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In this paper, the inherent stability problem for multibody systems with variable-stiffness springs (VSSs) is studied. Since
multibody systems with VSSs may consume energy during the variation of stiffness, the inherent stability is not always ensured.
)e motivation of this paper is to present sufficient conditions that ensure the inherent stability of multibody systems with VSSs.
)e absolute stability theory is adopted, and N-degree-of-freedom (DOF) systems with VSSs are formulated as a Lur’e form.
Furthermore, based on the circle criterion, sufficient conditions for the inherent stability of the systems are obtained. In order to
verify these conditions, both frequency-domain and time-domain numerical simulations are conducted for several typical low-
DOF systems.

1. Introduction

Vibration control can generally be classified into passive
control, active control, and semiactive control. Semiactive
control integrates the advantages of both excellent control
performance of active control and high reliability of passive
control, which can be realized by online adjusting the
characteristic parameters (such as stiffness, damping, etc.) of
originally passive devices [1]. Since semiactive control de-
vices are obtained based on their passive counterparts, it is
expected to inherit the stability of passive control, which
means that even though failures and improper control ac-
tions of the parameter adjustments may occur, the semi-
active control system can remain stable. Such kind of
property is known as the inherent stability of semiactive
control systems [2]. However, it has been demonstrated that
inherent stability of semiactive control systems only con-
ditionally holds for some special semiactive devices [2].

Variable-stiffness spring (VSS) is a commonly used
semiactive control device because of its effectiveness in
modifying the resonance frequencies of vibration control
systems [3]. In [4], the VSS-based system is applied in
seismic building control, where VSS is aimed at establishing

a nonresonant state against earthquake excitation. Up to
now, different realizations for VSS have been proposed. For
example, a resettable VSS (RVSS) is proposed to enhance the
performance of a tuned mass damper system [5]. In [6], a
VSS is developed by integrating the magnetorheological
fluid into a damper. Based on the force-current analogy
between mechanical systems and electrical circuits, a novel
electrical VSS (EVSS) is proposed to reduce the suspension
deflection of a seat suspension [7]. Moreover, the perfor-
mance benefits of VSSs in robotic applications have been
widely demonstrated [8, 9].

A graphical representation on the relationship among
vibration control, passivity, and inherent stability is shown
in Figure 1. Note that the terminologies “passive” (seen in
Definition 4) and “active” are mutually exclusive with clear
boundary in definition according to whether energy can be
internally generated. However, whether semiactive systems
are “passive” or “active” involves some abuse of notation [2].
)is means that semiactive control can be further classified
into “active” semiactive control and “passive” semiactive
control. For example, in [2], it is demonstrated that certain
semiactive devices including nonnegative variable-damping
dampers, resettable-stiffness springs, and resettable-
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inertance inerters are “passive”; in [10–12], the VSSs are
actually “active” due to the less energy required for adjusting
the parameters. For “passive” semiactive control systems,
inherent stability can be guaranteed due to the passivity
formalism [13], as shown in the green lines in Figure 1. For
“active” semiactive control systems, inherent stability can
not be guaranteed. In [14], it is proved that instabilities can
be induced by VSSs. However, for “active” VSS-based
semiactive control systems, how to ensure inherent stability
has not yet been studied, which is the main concern of this
paper, as shown in the red line in Figure 1. Since the stiffness
influences the potential energy of a system, a certain amount
of energy is generally required to adjust the stiffness. )is
means that “active” VSSs are more common than the
“passive” ones. )erefore, it is of great theoretical and
practical significance to investigate the inherent stability
problem of VSSs-based systems.

)e VSS-based systems are typical nonlinear control
systems, where the nonlinearities are induced by the variable
stiffness within a sector reflecting the bounds of VSSs. For
nonlinear mechanical systems, several control strategies
have been proposed to ensure stability and performance,
such as sliding mode backstepping [15], adaptive finite-time
control [16, 17], etc. In [16], the problem of finite-time fault-
tolerant consensus protocols for a class of uncertain multiple
mechanical systems is investigated, and the proposed

scheme can guarantee that the position errors and the ve-
locity errors between any two mechanical systems converge
to a small neighbourhood of zero in finite time. In [17], an
adaptive fuzzy finite-time control scheme is proposed to
guarantee the stability of a class of nonlinear systems with
unknown nonlinearities. Note that, for the aforementioned
papers, stability of the close-loop system is achieved.
However, the inherent stability studied in this paper implies
the stability for a group of control laws within certain
sectors, instead of a special control law in the aforemen-
tioned papers. )erefore, in this paper, the inherent stability
problem for the multibody systems with VSSs is studied via
the absolute stability theory, and the general multibody
system with VSSs is transformed into a Lur’e-type system
described as a linear passive systemwith feedback-connected
nonlinearities. )e most celebrated methods to analyze the
absolute stability of a Lur’e-type systems are circle criterion
(CC) and Popov criterion (PC). CC can deal with more
diverse nonlinearities including time-varying ones than PC
[18]. Since the stiffness of VSSs is time-varying in general,
CC is adopted to verify the absolute stability of the multi-
body systems with VSSs. Furthermore, for several typical
low-DOF systems, sufficient conditions imposed on the
upper and lower bounds of VSSs are derived and verified via
numerical examples in both frequency domain and time
domain.

Passive control Semi-active control Active control

Inherent stability
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Passive Active

Passivity formalism [13]
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(d’ activeĐ)
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Figure 1: )e relationship among passivity, stability, and vibration control.
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)e main contributions of this paper are as follows:

(1) )e inherent stability problem for the multibody
systems with “active” VSSs is investigated, which has
not been studied before but with great theoretical
and practical significance. Sufficient conditions for
the inherent stability of the general multibody sys-
tems with “active” VSSs are derived and analyzed via
the absolute stability theory.

(2) )e inherent stability of several typical low-DOF
systems with “active” VSSs is analyzed. Moreover,
extensive numerical examples based on low-DOF
systems are conducted to show the effectiveness of
the results of this paper.

)e structure of this paper is organized as follows.
Definitions and lemmas used in this paper are summarized
in Section 2. In Section 3, the general multibody systems
with VSSs are modeled as Lur’e-type systems, and the ab-
solute stability of these systems is demonstrated. Numerical
simulation of the absolute stability of several low-DOF
systems is given in Section 4. Conclusions are drawn in
Section 5.

2. Definitions and Lemmas

In this section, some definitions and lemmas related to the
absolute analysis of the multibody systems with VSSs are
given.

Definition 1 (see [18]). )e definitions of the sector ter-
minology in both the scalar and multivariable cases are as
follows:

(i) Consider a scalar function Ψ(t, y) with Ψ(t, 0) ≡ 0,
t≥ 0; it is said to belong to the sector [K1, K2] if

K1y
2 ≤Ψ(t, y)y≤K2y

2
, ∀t≥ 0, (1)

where K1, K2 ∈ R and K1 <K2.
(ii) Consider a specific multivariable function Ψ(t, y)

with Ψ(t, 0) ≡ 0, t≥ 0, which can be decoupled to
Ψ(t, y) � [Ψ1(t, y1),Ψ2(t, y2), . . . ,Ψp(t, yp)]T; it is
said to belong to the sector [K1,K2] if

Ψ(t, y) − K1y􏼂 􏼃
T Ψ(t, y) − K2y􏼂 􏼃≤ 0, (2)

where K1 � diag α1, α2, . . . , αp􏽮 􏽯, K2 � diag β1,􏼈

β2, . . . , βp}, and βi > αi.

Definition 2 (see [19]). Consider the Lur’e system

_x � Ax + Bu,

y � Cx,

u � − Ψ(t, y),

⎧⎪⎪⎨

⎪⎪⎩
(3)

where (A,B) is controllable, (A,C) is observable, and
Ψ(t, y) is a memoryless, possibly time-varying, nonlinearity,
which is piecewise continuous in t and locally Lipschitz in y.
In addition,Ψ(t, y) satisfies a sector condition per Definition

1. )e system is absolutely stable if the origin is globally
uniformly asymptotically stable for any nonlinearity in the
given sector. It is absolutely stable with a finite domain if the
origin is uniformly asymptotically stable.

Definition 3 (see [18]). Denote a disk D(K1, K2) for
Ψ(t, y) ∈ [K1, K2] where K1 and K2 are constant, as the
closed disk in the complex plane centred at
− (K1 + K2)/2K1K2 + j0 and with radius (K2 − K1)/
2|K1K2|.

Definition 4 (see [2]). A system whose input is us and output
is ys, for which it is defined a lower bounded (Lyapunov-like)
storage function V(t), is said to be “passive” if it satisfies the
following equation:

_V(t) � yT
s us − g(t), (4)

where g(t)≥ 0, ∀t ∈ [0, T].

Lemma 1 (see [19]). #e system described in Definition 2 is
absolutely stable if

(i) Ψ ∈ [K1,∞] and G(s)[I + K1G(s)]− 1 is strictly
positive real

(ii) Ψ ∈ [K1,K2], with K � K2 − K1 � KT > 0, and [I +

K2G(s)][I + K1G(s)]− 1 is strictly positive real

Lemma 2 (see [19]). Consider a scalar system of equation (3),
where (A,B,C,D) is a minimal realization of G(s) and
Ψ ∈ [K1, K2].#en, the system is absolutely stable if one of the
following conditions is satisfied, as appropriate:

(i) If 0<K1 <K2, the Nyquist plot of G(jω) does not
enter the disk D(K1, K2) and encircles it m times in
the counterclockwise direction, where m is the
number of poles of G(s) with positive real parts

(ii) If 0 � K1 <K2, G(s) is Hurwitz, and the Nyquist plot
of G(jω) lies to the right of the vertical line defined by
Re(s) � − 1/K2

(iii) If K1 < 0<K2, G(s) is Hurwitz, and the Nyquist plot
of G(jω) lies in the interior of the disk D(K1, K2)

If the sector condition is satisfied only on an interval
[a, b], the foregoing conditions ensure that the system is
absolutely stable with a finite domain.

Lemma 3 (see [20]). #e transfer matrix G(s) is a strictly
positive real matrix if G(s − ε) is a positive real matrix for
some ε> 0.

Lemma 4 (see [21]). Let G be a real m × m matrix-valued
rational function of the form

G(s) � C(sI − A)
− 1B + D, (5)

if the linear matrix inequalities (LMIs)
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ATX + XA XB − C

BTX − CT
− D − DT

⎡⎣ ⎤⎦≤ 0
⎧⎨

⎩ , X≥ 0, (6)

have a solution X of the LMIs.

Lemma 5 (see [20]). Consider the m × m rational matrix
G(s) � C(sI − A)− 1B + D. #en G(s) is a strictly positive
real matrix if and only if

(i) All elements of G(s) are analytic in Re(s)≥ 0
(ii) G(jω) + GT(− jω)> 0, ∀ω ∈ R

(iii) limω⟶∞ω2[G(jω) + GT(− jω)]> 0, if det[D+

DT] � 0 or lim
ω⟶∞

[G(jω) + GT(− jω)]> 0, if det
[D + DT]≠ 0

Lemma 6 (see [22]). Consider the m × m rational matrix
G(s) � C(sI − A)− 1B + D. If all the eigenvalues of A have
negative real part, then there is a β> 0 such that G is analytic
in Re(s)> − β.

3. Absolute Stability Analysis of N-DOF
Multibody Systems with VSSs

Consider a N-DOF multibody system with a dynamic
equation as follows:

Mp €q (t) + Cp _q(t) + Kpq(t) � F(t), (7)

where q(t) ∈ RN×1 is the generalized coordinate vector of
each DOF and Mp, Cp, and Kp ∈ RN×N are the mass,
damping, and stiffness matrices of the N-DOF multibody
system, respectively. F(t) ∈ RN×1 is the force applied by
VSSs and is imposed on the N-DOF multibody system. Note
that equation (7) represents a general description of mul-
tibody systems, which can be used to model vehicles,
bridges, buildings, etc. )e main problem of this paper is as
follows.

Problem 1. Consider a N-DOF system with nk VSSs where
the stiffness can be adjusted online within certain ranges.
Determine the ranges for the stiffness of VSSs where the
inherent stability can always be guaranteed.

Since it has been proved in [14] that instability can be
induced by “active” VSSs, Problem 1 is intended to propose
sufficient conditions for the “active” VSSs to guarantee the
inherent stability on condition that the stiffness of VSSs is
adjusted within certain ranges. In practice, the stiffness of
VSSs is always bounded due to the physical realizations. For
example, for variable-stiffness leaf springs [23], the stiffness
is limited by the geometry; for a variable stiffness mechanism
[24], the stiffness is limited by the rotation amount of the
springs, etc. )erefore, apart from the theoretical interest of
studying Problem 1, the ranges obtained from Problem 1 can
provide practical guidance for the selection andmanufacture
of VSSs.

Assume that there are nk VSSs to be applied to the
multibody system, where nk ≤ n(n + 1)/2 (since VSS has two
mechanical terminals, there are at most n(n + 1)/2 VSSs that

can be applied in a N-DOF system). )e locations for
connecting VSSs are numbered as 0, 1, 2, . . . , n, where lo-
cation 0 is the inertial frame (mechanical ground) and lo-
cations 1, 2, . . . , n correspond to the N-DOFs, respectively.
For a VSS kl, l � [1, . . . , nk], its two terminals are connected
to the locations il and jl, where il and jl are some integers
between [0, . . . , n] and jl > il.

Proposition 1. If il ≠ 0, eil,jl
is a column vector with the ilth

entry as 1, the jlth entry as − 1, and others as 0; otherwise, if
il � 0, then eil ,jl

is a column vector with the jlth entry as 1 and
others as 0.

Proof. If il ≠ 0, the relevant parts of the dynamic equation
can be obtained as

mil
€qil

+ · · · � kls qjl
− qil

􏼐 􏼑,

mjl
€qjl

+ · · · � − kls qjl
− qil

􏼐 􏼑,

⎧⎪⎨

⎪⎩
(8)

where the abridged parts are not affected by the ilth VSS.
)erefore, eil,jl

� [0, 0, . . . , − 1, 0, . . . , 1, 0, . . . , 0]T, where
line il is − 1 and line jl is 1 in this vector.

If il � 0, the relevant parts of the dynamic equation can
be obtained as

mjl
€qjl

+ · · · � − klsqjl
, (9)

where the abridged parts are not affected by the ilth VSS.
)erefore, eil ,jl

� [0, 0, . . . , 1, 0, . . . , 0]T, where line jl is 1 in
this vector.

According to Proposition 1, if il ≠ 0, eil ,jl
is a column

vector with the il entry as 1, jl entry as − 1, and others as 0;
otherwise, if il � 0, then eil ,jl

is a column vector with the jl

entry as 1 and others as 0.
)en, the dynamic equation of the multibody system

with nk VSSs can be represented as

Mp €q (t) + Cp _q(t) + Kpq(t) + 􏽘

nk

l�1
kl(t)eil ,jl

eT
il,jl

q(t) � 0,

(10)

where kl(t) is the stiffness of the VSS l and eil,jl
∈ RN×1 is the

position vector for VSS l.
Denote Hk ∈ RN×nk with

Hk � ei1 ,j1
, ei2 ,j2

, . . . , eink
,jnk

􏼔 􏼕, (11)

and then, equation (10) can be rewritten as

Mp €q (t) + Cp _q(t) + Kpq(t) + HkKs(t)HT
kq(t) � 0, (12)

where Ks(t) � diag k1s(t), . . . , knks(t)􏽮 􏽯.
)erefore,

€q (t) � − M− 1
p Cp _q(t) − M− 1

p Kpq(t) − M− 1
p HkKs(t)HT

kq(t).

(13)

Denoting

x � q(t)
T
, _q(t)

T
􏽨 􏽩

T
, (14)
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one can obtain the state-space representation of the N-DOF
system with VSSs as

_x � Ax + Bu,

y � Cx,

u � − Ψ(t, y),

⎧⎪⎪⎨

⎪⎪⎩
(15)

where

A �
0N×N IN×N

− M− 1
p Kp − M− 1

p Cp

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B �

0N×nk

M− 1
p Hk

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

C � HT
k 0nk×N􏽨 􏽩,

Ψ(t, y) � Ks(t)y.

(16)

□

Remark 1. Note that, in [2], the inherently stability of
“passive” VSS-based semiactive systems is studied, while in
this paper, multibody systems with VSSs are “active.” In the
following, the passivity of these systems is analyzed via
energy consumption.

Note that Hk is a matrix containing pairs (or singleton)
of connection points such that the vector of relative dis-
placements across the devices is qc � HT

kq. Consider a
storage function that is equal to the potential energy Ep

stored in VSSs:

V(t) � 􏽚
qc

0
qT

c Ks(t)dqc. (17)

)e derivative of V(t) equals

_V(t) �
z 􏽒

qc

0 qT
c Ks(t)dqc

zqc

· _qc +
z 􏽒

qc

0 qT
c Ks(t)dqc

zKs(t)
· _Ks(t)

� _q
T
c Ks(t)qc +

1
2
qT

c
_Ks(t)qc.

(18)

According to Definition 4, for the VSSs-based systems,
assume that the output is ys � _qc, and the external power
input us � Ks(t)qc. Substituting equation (18) into equation
(4), the dissipated power can be solved as follows:

g(t) � −
1
2
qT

c
_Ks(t)qc. (19)

In [2], to ensure the passivity, the resettable-stiffness
spring is proposed. However, the restriction is that the
adjustment actions of the spring only take place at the in-
stant that qc � 0. In this paper, “active” multibody systems
with VSSs are studied. Compared with the restriction to
ensure the passivity, it should only satisfy that _Ks(t)> 0,
∃t ∈ [0, T], which is common in practice. To the best of our
knowledge, this is for the first time in the spring-related
research field.

Remark 2. Note that, in Definition 1, the bounds of the
sector are better to be constants or diagonal matrices for the
absolute stability analysis, and the matrix Ks(t) in equation
(15) is always diagonal no matter what the position and
number of VSSs are. )erefore, a Lur’e-type form (15) can
represent the general multibody systems with VSSs.

)e transfer function of equation (15) is

G(s) � C(sI − A)
− 1B + D. (20)

Let

H(s) � I + KsG(s)􏼂 􏼃 I + KsG(s)􏼂 􏼃
− 1

, (21)

where Ks and Ks are the upper and lower bound of the
matrix Ks.

From Lemma 4, the transfer function H(s − εN) is
positive real, if there exists a symmetric, positive-definite
matrix XN, which satisfies

AT
NXN + XNAN XNBN − CN

BT
NXN − CT

N − DN − DT
N

⎡⎢⎣ ⎤⎥⎦≤ 0, (22)

where AN,BN,CN,DN􏼈 􏼉 is converted by the transfer
function H(s − εN).

From Lemma 3, the transfer function H(s) is strictly
positive real if there exist some εN, which satisfies thatH(s −

εN) is positive real.
According to Lemma 1, if the transfer function H(s) is

strictly positive real, the N-DOF multibody system with
VSSs is absolutely stable.

4. Numerical Simulation

In this section, numerical simulations of the absolute sta-
bility of several low-DOF systems are conducted. In Section
4.1, the absolute stability problem of semiactive control
systems with only one VSS is studied. Section 4.2 derives the
sufficient conditions for semiactive control systems with
several VSSs.

4.1. Absolute Stability Analysis of the System with One VSS

Theorem 1. Consider a 1-DOF system with one VSS, seen in
Figure 2; the dimensionless dynamic equation is

€x1 + 2ξ1ω1 _x1 + ω2
1 + ω2

1s(t)􏽨 􏽩x1 � 0, (23)

where ξ1 � c1/(2
�����
k1m1

􏽰
), ω1 �

�����
k1/m1

􏽰
, ω1s(t) ���������

k1s(t)/m1
􏽰

, and 0≤ω1s ≤ω1s(t)≤ω1s (m1, c1, k1, k1s(t), and
x1 represent mass, damping, stiffness, variable stiffness, and
displacement of the 1-DOF system, respectively). If it satisfies
equation (24), the 1-DOF system with one VSS is absolutely
stable.

a> 0, or
a≤ 0,

4 ω2
1 + ω2

1s) ω2
1 + ω2

1s􏼐 􏼑 − a
2 > 0,􏼐

⎧⎨

⎩ (24)

where a � (4ξ21 − 2)ω2
1 − (ω2

1s + ω2
1s).
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Proof. Denote x1 � [x1, _x1]
T; equation (23) can be con-

verted to
_x1 � A1x1 + B1u1,

y1 � C1x1,

u1 � − Ψ1 t, y1( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩
(25)

where

A1 �
0 1

− ω2
1 − 2ξ1ω1

⎡⎣ ⎤⎦,

B1 �
0

1
⎡⎣ ⎤⎦,

C1 � 1 0􏼂 􏼃,

Ψ1 t, y1( 􏼁 � ω2
1sy1.

(26)

)e transfer function of equation (25) is

G1(s) � C1 sI − A1( 􏼁
− 1B1 �

1
s
2

+ 2ξ1ω1s + ω2
1
. (27)

Let

H1(s) � 1 + ω2
1sG1(s)􏽨 􏽩 1 + ω2

1sG1(s)􏽨 􏽩
− 1

� 1 +
ω2
1s − ω2

1s

s
2

+ 2ξ1ω1s + ω2
1 + ω2

1s

.

(28)

)e transfer function H1(s) can be converted to state-
space realization (Aα,Bα,Cα,Dα), where

Aα �
0 1

− ω2
1 − ω 2

1s − 2ξ1ω1

⎛⎝ ⎞⎠,

Bα �
0

ω

2

1s

− ω 2
1s

⎛⎝ ⎞⎠,

Cα � 1 0( 􏼁,

Dα � 1.

(29)

It is clear that all the eigenvalues of Aα have negative real
part. )en, according to Lemma 6, all elements of H1(s) are
analytic in Re(s)≥ 0, which satisfies list 1 of Lemma 5.

According to list 1 of Lemma 5, it is obvious that all
elements of H1(s) are analytic in Re(s)≥ 0. According to list
2 of Lemma 5,

H1(jω) + H
T
1 (− jω) � 1 +

ω2
1s − ω2

1s􏼐 􏼑 − ω2
+ ω2

1 + ω2
1s􏼐 􏼑

− ω2
+ ω2

1 + ω2
1s􏼐 􏼑

2
+ 2ξ1ω1ω( 􏼁

2
.

(30)

In order to satisfy that H1(jω) + HT
1 (− jω)> 0, ∀ω ∈ R,

it can be obtained that

f(ω)> 0, ∀ω ∈ R, (31)

where f(ω) � ω4 + [(2ξ1ω1)
2 − 2(ω2

1 +ω2
1s) − (ω2

1s−

ω2
1s)]ω2 + (ω2

1 + ω2
1s)(ω2

1 + ω2
1s).

According to the position of the symmetry axis, the
following inequality can be obtained:

2ξ1ω1( 􏼁
2

− 2 ω2
1 + ω2

1s􏼐 􏼑 − ω2
1s − ω2

1s􏼐 􏼑≥ 0,

f(0)> 0,

ω1s <ω1s,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

or

2ξ1ω1( 􏼁
2

− 2 ω2
1 + ω2

1s􏼐 􏼑 − ω2
1s − ω2

1s􏼐 􏼑< 0,

fmin(ω)> 0;

ω1s <ω1s.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(33)

By simplifying the inequalities equations (32) and (33),
the following sufficient condition can be obtained:

a> 0,

or
a≤ 0,

4 ω2
1 + ω2

1s􏼐 􏼑 ω2
1 + ω2

1s􏼐 􏼑 − a
2 > 0,

⎧⎨

⎩

(34)

where a � 4(ω2
1 + ω2

1s)(ω2
1 + ω2

1s).
)erefore, in order to satisfy that H1(jω) + HT

1 (− jω)

> 0, ∀ω ∈ R, equation (34) should be satisfied.
According to list 3 of Lemma 5, note that D � 1 inH1(s),

and then

lim
ω⟶∞

H1(jω) + H
T
1 (− jω)􏽨 􏽩 � 2> 0. (35)

)erefore, list 3 of Lemma 5 is obviously satisfied in all
conditions.

In summary, if equation (34) is satisfied, H1(s) is a
strictly positive real matrix.

According to Lemma 1, note that Ψ ∈ [ω2
1s,ω

2
1s], and

H1(s) � 1 + ω2
1sG1(s)􏽨 􏽩 1 + ω2

1sG1(s)]
− 1

,􏽨 (36)

is strictly positive real. )erefore, the 1-DOF system with
one VSS is absolutely stable. □

k1+k1s (t)

c1

x1

m1

Figure 2: A 1-DOF model with a VSS.
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Example 1. Consider a 1-DOF system, seen in Figure 2, and
choose ω1 � 1, ξ1 � 2, ω1s � 1. In the following, the range of
ω1s is calculated by equation (32) or (33). From equation
(32), the range of ω1s is calculated as (1,

��
13

√
], and from

equation (33), the range is (
��
13

√
, 5.321]. )erefore, ω1s can

be set from 1 to 5.321 to ensure the absolute stability of the 1-
DOF system. Figure 3 shows the Nyquist plot and disk plot
of the 1-DOF system; the system is absolutely stable,
according to Lemma 2.

Apart from verification in the frequency domain, time-
domain simulation is also considered as follows. Two kinds
of nonlinearities are considered. For the first one, the se-
lected ω1s is given in equation (37), which is in the range
ω1s ∈ (1, 5.321]. )e other selected ω1s is given in equation
(38), which is out of the range ω1s ∈ (1, 5.321].

ω1s � sin(t) + 2, (37)

ω1s �
7, x1(t) _x1(t)> 0,

14, x1(t) _x1(t)≤ 0.
􏼨 (38)

Time-domain simulation is shown in Figure 4.
Figure 4(a) shows the phase trajectory of state x1 when the
selectedω1s is in the stable range.)e phase trajectory from a
specific initial condition (x1(0) � 1, _x1(0) � 0), which
converge to the origin, indicates the stability of the system.
Figure 4(b) shows the phase trajectory of state x1 when the
selected ω1s is out of the stable range. )e phase trajectory
from a specific initial condition (x1(0) � 1, _x1(0) � 0),
which is divergent, indicates the instability of the system.

Remark 3. Note that Lemmas 3 and 4 can also verify
whether H1(s) is strictly positive real, apart from Lemma 5.
If there exist positive ε1 and symmetric, positive-definite
matrix X1 satisfying equation (39), the 1-DOF system with
one VSS is absolutely stable.

AT
11X1 + X1A11 X1B11 − C11

BT
11X1 − CT

11 − D11 − DT
11

⎡⎢⎣ ⎤⎥⎦≤ 0, (39)

where (A11,B11,C11,D11) is converted by H1(s − ε1).
In the following, numerical simulation is given to

compare the conservatism. )e values of ω1s, ω1, and ξ1 are
the same as Example 1. Equation (33) is feasible when ω1s

varies from 1 to 5.3. Figure 5 shows the Nyquist plot and disk
plot of the 1-DOF system; the system is absolutely stable,
according to Lemma 2.

Note that the range ofω1s is smaller than that in Example
1; the LMI condition in this remark is more conservative
than that in )eorem 1. )erefore, it is better to analyze the
absolute stability of a 1-DOF system with variable stiffness
spring by equation (24) in )eorem 1.

Example 2. A comparison between the method proposed in
this paper and the traditional stability analysis method with a
quadratic Lyapunov function for the 1-DOF system shown
in Figure 2 is conducted.)e values ofω1 and ξ1 are the same
as those in Example 1, and a VSS with a periodic stiffness,
i.e.,

ω2
1s � kα + kβ sin(t), (40)

which can be found in robot manipulators such as in [25], is
adopted.

Let kβ � 0.5 and kα ≥ 0.5. For the traditional stability
analysis method with a quadratic Lyapunov function, one
can select a quadratic Lyapunov function as

V(t) �
1
2
xT
1Qx1, (41)

where Q �
1 1/2
1/2 1􏼢 􏼣. It can be checked that if

1/2≤ kα ≤ (2 +
��
21

√
)/2, then V> 0 and _V≤ 0, indicating that

the 1-DOF system is stable.
By using the method proposed in this paper, from

equation (24), one obtains that the 1-DOF system with a VSS
is always stable whenever ω1s varies in the interval [0, 2

�
6

√
].

)is means that the stability condition obtained by the
traditional quadratic Lyapunov function method only holds
for specific cases such as the periodic variable stiffness in
equation (40), while the condition obtained by the method
proposed in this paper is applicable for any type of VSS’s
variable stiffness within a sector. To further show this fact,
the following variable stiffnesses are considered:

ω2
1s � 3 + 0.5 sin(t), (42)

ω2
1s � 10 + 0.5 sin(t). (43)

Figure 6(a) shows the sector, seen as equation (44),
induced by a VSS. )e red solid lines represent the bound of
the sector [0, 24]. )e black dashed line and the blue dotted
line represent the periodic variable stiffness, (42) and (43),
respectively.

Ψ1 t, y1( 􏼁 � ω2
1sy1, y1 ∈ [− 1, 1]. (44)

It is clear that the case with equation (42) is stable by
using the quadratic Lyapunov function in equation (41).
However, for the case with equation (43), the stability cannot
be verified by using the quadratic Lyapunov function in
equation (41), while since it is within the sector as shown in
Figure 6(a), the stability of the case with equation (43) can be
checked by using the method proposed in this paper, where
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Figure 3: )e Nyquist diagram with ω1s ∈ (1, 5.321].
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Figure 6(b) shows that both cases are stable. )is example
demonstrates that the method proposed in this paper is
applicable for a group of nonlinearities within a certain
sector, instead of a specific nonlinearity.

4.2. Absolute Stability Analysis of the Systems with VSSs

Theorem 2. Consider a 2-DOF system with VSSs, seen in
Figure 7; the dimensionless dynamic equation is

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 1̇

0 0.2 0.4 0.6 0.8 1.2-0.2 1
x1

(a)

-50

0

50

x 1̇

2 40-4 -2 6-6
x1

(b)

Figure 4: )e phase portrait of a 1-DOF systems with different nonlinearities in the feedback path. (a) )e phase trajectory of state x1 with
the selected ω1s in the stable range. (b) )e phase trajectory of state x1 with the selected ω1s out of the stable range.

0.6
0.4
0.2

0
-0.2
-0.4
-0.6

Im
ag

in
ar

y 
A

xi
s

Nyquist Diagram

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis

0.07
0.065

0.06

-0.04

Figure 5: )e Nyquist diagram with ω1s ∈ (1, 5.3].
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Figure 6: A comparison between the method proposed in this paper and the traditional quadratic Lyapunov functionmethod. (a))e sector
region induced by a VSS. (b) )e phase portrait of a 1-DOF system with a VSS.
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€x1 + 2ξ1ω1 + 2ξ2ω2α1( 􏼁 _x1 + ω2
1 + ω2

2α1􏼐 􏼑x1 + ω2
01s(t) + ω2

12s(t)􏽨 􏽩x1

− 2ξ2ω2α1 _x2 − ω2
2α1x2 − ω2

12s(t)x2 � 0,

α1€x2 + 2ξ2ω2α1 _x2 + ω2
2α1x2 + ω2

12s(t) + ω2
02s(t)􏽨 􏽩x2

− 2ξ2ω2α1 _x1 − ω2
2α1x1 − ω2

12s(t)x1 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(45)

where ξ1 � c1/(2
�����
k1m1

􏽰
), ω1 �

�����
k1/m1

􏽰
, ξ2 � c2/(2

�����
k2m2

􏽰
),

ω2 �
�����
k2/m2

􏽰
, α1 � m2/m1, ω01s(t) �

���������
k01s(t)/m1

􏽰
, ω12s

(t) �
���������
k12s(t)/m1

􏽰
, ω02s(t) �

���������
k02s(t)/m1

􏽰
, and ω01s(ω12s,

or ω02s) varies from ω01s(ω12s, or ω02s) to ω01s(ω12s, or ω02s).
m1(m2), c1(c2), k1(k2), k01s(t)(k12s(t), k02s(t)), and x1(x2)

represent mass, damping, stiffness, variable stiffness, and dis-
placement of the 2-DOF system, respectively. If there exist
positive ε2 and symmetric, positive-definite matrix X2 satisfying
equation (46), the 2-DOF system with VSSs is absolutely stable.

AT
21X2 + X2A21 X2B21 − C21

BT
21X2 − CT

21 − D21 − DT
21

⎡⎢⎣ ⎤⎥⎦≤ 0, (46)

where A21,B21,C21,D21􏼈 􏼉 is converted by H2(s − ε2).

Proof. Denote x1 � [x1, x2, _x1, _x2]
T; equation (45) can be

converted to

_x2 � A2x2 + B2u2,

y2 � C2x2,

u2 � − Ψ2 t, y2( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩
(47)

where

A2 �

0 0 1 0

0 0 0 1

− ω2
2α1 − ω2

1 ω2
2α1 − 2ξ2ω2α1 − 2ξ1ω1 2ξ2ω2α1

ω2
2 − ω2

2 2ξ2ω2 − 2ξ2ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B2 �

0 0 0

0 0 0

− 1 1 0

0 − 1/α1 − 1/α1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C2 �

1 0 0 0

− 1 1 0 0

0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ψ2 t, y2( 􏼁 � diag ω2
01s,ω

2
12s,ω

2
02s􏽮 􏽯y2.

(48)

)e transfer function of equation (47) is

c1 c2

x1

k1

k01s

k02s

k12s

k2

x2

m1 m2

Figure 7: A 2-DOF model with VSSs.
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G2(s) � C1 sI − A2( 􏼁
− 1B2

�

−
s
2

+ 2ω2ξ2s + ω2
2

den
s
2

den
−
2ω2ξ2s + ω2

2
den

∗ −
1 + α1( 􏼁s

2
+ 2ω1ξ1s + ω2

1
α1 · den

−
s
2

+ 2ω1ξ1s + ω2
1

α1 · den

∗ ∗ −
s
2

+ 2ω1ξ1 + 2α1ω2ξ2( 􏼁s + ω2
1 + α1ω

2
2

α1 · den

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(49)

where ∗ denotes the symmetrical element, and

den � s
4

+ 2ω1ξ1 + 2ω2ξ2 + 2ω2ξ2α1( 􏼁s
3

+ ω2
1 + ω2

2 + ω2
2α1 + 4ω1ω2ξ1ξ2􏼐 􏼑s

2
+ 2ω2

1ω2ξ2 + 2ω1ω
2
2ξ1􏼐 􏼑s + ω2

1ω
2
2. (50)

)en

H2(s) � I + K22G2(s)􏼂 􏼃 I + K21G2(s)􏼂 􏼃
− 1

, (51)

where K21 � diag ω2
01s,ω

2
12s,ω

2
02s}􏼈 and K22 � diag

ω2
01s,ω

2
12s,ω

2
02s􏼈 􏼉. Equation (51) can be converted to the state

space (A21,B21,C21,D21).
From Lemma 3, the transfer function H2(s) is strictly

positive real if there exist some ε2, which satisfies thatH2(s −

ε2) is positive real.
From Lemma 4, the transfer function H2(s − ε2) is

positive real if there exists a symmetric, positive-definite
matrix X2, which satisfies

AT
21X2 + X2A21 X2B21 − C21

BT
21X2 − CT

21 − D21 − DT
21

⎡⎢⎣ ⎤⎥⎦≤ 0. (52)

□

Example 3. Choose ω1 � 2, ξ1 � 6, ω2 � 3, ξ2 � 7, α1 � 3,
ω01s � 0, ω01s � 3, ω12s � 0, ω12s � 2, ω02s � 0, ω02s � 1, and
ε2 � 0.1; the symmetric and positive-definite matrix X2 is
calculated by the standard numerical simulation toolbox.

X2 �

14.9948 − 9.8401 1.1148 0.4961 − 121.9984 22.6820 − 0.4832 − 1.3486

∗ 93.1342 − 25.2808 − 8.2322 − 43.7687 − 14.3113 − 4.82 − 7.2607

∗ ∗ 34.7102 10.1715 22.116 1.4992 4.415 1.9909

∗ ∗ ∗ 3.1878 6.141 0.7426 0.9826 − 0.142

∗ ∗ ∗ ∗ 1176.4 − 186.7525 10.925 22.7945

∗ ∗ ∗ ∗ ∗ 38.3025 − 11.2653 − 6.8299

∗ ∗ ∗ ∗ ∗ ∗ 106.2525 46.7287

∗ ∗ ∗ ∗ ∗ ∗ ∗ 24.697

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)

According to )eorem 2, if there exist some ε2 > 0 and a
symmetric and positive-definite matrix X2, the 2-DOF
system with VSSs is absolutely stable.

Apart from verification in the frequency domain, time-
domain simulation is also considered as follows. Two kinds
of nonlinearities are considered. For the first one, the se-
lected ω01s, ω12s, and ω02s are given in equation (54), which

are in the ranges ω01s ∈ [0, 3], ω12s ∈ [0, 2], and ω02s ∈ [0, 1].
)e other selected ω01s, ω12s, and ω02s are given in equation
(55), which are out of the ranges ω01s ∈ [0, 3], ω12s ∈ [0, 2],
and ω02s ∈ [0, 1].

In the following, a time-domain simulation is conducted,
similar to that in Example 1.)e values ofω01s,ω12s, andω02s

are, respectively, selected as equations (54) and (55):
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ω01s � sin(t) + 1.5,

ω12s � 0.5 sin(t) + 0.6,

ω02s � 0.1 sin(t) + 1.2,

⎧⎪⎪⎨

⎪⎪⎩
(54)

ω01s � sin(t) + 4,

ω12s � sin(t) + 4,

ω02s � sin(t) + 2.

⎧⎪⎪⎨

⎪⎪⎩
(55)

Numerical simulation is shown in Figure 8, where
similar results as Example 1 can be found.)e system can be
stable when the selected values are in the stable ranges, as
shown in Figure 8(a). However, when the selected values are
out of the stable ranges, the system will be unstable, as shown
in Figure 8(b).

5. Conclusions

In this paper, the inherent stability problem for multibody
systems with VSSs was investigated. Based on the feature
that the inherent stability implied the stability for a group
of control laws within certain sectors, absolute stability
theory was adopted. )e general N-DOF multibody sys-
tems with VSSs were formulated in a Lur’e form, and the
circle criterion method was employed to obtain sufficient
conditions for the inherent stability of the systems. Nu-
merical examples based typical low-DOF systems were
conducted to show the effectiveness of the proposed
conditions in this paper. Furthermore, the results of this
paper can contribute to adjusting the bounds of the stiffness
of VSSs to ensure the inherent stability and can also be
regarded as a guidance for designing VSSs-based me-
chanical control systems.
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