeling and needs to apply to multi-competition
models when considering the search for the optimal mobile
edge computing task-sharing scheme. +erefore, the PSO
algorithm with high search accuracy and fast convergence
speed is considered to solve the computational task-sharing
model proposed in this paper for joint consideration of delay
and energy consumption to achieve low delay and low
energy consumption for computational task-sharing deci-
sions [35]. At the same time, the amount of resources
available to each server in the resource allocation problem is
bounded, and the definition domain is within the computing
resources of the base server. According to the theory of large
values of functions with bounded definition domains, if large
values of resource allocation functions exist, it can only be
obtained at the point of maximum value within the defi-
nition domain or the boundary point of the definition
domain, and the Lagrange multiplier method is an effective
way to determine whether the function has a point of
maximum value or not [36]. +erefore, to magnify the
benefit function for smart mobile terminals with different
reputation values, this paper uses the Lagrange multiplier
method [37] to solve the task-sharing resource game theory
allocation model to achieve a rational and reliable optimal
resource allocation.

4.1. Task Sharing Decision Solving based on Improved PSO
Algorithm

4.1.1. PSO Algorithm. +e PSO algorithm is a population-
based intelligent stochastic optimization algorithm based on
the collaborative search for food by a flock of birds. +e PSO
algorithm randomly generates M particles to form a pop-
ulation U in an N-dimensional search space,
U � L1, L2, . . . , LM􏼈 􏼉, each particle represents a potential
solution, the position of the kth particle is denoted as a
vector Lk � lk1, lk2, . . . , lkN􏼈 􏼉, the velocity is denoted as a
vector Vk � vk1, vk2, . . . , vkN􏼈 􏼉, the kth particle search to the
most available position during the search process is denoted
as Lbestk

� lbestk1
, lbestk2

, . . . , lbestkN
􏽮 􏽯, and the optimal position

searched by the population of particles during the global
search process is denoted as Gbest � gbest1

, gbest2
, . . . , gbestN

􏽮 􏽯,
the kth particle’s position and velocity updates are calculated
as

vkd(t + 1) � ωvkd(t) + x1rand() lbestkd
(t) − lkd(t)􏽨 􏽩

+ x2rand() gbestd
(t) − lkd(t)􏽨 􏽩,

(22)

lkd(t + 1) � lkd(t) + vkd(t + 1), (23)

1≤ k≤M, 1≤ d≤N. (24)

In this equation, x1 and x2 are acceleration factors,
indicating the extent to which particles are affected by in-
dividual values and social cognition, respectively. rand in-
dicates the random number in [0, 1]. ω indicates the inertia
weight, is nonnegative, and used to adjust the search scope of
the solution space. t indicates the number of iterations.

4.1.2. Improved PSO Algorithm. In this paper, the proposed
MEC task-sharing model solves the multi-participant NP
problem, where the system consumption generated by n
end-users choosing different task-sharing methods is dif-
ferent, but considering that the consumption values are not
too different, the total value of system consumption gen-
erated by different combinations of task sharing methods
does not change much and is more stable. +e PSO algo-
rithmwith fast convergence is used to solve the problem. It is
prone to cause the consumption of the system in high-di-
mensional states with multiple users involved to fall into a
local optimum, so the algorithm is improved in terms of
economic and exploratory capabilities, respectively. In terms
of economy, in the optimization process, the inertia weight
in the model is adaptively and dynamically adjusted to
improve the local and global optimization capabilities of the
algorithm to obtain better solution quality. In terms of
exploration ability, from the perspective of mutation, the
acceleration factor in the particle swarm is optimized to
improve the exploration ability of the algorithm in the
solution space.

(1) Inertia Weighting Improvement. +e MEC offloading
decision-making model in this paper is oriented to the
multi-task decision-making process of multiple smart mo-
bile terminals. +e PSO algorithm tends to fall into the
precocious convergence of locally optimal solutions when
solving high dimensional functions of system consumption
under multitasking. Using a single adjustment method
where the inertial weights are kept constant or linearly
decreasing, it is difficult to guarantee that every dimension of
the particle tends to be optimal at the same time, making the
probability of simultaneously searching for an optimal so-
lution in every dimension of the system consumption
function under multiple participation very small. +erefore,
in this paper, an adaptive nonlinear dynamic approach is
used to find optimality, and a cosine function is introduced
based on previous studies, as shown in equation (24).

ω �
ωmax + ωmin

2
cos

πt

Tmax
􏼠 􏼡 +

ωmax − ωmin

2
. (25)

In this equation, ωmax indicates the maximum value of
the inertia weight, which is generally taken as 0.7, ωmin
indicates the very small value of the weight, which is gen-
erally taken as 0.1, and Tmax indicates the maximum number
of iterations. +en, the value of (t/Tmax) is between 0 and 1.
And, because the cosine function is monotonically de-
creasing over the interval [0, π], ω is going to increase as t

increases.
+e weight of inertia controls the influence of the his-

torical position of particles on the current search state, and
maintains the balance between global search and local
search, which can effectively achieve adaptive nonlinear
adjustment of its value and improve the efficiency and in-
telligence of the algorithm. In the early stage of the algo-
rithm, to increase the global search, the inertia weights
should have a larger value; in the late algorithm, they should
maintain a reasonable convergence rate to increase the local

8 Complexity



search capability, so the inertia weights should be kept
smaller.

(2) Improvement of the Acceleration Factor. Since particle
position is influenced by both individual and population
extremes, the cognitive part and social part could greatly
affect the direction and velocity of particle convergence.
+e acceleration factor x1 in the PSO algorithm usually
takes a value of 0.43 and x2 usually takes a value of 0.4. But,
in this paper’s MEC task-sharing decision-oriented
model, when the number of iterations varies, there is a bias
about the leading position between the cognitive part and
social part. When the number of iterations is small, the
cognitive part represented by x1 plays a dominant role,
and the social part represented by x2 plays a secondary
role. When the number of iterations is large, the accu-
mulation of social knowledge continues to increase, just
the opposite. +is paper faces dynamic multi-local com-
putation problems and server computation selection
problems in the MEC task-sharing decision. To further
improve the PSO algorithm’s ability to explore the so-
lution space, we improved the acceleration factor from a
variation perspective. +e dynamic acceleration factor is
used instead of the static acceleration factor as shown in
equations (25) and (26).

x1 �
α
t
, (26)

x2 � βt
2
. (27)

In this equation, t indicates the number of iterations. α
indicates the individual cognitive impact factor, which takes
values ranging from 149 to 280 in this scenario. β indicates
the social cognitive impact factor, which takes values ranging
from 0.00013 to 0.000205 in this scenario.

4.1.3. Task Sharing Decision Method based on Improved PSO
Algorithm. +e mapping of the solution space of the im-
proved PSO algorithm to the task-sharing decision problem
is shown in Table 2.

+e task-sharing decision-solving process based on the
improved PSO algorithm is shown in Algorithm 1.

Algorithm 1 +e task sharing decision-solving process
based on the improved PSO algorithm.

Step 1. Initialize: Spatial dimension N � 50 and pop-
ulation size M � 100 were determined; inertial weight
extremes ωmax and ωmin were set to 0.7 and 0.1, re-
spectively; and initial position and initial velocity were
randomly generated within the search space.
Step 2. Find the adaptation value. Calculate the total
consumption of the system based on the adaptation
function shown in equation (13).
Step 3. Find the individual extreme value Lbestk

and the
population extreme value Gbest. Find the minimal value
Lbestk

of system consumption resulting from choosing
different offloading methods and the optimal value
Gbest of system consumption for all different combi-
nations of offloading methods.

Step 4. Update the particle position and velocity. Up-
date the velocity and position according to equations
(21) to (26). Each particle shares the same distance from
the current system eigenvalue. Particle k selects the
nearest consumption target to the system; the other
particles will vectorize their positions relative to particle
k and their preferred positions away from the small
system energy target.
Step 5. Update the individual polar value Lbestk

and the
group polar value Gbest. Compare the system con-
sumption value of each particle to Lbestk

. Replace Lbestk

with the current position if the current consumption
value is smaller than Lbestk

. +en, compare the mini-
mum system consumption position in Lbestk

with Gbest.
Replace Gbest if the system consumption value in Lbestk

is smaller than Gbest.
Step 6. Determine the termination condition. +e
termination condition is judged by the number of it-
erations of the algorithm. If the termination condition
is satisfied, exit the loop and return the superior search
result Gbest. If the termination condition is not satisfied,
repeat steps 2 to 5 until the termination condition is
satisfied.
Step 7.Outputs the optimal solution, which is the small
value consumed by the system.

Since the resource allocation problem is NP-hard, we use
a heuristic algorithm to solve it. It can be seen from the
pseudo-code of the algorithm that the running time depends
on the number of mobile devices participating in the allo-
cation and the number of iterations set. +e time complexity
is O(n2), but since n here is generally not a large number, the
running time is acceptable.

4.2.ResourceAllocationSolutionbasedonLagrangeMultiplier
Method. +e resource allocation model is aimed at the
benefit function of smart mobile terminals with different
reputation values, and the amount of resources available to
each smart mobile terminal is not greater than the com-
puting resources of the MEC server. To maximize the
benefits of MEC resources, the maximum value point of the
benefit function is only obtained within the bounded range
or boundary point of the computing resource. We know
that the Lagrangian multiplier method is an effective
method to determine whether the benefit function has the
maximum value of computing resources. So, this paper
adopts the Lagrangian multiplier method to solve the

Table 2: +e table describes the solution space of the improved
PSO algorithm with respect to the task sharing decision problem.

Improved PSO
algorithm Task-sharing decision-making issues

Spatial dimension Quantity

Stocks Pooling of different task-sharing
decisions

Particle location Different task-sharing decisions
Fitness value Total system consumption
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abovementioned unloading resource game allocation
model based on reputation value. Take the logarithm of the
resource allocation model and introduce the Lagrangian
factor τ to construct the Lagrangian function, as shown in
equation (20).

Using the one-time bias derivative of T for τ as 0, the
one-time bias derivative can determine the locally optimal
feasible solution, yielding equation (27).

τ �
−1

E − 􏽐
M
i�1 Ei(min)

. (28)

+e quadratic partial derivative of t is then performed to
obtain equation (28).

z
2
T

zτ2
�

1
τ2

. (29)

Since the quadratic partial derivative of τ is greater than
zero, it can be determined that there is a most-valued so-
lution to the benefit function.

Substitute equation (27) into equation (20) to obtain
equation (29).

Ei � Ei(min) + θi E − 􏽘
M

i�1
Ei(min)

⎛⎝ ⎞⎠. (30)

Ultimately, the MEC server allocates computational
resources according to the results of equation (29), performs
different computational task-sharing tasks, and reports the
results of the computation back to the end-user.

+e process of solving the resource allocation based on
the Lagrange multiplier method is shown in Algorithm 2.

Algorithm 2. +e process of solving the resource allo-
cation based on the Lagrange multiplier method.

Step 1. Taking the logarithm of the target function for
users with different reputation values and introducing the
Lagrange factor τ, then construct the Lagrange functionT

Step 2. Perform a first partial derivation of the con-
structed benefit function T about the computational
resource requirements Ei of each MEC server to obtain
a feasible solution for the local superiority of the
computational resources. +en, perform a second
partial derivation, and if the second partial derivation is
not equal to 0 then prove that the benefit function has a
valued solution.
Step 3. Make the value of the bias derivative of the
benefit function T with respect to the computational
resource requirement Ei for each MEC server equal to
0, and solve for the stationary point Ei � Ei(min).
Step 4. Obtain a bias derivative of the benefit function T

with respect to the Lagrange factor τ once.

zT

zτ
� −

1
τ

+ 􏽘
M

i�1
Ei(min). (31)

Step 5. From the formula (28), it can be seen that the
benefit function exists as the most valuable solution.
+en, make the value of the benefit function T on the
Lagrange factor τ of the first partial derivative equal to 0,
the solution to the value of τ as shown in formula (27).

Ei � Ei(min) +
Gi

􏽐
M
i�1 Gi

E − 􏽘
M

i�1
Ei(min)

⎛⎝ ⎞⎠. (32)

Algorithm 2 can be described in Algorithm 2. It can be
seen that the time complexity of Algorithm 2 is O(n).

Input: acceleration factors x1, x2, inertia weight ω, iterations t0, task-sharing decision model mentioned above
Output: the minimum of total system consumption of task-sharing decision model
Begin

(1) N � 50, M � 100//spatial dimension, population size
(2) ωminmax, t � 0
(3) fitness(x)←Equation (13)//take total system consumption as the fitness function
(4) For each particle k

(5) Initialize velocity Vk and position Lk for particle k randomly
(6) evaluate particle k and set Lbestk

� Lk

(7) End for
(8) While t≤ t0
(9) For k� 1 to 100
(10) Update the velocity and position of particle i according to equations (21), (22), (25), and (26)
(11) Evaluate particle i
(12) if fitness(Lk)<fitness(Lbestk

)

(13) Lbestk
←Lk

(14) if fitness(Lbestk
)<fitness(Gbest)

(15) Gbest←Lbestk

(16) End for
(17) End while
(18) print Gbest

Stop

ALGORITHM 1: Task-sharing decision model using improved PSO algorithm.
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5. Experimental Simulation

In this paper, we use ONE, an open-source simulation tool,
to evaluate the performance of DERV. We compare the
packet transfer ratio, average end-to-end delay [38], routing
overhead [39], and energy consumption with the FCNS,
SCR, MILECR, and epidemic algorithm [40] to verify the
advantages of DERV in terms of system overhead. In ad-
dition, we considered the effects of three different schemes
on the overall energy consumption of the model [41],
namely, low energy task sharing, randomly assigned task-
sharing [42], and task sharing with joint delay and energy
consumption.

5.1. Parameter Settings. To follow the characteristics of
massive data transfer in a short period in a 5G environment,
this paper uses real datasets downloaded from CRAWDAD
to drive node activities, and datasets from Infocom 5,
Infocom 6, Cambridge, and Intel are selected for simulation
[43]. +e specific simulation environment parameter set-
tings are shown in Table 3.

+e number of nodes set up in this experiment is 50, the
node computing power is randomly assigned to
500–1000MHz/s, and the computing power of the server is
assigned to 5GHz/s. +e specific physical model parameter
settings are shown in Table 4.

5.2.Metrics. Metrics are used to measure the performance of
algorithms in opportunistic complex social networks. Four
are selected in this paper, they are packet transfer ratio,
average end-to-end delay, routing overhead, and overall
energy consumption. Here is a brief introduction of what
they mean.

(1) Packet transfer ratio: the ratio of the number of
packets received at the destination to the number of
packets in recent years, with the deep integration ts
sent from the source.

(2) Average end-to-end delay: the average delay in data
transmission between two nodes.

(3) Routing overhead: the total size of routing packets
sent for maintenance and also for route discovery.

(4) Energy consumption: ALL the energy used in data
transmission between two nodes.

5.3. Analysis of Results. As the simulation time increases, the
clustered bar graphs in Figures 3(a)–3(d) show the packet
transfer ratios of the DERV, FCNS, SCR, MILECR, and
epidemic algorithms. When the simulation time is short, the
performance advantage of the DERV algorithm is not as
pronounced as the other four algorithms, but as the sim-
ulation time increases, the success rate of the DERV algo-
rithm is significantly higher than that of the other four
algorithms. +is is because our solution fully considers the
problem of nodes maliciously competing for computational
resources, and introduces the measure of reputation, where
nodes with a higher reputation are allocated more com-
putational resources, thus achieving an overall optimal al-
location of computational resources.

Figures 4(a)–4(d) show the comparison results of the
average end-to-end delay for the DERV, FCNS, SCR,
MILECR, and epidemic algorithms as the simulation time
increases. Among the comparison schemes, the DERV
strategy has the lowest average end-to-end latency and this
advantage becomes more pronounced with the increase in
the simulation time. +is is because the DERV algorithm
introduces delay and energy consumption trade-off factors,
enables full sharing of multitasking computational resources
across multiple smart mobile devices, and optimizes the
routing strategy for data transfer more efficiently than the
other schemes. In contrast, regarding the epidemic algo-
rithm, a large number of copies of information are generated
during data transfer, which will lead to an increase in for-
warding delay. In addition, SCR and MILECR algorithms
use the strategy of neighbor node cooperative transmission,

Input: the reputation value Gi, the minimum computational resource Ei(min) of every device i, the total computational resource of
the MEC server E

Output: the deserved computational resource Ei of every device i
(1) Begin
(2) For i� 1 to M
(3) θi � (Gi/􏽐

M
i�1Gi)//Calculate the authoritative decision factors

(4) End for
(5) T � (􏽐

M
i�1θi ln(Ei − Ei(min))) + τ(􏽐

M
i�1 Ei − E)//Construct Lagrangian function

(6) For each device i requesting for resource
(7) Calculate the partial derivative of T with respect to Ei

(8) If (z2T/zτ2)> 0
(9) For i� 1 to M
(10) Ei � Ei(min) + (Gi/􏽐

M
i�1Gi)(E − 􏽐

M
i�1Ei(min))

(11) End for
(12) End if
(13) Print Ei(i � 1 toM)

Stop

ALGORITHM 2: Resource allocation based on the Lagrange multiplier method.
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Table 3: +e parameter settings for a specific simulation environment.

Dataset Infocom5 Infocom6 Cambridge Intel
Device iMote iMote iMote iMote
Duration (day) 3.5 4 11.5 4
Number of experimental devices 41 98 52 9
Number of internal contacts iMote 22459 170601 10873 1364
Number of nodes 41 98 52 9
Buffer size(M) 5 5 5 5
TTL 60min 60min 2 days 0.5 day

Table 4: Specific physical model parameter settings.

Parameters Value
Node’s computing power (GHz) [0.5,1.0]
Node’s reputation value [0,10]
Time requirement factor [0,1]
Acer station’s computing power (GHz) 10
Power (mW) 100
Gain between nodes and station 10−6

Background noise power (dBm) −100
+e actual bandwidth of the uplink calculation request (kHz) 15
Calculating task data maximum (kB) 5000
Individual CPU power consumption of the station (W) 5
Total CPU required for the task (mc) 1000
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Figure 3: (a)–(d)+e packet transfer ratios of the DERV, FCNS, SCR, MILECR, and epidemic algorithms on datasets Infocom5, Infocom6,
Cambridge, Intel.
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Figure 4: (a–d) +e average end-to-end delay for the DERV, FCNS, SCR, MILECR, and epidemic algorithms on datasets Infocom5,
Infocom6, Cambridge, Intel.
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Figure 5: Continued.
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which reduces the impact of node cache on message
transmission, but still has high latency when the experiment
is longer. FCNS algorithm is more affected by node cache
and has poorer performance when the node cache space is
smaller. In summary, the DERV algorithm is the best
method to improve the average end-to-end delay perfor-
mance in high-speed communication scenarios compared to
other algorithms.

Figures 5(a) and 5(b) show the comparison results of the
routing overhead of the DERV, FCNS, SCR, MILECR, and
epidemic algorithms when the simulation time increases.
DERV can better predict the next-hop node compared to
other models. By sending messages to nodes that satisfy the
reputation value in the communication domain, the routing
cost of sending messages to other noncooperating nodes can
be effectively reduced. In addition, nodes do not need to use
a computational model for continuous computation and
decision-making during message transmission. +is can
reduce the time and routing resource costs. In the case of the
epidemic algorithm, a large number of redundant message
copies require time and computational resources, and the
routing overhead is significantly higher than that of other
algorithms. For SCR and MILECR algorithms, the

cooperative mechanism facilitates the rational allocation of
computational resources, so the cost of these two algorithms
is at an intermediate level. +e FCNS algorithm takes into
account the mobile similarity of nodes, but does not fully
consider the transmission preferences of nodes, so its per-
formance is poorer than the DERV algorithm. Compared to
the results, DERV outperforms the other four models in
terms of routing overhead.

Figure 6 shows a comparison of the overall energy
consumption of three different schemes, namely, low energy
task sharing (LETS), randomly assigned task sharing
(RATS), and task sharing with joint time delay and energy
consumption in this paper. As shown in the figure, as the
number of end nodes increases, the total energy con-
sumption of the system under all three schemes increases,
while the total energy consumption of the scheme proposed
in this paper is always at the lowest level.

6. Conclusion

+is paper proposes a task-sharing model (DERV) based on
reputation value, which solves the problems of high latency,
high energy consumption, and low reliability faced by
computing sharing in emerging mobile applications in the
big data environment. DERV divides the computing
sharing task in the opportunistic complex IoTenvironment
into two processes: shared decision-making and resource
allocation. +e experimental results show that the com-
puting task-sharing model proposed in this paper can meet
the service requirements of low latency, low energy con-
sumption, and high reliability in emerging intelligent ap-
plications, and can effectively realize the overall optimized
configuration of computing shared resources. Among
them, the main innovations and contributions of this ar-
ticle are as follows:

(1) +is article focuses on providing low-latency, low-
energy consumption, and high-reliability service
quality guarantees for time-delay and energy-sen-
sitive computing-intensive smart mobile terminals
in a big data environment. We propose a network
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schemes.
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Figure 5: (a, b) +e routing overhead of the DERV, FCNS, SCR, MILECR, and epidemic algorithms on datasets Infocom5, Infocom6,
Cambridge, Intel.
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model composed of users, MEC servers, and trusted
institutions.

(2) To realize the multitasking computational task-
sharing scheme for multiple smart mobile terminals,
we propose a task-sharing decision model that takes
into account both delay and energy consumption.
+e model uses an improved PSO algorithm to
achieve an optimal computing task-sharing scheme
with low latency and low energy consumption.

(3) Aiming at the problem of unreasonable resource
allocation caused by malicious competition for re-
sources due to irregular behavior in the IoT system,
this paper proposes a bargaining game model based
on reputation value, which mainly uses the La-
grangian multiplier method to realize the calculation
Reliable allocation of resources.

In the future, with the increase in the computing power
of mobile devices in opportunistic complex social networks,
the DERV model proposed in this paper can be applied to
the transmission environment of 5G and big data networks.
We will collect larger real datasets in social scenarios and
explore ways to improve information transmission
performance.
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