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In the face of the long-tailed data distribution that widely exists in real-world datasets, this paper proposes a bilateral-branch
generative network model. +e data of the second branch is constructed by resampling the generative network training method to
improve the data quality. A bilateral-branch network model is used to curb the risk of gradient explosion and to avoid over-fitting
and under-fitting with the combined effect of different data branches. Meanwhile, Time-supervised strategy is introduced to
improve the model’s operational efficiency and ability to cope with extreme conditions by supervising and collaboratively
controlling of the bilateral-branch generative network with time-invariant parameters. Time supervised strategy could ensure the
accuracy of the model while reducing the number of iterations. Experimental results on two publicly available datasets, CIFAR10
and CIFAR100, show that the proposed method effectively improves the performance of long-tail data classification.

1. Introduction

With the rapid development of convolution neural network
algorithms in recent years, there has been a very impressive
improvement in the performance of image classification.
Undoubtedly, the success is inextricably linked to the
available high-quality large-scale datasets, such as ImageNet
ILSVRC 2012 [1], MS COCO [2] and Places Database [3].
However, compared to these high-quality datasets, real-
world datasets are always biased and it is difficult to ensure a
uniform distribution of data, and more often than not,
certain classes of data are very abundant while certain
remaining classes are very scarce, which leads to a long-tail
distribution of data [4, 5] and affects the performance of
image classification. From the reviewed related materials,
class re-balancing strategies are currently often used when
faced with uneven data distribution. Class re-balancing
strategies are further divided into two categories, namely re-
sampling strategies [6–13] and re-weighting strategies
[14–17].+e re-sampling strategy means that the source data
is resampled according to the desired frequency distribution
to obtain a new datasets by copying the minority data
[6, 8, 12, 18] and reduce the majority data [7, 12, 13]. +is

strategy is able to reduce error rate caused by unbalanced
data during training. Although resampling can show better
results, this strategy still has a negative effect on the model.
For example, the SMOTE algorithm [11] merely repeats and
abandons the original data in the process of resampling.
Although it changes the data distribution, it cannot bring
more classified information to the deep learning model.
+erefore classical resampling tends to make the tail data
more prone to over-fitting conditions, while the head data is
also tend to under-fitting conditions.

And this can be effectively avoided by a re-weighting
method that adds a regularization term to the loss. Where the
loss of the regularization parameter can often be expressed in

Loss � loss1 + λ∗ loss2 (0≤ λ≤ 1). (1)

+e over-fitting and under-fitting of the model is sup-
pressed by introducing a new loss function as a constraint.
However, the regularization method also has its drawbacks.
Due to the introduction of the regularization parameter as a
restriction in the loss, it sometimes makes the model pa-
rameters fail to converge, and in extreme cases, it even results in
gradient explosion. +erefore some scholars proposed many
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ways to prevent the over-fiting and under-fiting with data-
dependent regularizer [19–22]. For example, the algorithms
proposed by Zhou et al. [23] based on bilateral-branch network
model has good accuracy in the classification problem of long-
tailed data. +e algorithm obtained the first place in iNatur-
alist2019 with an error rate of 30.38% on the iNaturalist2018
public datasets. +e model of Boyan Zhou re-weights the loss
function by a data-driven approach.+is data-driven approach
not only effectively curbs the risk of gradient explosion, the
model will converge more easily under the combined effect of
different data branches while avoiding the over-fitting phe-
nomenon on tail data [4]. However, this method requires very
strict data quality. Since the regularization term itself is data-
driven approach, if the data quality of the second branch is
poor, it will lead to loss2 adverse effect on the direction of the
overall model learning.+erefore how to construct high quality
second branch with different distributions becomes a new
problem.

Many works focus on minority samples, the re-balance
the data by augmentation of minority samples [11, 24, 25].
while some other works provide a Major-to-minor trans-
lation to re-balance the data distribution [26–28]. the M2m
algorithm proposed by Kim et al. [29], which is different
from the above methods and gives a solution from the
perspective of resampling. M2m algorithm is a method of
resampling data through data generation by generation
against network [26, 30, 31].+is method solves the problem
of unbalanced data distribution by constructing fewer classes
of data through multiple classes of data, while bringing more
classification information to the data and improving the data
quality. +is method can effectively increase the number of
minority class samples while greatly reducing the over-fit-
ting of the minority class data. However, this method often
requires the use of an already pre-trained network, and
generating data during training still requires a large number
of iterations, which will reduce the efficiency of model
learning.

+e main contributions of this paper are as follows.

(1) Incorporating the respective advantages of the Bi-
lateral-branch model and the generative network
model, this paper proposes a bilateral-branch gen-
erative network model. +e data of the second
branch is constructed by resampling and generating
by the generative network training method to im-
prove the data quality. +e bilateral-branch network
model is used to curb the risk of gradient explosion,
and the model is made to avoid over-fitting and
under-fitting phenomena under the combined effect
of different data branches to improve the effect of
long-tail data classification.

(2) Since the generative network model adds a large
number of iterations in the process of generating
data, which affects the efficiency of the model, this
paper introduces a time-supervised strategy, which
supervises and limits the number of iterations of the
generative network through time-variant parame-
ters, improves the operational efficiency of the model
and its ability to cope with extreme conditions, and

ensures the accuracy of the model while reducing the
number of iterations.

(3) +e accuracy of the algorithm was tested under two
publicly available datasets, CIFAR10 and CIFAR100
[32], for different distributions, and the method used
in this paper, was higher than both Boyan Zhou’
algorithm and M2m algorithm.

2. Construction of a Bilateral-Branch
Generative Network Model

+e overall framework of the bilateral-branch generative
network model proposed in this paper is shown in Figure 1,
and the model is abbreviated as BBGN (Bilateral-Branch
Generative Network).

As shown in the figure the BBGN model first constructs
the inverse distribution data branches by data resampling.
We refer to the source data branch as the first branch data,
and the inverse distribution data constructed by the
resampling method as the second branch. After the data of
the second branch is generated by the re-sampling method,
the first branch data is used as the data source to generate
new high-quality data for replacing the data of the second
branch by the generating network (GN) module to perform
data augmentation on the data of the second branch. In the
GN module and later in the network model we introduce
respectively the time-supervised parameters (1 − α) with α
for coordinate and control these two functional modules.

After the process of data augmentation is completed, the
original two data branches are feature extracted using a
pyramid-shaped multiple layer feature perceptron to form
separate sets of features. +rough the time-supervised
parameterα of control, the two feature sets are fused to form
a one-class feature set. +e fused features are averaged
pooled (GAP layer in the figure) and pushed into the fully
connected classifier for classification. +e model loss is
calculated and the model parameter weights are updated
backwards based on the classification results and the loss
function.

+rough the coordination and control of the time-su-
pervision strategy, in the early stage of BBGN model
learning, the BBN network is influenced by the time-su-
pervision parameter, which makes the data of the second
branch play almost no role in the learning of the model,
while the GN network is also subject to the synergy of this
parameter and does almost no data enhancement to the data
of the second branch. At this point the data of the second
branch plays a weak role in the learning of the model only by
resampling the data, and the learning process of the model is
dominated by the source data of the first branch. Over time,
under the influence of the time-supervised strategy, the
influence of the BBNmodel’s bilateral-branch data onmodel
learning gradually changes. +e role of the influence of the
data of the second branch gradually increases. At the same
time the GN network is gradually activated by the coordi-
nation of the temporally supervised parameters, and the
resampled data of the second branch starts to play its role in
the model learning process after being enhanced by the GN
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module. +e introduction of the time-supervised strategy
enables our algorithm to maintain accuracy while reducing
the number of iterations and greatly improving the com-
putational efficiency.

2.1. Bilateral-BranchNetwork (BBN)Model. +e BBNmodel
is data-driven and uses a loss function weighting method to
avoid over- and under-fitting of the data.

+e BBN model starts from a regularized weighting
perspective, but unlike the usual method of constructing
regularized expressions, this model achieves regularized
weighting by using branches of data from different distri-
butions to learn and fuse the losses generated by multiple
branches. +e pseudocode of the BBN model algorithm is as
follows.

At the row 14 of Algorithm 1, we get the Targetpred of
model by mixing the feature1 and the feature2. +is com-
biner function canbe expressed by the following equation
(6). And then, at the row 18 of Algorithm 1 the BBN model
Combiner2 function can be expressed by the following
equation (2).

Loss � α∗ loss1 +(1 − α)∗ loss2 (0≤ α≤ 1), (2)

where loss1 is the error generated in the learning process for
the first branch data in the BBN model, and loss2 is the error
generated by the data of the second branch in the learning
process. At the row 16 and 17 of Algorithm 1, theL function
can be expressed by the following equation (8), and Loss is
the total error generated by the BBN model in the learning
process. Loss affects the learning process of the model
through the synthesis of the error components of the two
data.

2.2. Generating Network Models. +e pseudocode of our
proposed algorithm for generating models in BBGN is
shown below.

At the first row of the Algorithm 2, the Bernoulli dis-
tribution function used to select the class to be generated is
shown in .

PG � p
NTargetG

/N0 ∗ (1 − p)
1− NTargetG

/N0􏼐 􏼑
, (3)

where TargetG denotes the class to be generated, and NTargetG
denotes the total number of samples of the class to be
generated, and N0 denotes the total sample size of the class
corresponding to the class with the highest frequency, and
PG denotes the probability that such class is selected as the
class to be generated.

At the row 3 fo Algorithm 2.
At the row 5 of Algorithm 2, the generation source class

TargetO are selected using the distribution function as
shown in .

PO � 1 − βNTargetO
− NTargetG , (4)

where β ∈ (0, 1) is a fixed parameter, and NTargetO denotes
the total number of samples of the generated source class,
and NTargetG denotes the total number of samples of the class
to be generated, and PO denotes the probability that such
class is selected as the generating source class.

And then we need to select the generation source based
on the class to be generated. Since this data augmentation
algorithm constructs minority class samples by extracting
class-independent features from the majority class and class-
related features from the minority class. +erefore the
method has certain requirements on the data quality of the
generation source data, and the class-irrelevant feature
classes contained in the data should be as rich as possible, so
as to improve the generalization ability of the model for
minority class learning.

In this Algorithm 2, the class to be generated TargetG and
the generated source class TargetO are selected by resam-
pling the class label with the probability distribution. +is
approach can meet our requirements on the quality of the
generated source data. At the same time, the possibility of
generating fewer classes of data with fewer classes of data is
preserved, and the choice of generating source class data is
expanded.

+e framework diagram of the generative network used
for Algorithm 2 is shown in Figure 2.

For the selected image I, input the to-be--trained model
F to obtain the I’s classification result LabelF, and compute
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Figure 1: Overall framework of the bilateral-branch generative network model.
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this result with LabelF and the generated source class label
TargetO. +e distance between this result and the generated
source class label TargetO is used as the regularization term
lossO in loss function. Classify I using the feature infor-
mation provided by the pre-trained model G to obtain the
result LabelG. Use the loss function to calculate the lossg by
LabelG and the target to be generated TargetG. calculate the

total loss lossGN using equation (5), and backward update
the pixel of selected image I based on the total error.

lossGN � LossG + λ∗ LossO. (5)

In the updating process, the goal of lossg is to cause the
selected image I to be classified as the class TargetG with the
pre-trained network G. Since the pre-trained network G

Inputs: training datasets I1, λ, c, η, L> 0, β ∈ [0, 1), α
Output: BBN network model F (input; weight)

(1) I2←I1
(2) for k� 2 to K do
(3) Δ←(N1 − Nk)

(4) for i� 1 to Δ do
(5) x← A random sample of class k in I2
(6) I2 � I2 ∪x

(7) end for
(8) end for
(9) I2 � Algorithm2(I1, I2, λ, c, η, L> 0, β ∈ [0, 1), α)

(10) for i� 0 to NI1
do

(11) j←A random sample of I2
(12) feature1 � 5(I1i, WT)

(13) feature2 � 5(I2i, WT)

(14) Targetpred � Combiner1(feature1, feature2, α)

(16) loss1 � L(Target1i,Targetpred)

(17) loss1 � L(Target2j,Targetpred)

(18) Loss � Combiner2(loss1, loss2, α)

(19) W←W − Loss
(20) end for
(21) F←W

ALGORITHM 1: BBN algorithm.

Input: An unbalanced data branch I1. A resampled data branch I2. A network f. A pre-trained generative network G.
λ, c, η, L> 0, β ∈ [0, 1)

Output: A augmented balanced data branch O
(1) TargetG←A random sample of classK in I2 withPG

(2) for k� in TargetG do
(3) Δ←(N1 − Nk)∗T(t, 1 − α)

(4) for i� 1 to Δ do
(5) TargetO←A random sample of class k in I1 withPO

(6) I← A random sample of class TargetO in I1
(7) Add some noise σ to the I

(8) for t� 1 to L do
(9) LossG � L(G; I; k)

(10) LossO � fTargetO(I)

(11) lossGN←∇R[LossG + λ∗ LossO]

(12) I←I − η∗ (lossGN/lossGN2)

(13) end for
(14) P ∼ Bernoulli(β(Nk0− Nk)+

)

(15) If L(g; I; k)> c or P� 1 then
(16) I∗2← A random sample of class k in I2
(17) end if
(18) I∗2←I

(19) end for
(20) end for

ALGORITHM 2: Data generation algorithm.
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contains the class-related feature information of each class,
the lossg guided by the class-related feature information of
the network G, could gradually eliminate the class-related
features of the class TargetO in the image I and add the class-
related features of the class TargetG. +e result image
generated by this generative network algorithm consists of
the class-independent features of the classTargetO and the
class-irrelevant features of the class TargetG. By this way we
could generated the new image of the class TargetG.

In the unbalanced datasets, the majority class has a very
rich set of class-irrelevant features in addition to such class-
relevant features. While the minority class has only class-
related features with a small number of class-irrelevant
features. +erefore the class irrelevant features carried in the
majority classes are combined with the class relevant features
carried in the minority classes in the pre-trained network G
through the generative network to generate a large number
of images of the minority classes. New classification infor-
mation is introduced while balancing the data distribution.

Also, in order to prevent the situation that the gradient
disappears during the training process and the target image
cannot be generated, the regularization term can be set to
eliminate this situation. +e above lossO represents the
prediction result of image I in the network F to be trained
LabelF with the image to be generated in the source
classTargetO of the difference. Before the classification is
performed, the LabelF is in the form of a 0-1 vector, and the
respective values on the vector indicate the probability of the
image being of this class. By setting this difference as a
regularization term, the gradient disappearance can be ef-
fectively prevented, allowing the input image I to be gen-
erated more easily as an image of other classes.

3. Time Supervision Strategy

+e variation of the time-supervised parameters with
training time is shown in Figure 3.

+e temporal supervision strategy proposed in this paper
acts on both the BBNmodel and the data generationmodule.
+e time-supervised strategy coordinates and controls the
overall model learning process by setting the time-super-
vised parameters α.

3.1. Time-Supervision Strategies for BBN Models. In our
BBGN model, the degree of influence of different branches
on the learning process of the model can be adjusted by
introducing time-supervised parameters in the computation
process of the fusion and loss of the two branches. +e first
branch data is the original real data, while the data of the
second branch enhanced by the generative network is the
non-real data generated by data features. +erefore, in the
early stage of model training, the real data should be the
main focus, and the real features in the data should be
learned as much as possible. And when the minority class
gradually starts to over-fit, then gradually start to increase
the degree of influence of the non-real data generated by the
features on the model learning to prevent the model from
over-fitting on the minority class, and at the same time
enhance the generalization ability of the model on the
minority class to improve the accuracy of the model.

+e fused feature is obtained during the fusion of model
features by .

Feature � α∗ feature1( 􏼁∪ (1 − α)∗ feature2( 􏼁. (6)

It is important to note that when we use the results
obtained from fused feature with classifier when calculating
the loss function, it needs to be compared the result label to
the two objectives TargetO with the TargetG together to
calculate the loss. Since the feature fusion is performed with
the time-supervised parameter α, the loss should also be
calculated with the time-supervised param-eter α to deter-
mine the final loss.+e loss calculation in this paper is shown
in equation (7).

Loss � α∗L Label,TargetO( 􏼁 +(1 − α)∗L Label,TargetG( 􏼁,

(7)

where the loss function L (L, T) is calculated as shown in .

L[L, T] � − 􏽘
i

Ti ∗ ln Li( 􏼁, (8)

Li denotes the ith vector in Label, representing the proba-
bility that the input is of class i. Ti denotes the ith vector in
Target, where only one vector is 1 indicating that the input is
of class i and the rest of the vectors are 0.

GN

G
LabelG TargetG

LossG

λLossO

F

I I2

TargetOLabelF

Figure 2: Framework diagram of the generation network.
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3.2. Time-Supervision Strategies in Generative Network
Models. +e generative network model improves the per-
formance of the model by improving the quality of the data
of the second branch. However in the early stages, the data of
the second branch has little impact on the learning process of
model learning, and the large amount of generated data does
not contribute to the model learning process. +is would
generate a waste of resources. So we use equation (9) and
introduce a time-supervised strategy to limit the size of
generated data in the early stage.

L � NTargetG ∗ (1 − α), (9)

where L is the number of samples to be generated, and
NTargetG is the total number of classes to be generated, and α
is the time supervision parameter.

By the introduction of the time-supervised strategy, the
amount of generation of the generative network is limited in
the early stage of model training. And with the increase of
the number of iterations, the size of generated data L of the
generative network is gradually activated by the time-su-
pervised strategy, when the main component of the data of
the second branch is changed from resampled data to
generated data, and the data quality is gradually improved.
In this way, the number of iterations can be greatly reduced
and the learning efficiency can be improved while ensuring
the accuracy of the model.

4. Experimentation and Analysis

4.1. Experimental Data Set. In this paper, we use online
public datasets CIFAR10 and CIFAR100 [32], both of which
contain 60,000 RGB color images of 32∗ 32 size. +ere are
50,000 images in these images for training and 10,000 images
for testing. CIFAR10 and CIFAR100 have 10 classes and 100
classes of data respectively. +e source datasets is a uniform
datasets. And in this paper, we resample the long-tail
datasets with class imbalance of CIFAR10 and CIFAR100 by
setting the imbalance ratio parameter Ratio during the
experiment. Among Ratio � Nmax/Nmin, in this paper, Ratio
contains three values of 10,50,100 respectively.

4.2. Introduction of Experimentation. Our experimentation
are running in the ubuntu20.04 operation system. Traning
the model need about 16G RAM. +e machine language of
the experimentation is python. In the experimentation, at
first we will train our model with pretrained model and
unbalanced trainning datasets. +en we test the result of our
model in the testing dataset. Finally we visualize our result
and analyze it.

4.3. Analysis of Experimental Results. In this paper, the ac-
curacy of the optimal solution on the test set is used to
compare the classification ability of different methods by
comparing the experimental results. Also, we track the ac-
curacy of the classification results of different models on the
test set during the training process and plot it as a line graph,
which can visualize the difference of different models during
the training process.

4.3.1. Results of the CIFAR10 Experiment. From Table 1 and
Figure 4, we can find that the accuracy of BBN algorithm and
our algorithm decreases when the number of training is
between 50 and 75, while M2m algorithm can quickly im-
prove to a higher level and stabilize at that level in the early
stage. However, as the number of training gradually in-
creases, the improvement of M2m accuracy gradually be-
comes slower, while the accuracy of BBN algorithm and our
algorithm improves rapidly. Considering that both the BBN
algorithm and our algorithm contain a bilateral-branch
structure, the decrease in the accuracy of the algorithm is
related to the gradual increase in the influence of the second
branch. At the beginning, the accuracy drops significantly
due to the small influence of the data in the second branch of
the model, but as the number of training sessions increases,
the accuracy of the BBN algorithm and our algorithm always
steadily exceeds that of the M2m algorithm with the effect of
the data in the second branch. +is indicates that the pure
data generation model can achieve a high accuracy rate
within a smaller number of training sessions, but the final
accuracy ceiling of the model is not high. Compared to the
BBN algorithm, the lead is weaker on the CIFAR10 datasets

25 50 75 100 125 150 175 2000
epoch

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

Figure 3: Curve of the change in the parameters of time supervision.
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when the imbalance ratio is 10 versus 50, although our
method outperforms the BBN algorithm. But when faced
with an extreme imbalance situation, i.e., when the imbal-
ance ratio is 100, the advantage of our algorithm is signif-
icantly improved. +is shows that when the realistic
environment is not complex enough, the data augmentation
by resampling alone can achieve better results, but in the
extreme environment, the data quality of the second branch
will be very poor, and thus better results can be obtained by
introducing data generation to improve the data quality.

4.3.2. Results of the CIFAR100 Experiment. +e results of the
CIFAR100 experiments are shown in Table 2 and Figure 5. It
can be found that the curves are roughly the same as cifar10,
the M2m accuracy stabilizes to a high value very quickly,
while the BBN algorithmwith our algorithm takes the lead in
decreasing and then improving as the number of training
increases. +e CIFAR100 datasets is 10 times more classified
and has less datasets in each class than CIFAR10, so
obtaining a higher accuracy is very difficult. In this extreme
condition, our algorithm can take advantage of the data

enhancement and lead the BBN and M2m algorithms.
However, surprisingly, in the most extreme case of
Ratio� 100 for CIFAR100, the accuracy rates of all three are
comparable and lower, and the accuracy curves are almost
completely indistinguishable. +is is perhaps due to the fact
that in the too extreme case, the ResNet32 network leads to
this result due to the limitations of its network structure.

To test this conjecture, we did a set of comparison ex-
periments on the CIFAR100 datasets with Ratio� 100, using
the ResNet50 network.

4.3.3. Results of the ResNet50 Experiment. +e experimental
results are shown in Figure 6. From the accuracy curves, we
can find that when the model has more parameters and the
network structure is more complex, the accuracy results of
our method and the BBN method produce very obvious
differences. Benefiting from the role of the data generation
network, the BBGN network model constructed by the
generation method with the time-supervision strategy can
also significantly improve the accuracy of the model in the
case of very extreme data distribution.

Table 1: +e accuracy of resnet-32 on long-tailed cifar10.

Methods
CIFAR100

N1/N100�10 N1/N100� 50 N1/N100�100
M2M 57.55 45.63 42.16
BBN 59.47 45.90 42.47
Methods (ours) 60.14 47.06 42.64
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Figure 4: Accuracy variation curve of cifar10 long-tail datasets.
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5. Summary and Outlook

In this paper, two classical solutions are introduced to ad-
dress the characteristics of unbalanced data distribution of
long-tailed data sets: resampling methods and weighting

methods. Two types of algorithms for processing long-tailed
data, BBN and M2m. we studied and analyzed these two
methods and proposed bilateral-branch generative network
model based on them. +is model improves the accuracy of
classifying long-tailed data by data-driven re-weighting

ResNet50_cifar100_Val_Acc
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ra
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0 50 100 150 200 250 300 350 400
Epoch

ours_Ratio100
BBN_Ratio100
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Figure 6: Accuracy curve of resnet50 network structure on a long-tailed datasets with cifar100 imbalance ratio of 100.
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Figure 5: Accuracy variation curve of cifar100 long-tail datasets.

Table 2: +e accuracy of resnet-32 on long-tailed cifar100.

Methods
CIFAR100

N1/N100�10 N1/N100� 50 N1/N100�100
M2M 57.55 45.63 42.16
BBN 59.47 45.90 42.47
Methods (ours) 60.14 47.06 42.64
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methods successfully and data enhancement methods based
on generative networks. Also in this paper, a time-supervised
strategy is introduced in this model to coordinate and
control GN and BBN modules to reduce the number of
algorithm iterations while maintaining a high accuracy rate.
Compared with BBN and M2m algorithm, this algorithm
can obtain higher accuracy rate stably.

+e following shortcomings still exist in this paper: the
time-supervised strategy proposed in this paper, although it
reduces a large number of iterations and improves the
operation efficiency, making the model run significantly
more efficiently than the M2m algorithm, there are still
differences compared to the BBN algorithm.
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