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Due to natural disasters, unmanned aerial vehicles (UAVs) can be deployed as aerial wireless base stations when conventional
cellular networks are out of service.*ey can also supplement themobile ground station to provide wireless devices with improved
coverage and faster data rates. Cells on wheels (CoWs) can also be utilized to provide enhanced wireless coverage for short-term
demands. In this paper, a single CoW cooperates with a single UAV in order to provide maximum wireless coverage to ground
users. *e optimization problem is formulated to find the following: (1) the optimal 2D placement of the CoW, (2) the optimal 3D
placement of the UAV, (3) the optimal bandwidth allocation, (4) the percentage of the available bandwidth that must be provided
to the CoW and UAV, and (5) the priority of wireless coverage; which maximizes the number of covered users. We utilize the
exhaustive search (ES) and particle swarm optimization (PSO) algorithms to solve the optimization problem. *e effectiveness of
the proposed algorithms is validated using simulation results.

1. Introduction

UAVnetworks have been developed as a possible technology
of quickly providing wireless coverage to a geographic area,
where a flying UAV can be quickly deployed to operate as a
cell site [1, 2]. *e advantage of deploying UAVs as flying
base stations over traditional terrestrial base stations is their
ability to change altitude, avoid obstacles, and increase the
possibility of establishing line of sight (LoS) communication
connections with wireless devices [3, 4]. UAVs are especially
useful in situations when the conventional cellular network
is either unavailable or requires assistance to offer the
necessary capacity and coverage [5, 6]. Verizon, for example,
has developed an airborne long-term evolution (LTE) ser-
vice to provide 4G-LTE connectivity during disaster re-
covery exercises and emergency management [7]. *e
authors in [8] study the emergency UAV deployment to

minimize the UAV deployment delay until covering the
entire geographical area by considering the UAVs’ different
flying speeds and altitudes during the deployment. In [9], the
authors establish a unified framework for a UAV-assisted
emergency network.*e scheduling and trajectory of drones
are jointly optimized to provide wireless connectivity to
wireless devices with surviving ground mobile stations. *e
authors in [10] propose a deployment tool for a drone-aided
emergency network to provide wireless device coverage in a
large-scale disaster scenario. LTE femtocell base stations are
mounted on drones and deployed to their assigned place-
ment. Such a network’s deployment tool takes into account
the characteristics of the UAVs (such as battery life and flight
time), user requirements, and a 3D representation of the
environment. In [11], the authors propose energy-efficient
planning of drones for emergencies. *eir problem for-
mulation considers both outdoor and indoor users, where
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the objective is to find the placements of multiple drones that
provide wireless coverage based on the locations and dis-
tribution of users. In addition, supplementing the surviving
communication infrastructure and keeping first responders
connected to their command centers, a portable cell or CoW
can be utilized [12]. One can establish a temporary network
to enable important public safety communication
throughout the disaster area by efficiently deploying these
mobile cells.*ese portable cells, which are simple to deploy,
configure, and adapt, are an ideal solution for any disaster
response effort. *e authors in [12] present a decentralized
relocation algorithm that enables CoWs to change their
locations in response to the potential mobility of ground
users. In [13], the authors describe and propose a portable
mobile wireless network infrastructure that is ideally suited
for emergency response and disaster recovery operations.
*e authors in [14] study the challenges of emergency
communication networks for disaster response. *ese
challenges include popularity, usability, capacity, operabil-
ity, reliability, and adaptability. In [15], the authors dem-
onstrate that drone assistance in CoW-UAV wireless
networks can provide significant advantages to mmWave
backhaul under certain system parameters. *e authors in
[16] proposed an efficient 3D placement of a single UAV for
assisting terrestrial wireless networks. In their proposed
model, a single UAV is utilized to assist the GBS and provide
wireless coverage for arbitrarily distributed ground termi-
nals, considering the impact of the obstacle blockage for the
A2G path loss model. *e authors in [17] propose a
framework that combines UAV support with wireless-
powered communication techniques to further improve
energy efficiency in distributed nonorthogonal multiple
access public safety networks. In [18], the authors propose a
distributed user-centric risk-aware resource management
framework in a UAV-assisted public safety network sup-
ported by both a static UAV and a mobile UAV.*e authors
in [19] introduce a resource orchestration framework in a
UAV-assisted wireless-powered communication network
within a public safety system, based on the principles of
contract theory and reinforcement learning.

In this paper, a single CoW and a single UAV are
utilized to maximize the wireless communication coverage
in emergency situations. *e objective of the proposed
optimization problem is to find the optimal 2D placement
of the CoW, the optimal 3D placement of the UAV, optimal
bandwidth allocation to the UAV and CoW, and the
priority of wireless coverage that maximizes the number of
covered wireless devices. To the best of our knowledge, this
is the first work that proposes using a CoW-UAV system to
maximize the wireless coverage in emergency situations.
*e main contributions of this paper are summarized as
follows:

(1 )Realistic path loss models for a CoW-UAV system
are presented, and the trade-off introduced by these
models is described

(2) *e optimization problem for a CoW-UAV system is
formulated with the objective of maximizing the
wireless coverage

(3) Exhaustive search (ES) and particle swarm
optimization (PSO) algorithms are utilized to solve
the optimization problem

*e remainder of this paper is organized as follows. In
Section 2, the system model is described. *en, in Section 3,
the optimization problem is formulated, where the goal is to
maximize the number of covered wireless devices. Next, the
proposed algorithms are presented to solve the optimization
problem in Section 4. *e numerical results are presented in
Section 5. Finally, Section 6 concludes the paper.

2. System Model

Consider an urban area denoted as E ∈ (AxA) served by a
CoW assisted by a UAV that acts as an aerial base station, as
shown in Figure 1. Both the CoW and UAV have fixed
transmission power. Let (xc, yc, 6m) denote the 2D place-
ment of the CoW, and let (xu, yu, zu) denote the 3D
placement of the UAV, as shown in Figure 1. *e movement
of the UAV is restricted to specific heights according to the
law restrictions, while the roads on the given area restrict the
movement of the CoW. It is assumed that all users are
located inside the urban environment, and use (xi, yi, 0) to
denote the placement of user i ∈ I. *e CoW or the UAV
serves the user’s wireless device i if the quality of service
(QoS), measured by the signal-to-noise ratio (SNR), is above
a predefined threshold. Such a threshold depends on the type
of service (e.g., voice, data, and video) required by the user.

*e CoW and the UAV are equipped with transceiver
antennas, and a downlink scenario is envisioned, in which the
frequency division multiple access (FDMA) technology is
used to transfer data and provide coverage for wireless de-
vices. As a result, each wireless device has its own dedicated
communication channel, and there is no interference or
channel overlap between CoW and UAV channels. *e
bandwidths of the CoW and the UAV are B1 and B2, re-
spectively. *e CoW and the UAV are supported by backhaul
links that connect them to Internet’s core. *e highest benefit
from CoW and UAV deployment may be obtained by finding
the optimal placements for them. Assuming that all wireless
devices have the same QoS, the highest benefit can be realized
by connecting the CoW and the UAV to as many wireless
devices as possible. *e CoW and the UAV placements affect
both the number of served wireless devices and the quality of
the channel between each wireless device and the base station
(CoW or UAV). *e critical question in this context that we
need to answer is which base station starts the wireless
coverage first, CoW or UAV? In the downlink scenario, we
consider two types of channels: CoW to wireless device
channel and UAV to wireless device channel.

2.1.CoWtoWirelessDeviceChannel. In this paper, we utilize
the independent Rayleigh fading model to represent the
time-varying channel between the CoW and a wireless
device i in an urban environment [20, 21]. Time variation
occurs when the status of obstacles between the transmitter
and the receiver is uncertain due to the movement of the
obstacles. Changes in the amplitudes, delays, and quantity of
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multipath components related to each signal can thus be
detected. Over amuch longer time scale, these changes result
in a constructive and destructive addition of multipath
components. *e received power of wireless device i served
by the CoW is formulated as follows:

Pri,1
[dBm] � PCoW(dBm) + 20 log gi(  − 10n log d(i,1) ,

(1)

where PCoW is the transmitted power by CoW in dBm, gi is
the Rayleigh fading power for the wireless device i in dB, and
d(i,1) is the distance between the CoW and the wireless
device i which is given by

d(i,1) �

������������������

xi − xc( 
2

+ yi − yc( 
2



. (2)

2.2. UAV to Wireless Device Channel. For the downlink
communication between the UAV and wireless devices, we
use the air-to-ground channel model, which is one of the
most commonly used radio propagation models [22]. In
general, it is dependent on the line of sight (LoS) and non-
line of sight (NLoS) links, as well as their respective chance of
occurrence.*is channel model takes into account two types
of propagation: LoS propagation and NLoS propagation.
Based on the environment and the placement of the UAV,
the following formula is used to calculate the probability of
getting a LoS signal:

PLoS �
1

1 + α exp[− β(θ − α)]
, (3)

where α and β are constants, and their values are affected by
the environment, θ � arctan(hu/r(u,i)) is the elevation angle

from the UAV to wireless device i, hu is the UAV altitude,
and r(u,i) is the horizontal distance between the projection of
the UAV placement on the ground and the placement of
wireless device i. *e trade-off in this model was described
by the authors of [23]. *e path loss between the UAV and
the wireless device decreases as the altitude decreases, while
the probability of line of sight links also decreases. On the
other hand, line of sight links occur with a high probability at
high altitudes, while path loss increases. Taking into account
the LoS and NLoS link, the total average path loss in this
model can be found as follows:

PL hu, ru,i (dB) � 10n log
4πfcdi,2

c
  + PLoSξLoS + PNLoSξNLoS,

(4)

where the first term represents the free-space path loss, fc is
the carrier frequency, c is the speed of light, n is the path loss
exponent, d(i,2) is the distance between the UAV and wireless
device i, and ξLoS and ξNLoS are the average additional losses
for LoS and NLoS links in dB, respectively. *ese losses are
environment-dependent.

*e received power of wireless device i served by the
UAV is given by

r(i,2)(dBm) � Pu(dBm) − PL hu, ru, i( (dB), (5)

where Pu is the transmitted power by UAV in dBm and
PL(hu, r(u,i)) is the total average path loss in dB.

3. Problem Formulations

*e received SNR(SNR(i,q)) of wireless device i ∈ I from the
CoW(q � 1) or the UAV (q � 2) is given by

SNR(i,q) �
Pr(i,q)

Ni

, i ∈ I, q ∈ 1, 2{ }, (6)

where Pr(i,q) is the received power at a wireless device i ∈ I

from the q-th base station and Ni is the channel noise
power, which is given by Ni � Nob(i,q), in which No is the
power spectral density of noise channel and b(i,q) is the
bandwidth allocated for a wireless device i ∈ I from base
station q ∈ 1, 2{ }.

*e main goal of this paper is to find the optimal
placements for the CoW and the UAV that maximize the
number of served wireless devices, as illustrated in Figure 1.
To formulate the optimization problem, we define the binary
variable V(i,q), i ∈ I and q ∈ 1, 2 which ensures whether a
wireless device i ∈ I is served by base station q ∈ 1, 2{ } or not.
*e binary variable V(i,q) takes value 1 if SNR(i,q) ≥ SNRth,
and it takes value 0 otherwise, where SNRth is the threshold
SNR.

*en, if wireless device i ∈ I is served, SNR(i,q) ≥ SNRth

must be satisfied. *is constraint can be further formulated
as follows:

SNR(i,q) ≥ SNRth − A 1 − V(i,q) , (7)

where A is significantly constant, greater than the maximum
value of SNRth. *e bandwidth allocated to each base station
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Figure 1: *e proposed system model. *e area (A x A) is covered
by a CoW assisted by a UAV.
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(either CoW or UAV) cannot exceed its available band-
width. *erefore,



|I|

i�1
b(i,q)V(i,q) ≤Bq, ∀q ∈ 1, 2{ }, (8)

where b(i,q) is the bandwidth allocated to a wireless device
i ∈ I from base station q ∈ 1, 2. Here, each base station’s
bandwidth is not fixed; therefore, it must be optimized.
Many factors influence the optimal bandwidth, including
available bandwidth, QoS requirement, wireless device de-
mands, environment, and scenario.

*e bandwidth allocated for each BS should be obtained
in this research work in order to serve as many wireless
devices from the total number of devices in the urban area as
possible. Hence, we define the variable c, c ∈ [0, 1], which
indicates how much bandwidth should be allocated to CoW.
*e bandwidth allotted to CoW is calculated as follows:
B1 � cB, while the bandwidth allotted to UAV is specified as
follows: B2 � (1 − c)B. *e optimization problem aims to
find the following: (1) the optimal 2D placement of the CoW,
(2) the optimal 3D placement of the UAV, (3) optimal
bandwidth allocation, and (4) the priority of wireless cov-
erage, which maximize the number of covered users. *e
optimization problem is given by

maximize
xc,yc( ), xu,yu,zu( ),c,V(i,q)( 



|I|

i�1


2

q�1
V(i,q), (9a)

Subject to SNRi,q ≥ SNRth − A 1 − V(i,q) , ∀i ∈ I, q ∈ 1, 2{ },

(9b)



|I|

i�1
b(i,q)V(i,q) ≤Bq, ∀q ∈ 1, 2{ }, (9c)



2

q�1
V(i,q) ≤ 1, ∀i ∈ I, (9d)

B1 � cB, (9e)

B2 � (1 − c)B, (9f)

0≤ c≤ 1, (9g)

xc, yc(  ∈ R
2
c , (9h)

xc, yc, zu(  ∈ R
3
u, (9i)

*e first constraint set ensures that the QoS of each
wireless device should be greater or equal to SNRth to be
served from either the CoW or the UAV. *e second
constraint set guarantees that the sum of wireless devices
bandwidths does not exceed the base station bandwidth.*e
third constraint set ensures that a wireless device should be
connected to one base station at most or none of them. *e
constraint sets 9e–9f–9g represent the bandwidth that

should be allocated to each base station. *e constraint sets
9h-9i represent the allowable values for 2D and 3D place-
ments of the CoW and the UAV, respectively.

4. Methodology

*is section presents methods of finding the solution of
CoW and UAV positions and the percentage of the allocated
bandwidth for each one. *is work employs exhaustive
search and PSO algorithms to find the maximum number of
served users in the proposed area.

4.1. Exhaustive Search (ES). *e exhaustive search is con-
sidered as optimal solution. It can find the best 2D position
of CoW, 3D position of UAV, and the available bandwidth at
each one of them. Considering the priority, the BS (i.e., CoW
or UAV) that has the priority is assumed to be BS1, and the
other one is BS2. Firstly, the BS1 will be deployed in allowable
positions and serve a set of users (U) from I. Secondly, the
BS2 will be deployed to serve as much users as possible from
set (|I| − |U|). Determining the placements of BS1, BS2 will
be synchronized at each search point. *e ES algorithm will
require a lot of calculations, and possibly even impossible in
practice. *e PSO algorithm is employed to overcome the
high computational overhead issue in ES.

4.2. PSO. *e PSO algorithm is being used in the study to
provide a solution [24, 25]. *e PSO is considered a sub-
optimal solution, where the efficient solution of the 2D
position of CoW, 3D position of UAV, and the available
bandwidth at each one of them can be found. *e PSO
algorithm generates a set of (nP) random solutions as its
starting point, where each solution delivers the BS (i.e., CoW
or UAV) position. It seeks to promote candidate solutions
iteratively based on each candidate’s best experience
(Pbest(i)) and candidate’s best global experience (Gbest). *e
particle’s locations and velocities are evaluated depending on
the best location (Pbest(i)) and the best global location
(Gbest), where both are enhanced at each iteration. *e
velocity term is modified using the approach below:

Pvelocity(i) � wPvelocity(i) + a1∗ rand(Vsize).

∗ Pbest(i) − P(i)(  + a2∗ rand(Vsize).

∗ Gbest(i) − P(i)( ,

(10)

*e factor w is the inertia weight, which is used to adjust
the convergence speed, a1 and a2 are factors that represent
the particle’s stride size toward its local and global best
solutions, and (rand(Vsize)) is random positive numbers.
Each particle’s location is enhanced as follows:

P(i) � P(i) + Pvelocity(i), (11)

In the same manner, in ES, the PSO finds the solution in
two loops. Initially, the BS that has the priority is illustrated
as BS1, and it is deployed to serve a set of users (U) from
I.*e other BS is illustrated as BS2, and it is deployed next to
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(i) Input: the lower and upper bounds of decision variable (Varmin, Varmax), construction coefficients (κ, ϕ1,ϕ2), maximum
number of iterations (MIt), population size (nP), total number of users (I), and served users by BS1 (U)

(ii) Initialization: ϕ � ϕ1 + ϕ2, X � 2κ/(|2 − ϕ − (ϕ2 − 4ϕ)|0.5), w � X, a1 � Xϕ1, a2 � Xϕ2, GBest.Cost � − inf ;
(iii) BS1 Loop:
(iv) for k←1 to |I|

(v) for j←1 to nP

(vi) P(j) � unifrnd(Varmin,Varmax,Varsize)
(vii) PVelocity(j) � zeros(Varsize)
(viii) PCost(j) � Objectivefunction(P(j))

(ix) PBest(j) � P(j)

(x) PBest.Cost(j) � PCost(j)

(xi) if PBest.Cost(j)>GBest.Cost
(xii) GBest � PBest(j)

(xiii) end if
(xiv) end
(xv) PSO Loop:
(xvi) forIt←1 to MIt
(xvii) for j←1 to nP

PVelocity(j) � w∗PVelocity(j) + a1 ∗ rand(Varsize) · ∗ (PBest(j) − P(j)) + a2 ∗ rand(Varsize).∗ (GBest − P(j))

P(j) � P(j) + PVelocity(j)

PCost(j) � Objectivefunction(P(j))

if PCost(j)>PBest.Cost(j)

PBest(j) � P(j)

PBest.Cost(j) � PCost(j)

if PBest.Cost(j)>GBest.Cost
GBest � PBest(j)

end if
end if
end
end
end
BS2 Loop:
for kk←1 to |I| − |U|

for j←1 to nP

P(j) � unifrnd(Varmin,Varmax,Varsize)
PVelocity(j) � zeros(Varsize)
PCost(j) � Objectivefunction(P(j))

PBest(j) � P(j)

PBest.Cost(j) � PCost(j)

if PBest.Cost(j)>GBest.Cost
GBest � PBest(j)

end if
end
PSO Loop:
for It←1 to MIt
for j←1 to nP

PVelocity(j) � w∗PVelocity(j) + a1 ∗ rand(Varsize).∗ (PBest(j) − P(j)) + a2 ∗ rand(Varsize).∗ (GBest − P(j))

P(j) � P(j) + PVelocity(j)

PCost(j) � Objectivefunction(P(j))

if PCost(j)>PBest.Cost(j)

PBest(j) � P(j)

PBest.Cost(j) � PCost(j)

if PBest.Cost(j)>GBest.Cost
GBest � PBest(j)

end if
end if
end
end
end

ALGORITHM 1: PSO algorithm that finds the efficient UAVBS placement.
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serve as much users as possible from the set (|I| − |U|). *e
pseudocode for PSO algorithm is described in Algorithm 1:

4.3. Computational Complexity. *is section shows the
complexity of using either PSO or ES algorithms. It is well
known that the ES algorithm finds the optimal solution to
the problem. However, its computational complexity is high.
Practically, the ES complexity is O(X × Y × Z × |Uu|) + O

(X × Y × |Uc|), where (X, Y, Z) is the 3D possible locations
of the UAV in the proposed area, |Uu| is the number of
served users by UAV, (X, Y) is the 2D possible locations of
the CoW in the proposed area, and |Uc| � |I| − |Uu| is the
number of unserved users by UAV.

In order to reduce the computational complexity, a
suboptimal solution is obtained using heuristic algorithms
such as the PSO algorithm. *us, the PSO complexity is
O(nP × MIt × |Uu|) + O(nP × MIt × |Uc|), where nP is a
population of random solutions, MIt is the number of it-
erations, |Uu| is the number of users served by UAV, and
|Uc| � |I| − |Uu| is the number of unserved users by UAV.

5. Performance Evaluations

Simulation results describing the performance of PSO and
exhaustive search algorithms in terms of the served number
of users are presented in this section. Simulation results are
obtained using MATLAB R2020a. We assume an urban area
of (1000m× 1000m), which consists of roads as shown in
Figure 1. Furthermore, a total of 200 users are supposed to be
uniformly distributed over the given area. We use the
evaluation parameters as shown in Table 1. In addition, the
parameters of the PSO algorithm are listed in Table 2.

Figure 2 shows the number of served users versus the
percentage of allocated bandwidth for CoW (c) using the
aforementioned algorithms. *e figure is obtained when the
priority is given to the CoW at the beginning. As shown in
the figure, there is a clear trend of decreasing the number of
served users of the UAV as its percentage of bandwidth
decreases (equivalently, c increases). Similarly, there is an
apparent increase in the number of served users of the CoW
as its percentage of bandwidth, c, increases. As a result, there
is an optimal percentage of bandwidth, c, where the number
of served users is maximized. In this case, the optimal
percentage of bandwidth given to the CoW is c � 0.7,
whereas the remaining percentage of bandwidth (1− c)� 0.3
should be provided to the UAV. In addition, the figure
shows that the served number of users of CoW using the
PSO algorithm almost coincides with that result once using
the exhaustive search algorithm. *e reason behind this is
the flexibility of CoW to choose its location once it is given
priority before the UAV. However, there is a small gap in the
served number of users of UAV (as well as the total number
of users).

Figure 3 depicts the number of served users in terms of
the percentage of bandwidth provided to the CoW, c, when
the UAV has the priority at the beginning. *e figure shows
a clear trend of increasing (decreasing) the number of served
users of the CoW (UAV) as the percentage of the bandwidth

given to the CoW, c, increases. As shown in the figure, the
served users of the UAV using the PSO algorithm, or ex-
haustive search algorithm, are the same. *at is because the
UAV has the priority of choosing its location before the
CoW does. In addition, the figure shows that the results of
the PSO algorithm can achieve the results of the exhaustive
search algorithm with no more than a 5% deviation.
However, the complexity of the PSO algorithm is much
lower than the complexity of the exhaustive search
algorithm.

To show which BS should be given priority at the be-
ginning, Figure 4 shows the probability of priority provided to
the UAV and CoW depending on the percentage of band-
width provided to the CoW (c). *e figure shows that the
UAV must prioritize choosing its location before the CoW
when its percentage of bandwidth (1− c) is higher than 0.35
(or when c is less than 0.65). In contrast, the CoW must be
prioritized at the beginning when its percentage of bandwidth

Table 1: Values of the evaluation parameters.

Parameter fc B hCoW (hmin, hmax) n

Value 2GHz 40MHz 6m (100m, 300m) (2, 4)
Parameter PCOW Pu Pi,q SNRth
Value 40 dBm 20 dBm 200 kHz 20 dB

Table 2: Values of the PSO algorithm’s parameters.

Parameter nP MIt (Varmin, Varmax) Varsize (w, a1, a2)

Value 20 100 (0, 1000) 3 (1, 2.05, 2.05)
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Figure 2: Number of served users using PSO and ES algorithms
when the priority is given to the CoW at the beginning.
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(c) is more than 0.65. Among the plausible explanations for
these results is the fact that the UAV has more flexibility of
movement than CoW.*e CoW can move only on the roads,
as shown in Figure 1. However, the UAV can freely move
between all of the 3D possible locations in the given area. It is
essential to realize that the priority does not matter in the

extreme cases, where CoW is only working (i.e., c � 1) or only
UAV is only working (i.e., c � 0).

Now, to show the optimization results of our proposed
algorithm, Figure 5 shows the optimized locations of the
UAV (blue square) at (1000, 600, 290) and CoW (green
circle) at (225, 610) using the ES algorithm. Note that the
height of the CoW is fixed at 6m. In this setting, priority is
given to the UAV at the beginning with the percentage of
bandwidth (1− c)� 0.6. *us, the UAV serves 120 users (blue
dots), and then CoW serves 78 users (green dots). As a result,
99% of the users will be served.

Moreover, Figure 6 shows the optimized locations of the
CoW (green circle) and UAV (blue square) using the ES
algorithm once the priority is given to the CoW at the
beginning. In this case, the best CoW location is (610, 343)
with the percentage of the bandwidth of c � 0.7 and then the
best UAV location of the UAV is (400, 750, 290) with the
percentage of bandwidth (1− c)� 0.3. Accordingly, the CoW
serves 140 users, and then the UAV serves 54 users.
*erefore, 97% of users are served under this setting.

To show the computational complexity of both ES and
PSO algorithms, Table 3 shows the running time of each
algorithm under different values of the bandwidth per-
centage provided to the CoW (c). As it can be seen from the
table, the PSO algorithm improves the required time sig-
nificantly. In addition, note that these results of the ES
algorithm are obtained at 50m step size. If the step size is
decreased to locate the UAV and CoW precisely, the
running time will be extremely increased. For example, if
the step size is 25m and c � 0.6, the running time will be
963.5 seconds.
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Figure 4: Probability of priority versus the percentage of band-
width given to the CoW (c).

Percentage of allocated bandwidth for CoW (γ)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f S
er

ve
d 

U
se

rs

0

20

40

60

80

100

120

140

160

180

200

CoW users using ES
UAV users using ES
CoW users using PSO
UAV users using PSO
Total served users using ES
Total served users using PSO

Figure 3: Number of served users using PSO and ES algorithms when the priority is given to the UAV at the beginning.
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Finally, to show the robustness of our proposed algo-
rithm, we study its performance over three different users’
distributions. *e first distribution (D1) is, what we have
used, overall evaluations. *e second distribution (D2) is a
random distribution. *e third distribution (D3) is a uni-
form distribution, where the users are distributed uniformly

over the given area. Figure 7 shows the performance over all
the three aforementioned distributions. It can be seen that a
very low change in the served users percentage would have
occurred. In addition, in the impractical scenario where the
distribution is uniform (i.e., D3), the dropping in the served
users percentage would be at minimum, around 5%.

6. Conclusion

*is paper proposes a cooperative scheme between a CoW and
a UAV intending to maximize the wireless coverage in
emergencies. First, we found which one of the CoW and UAV
must be located at the beginning.*en, the best 2D location for
the CoW and the 3D location for the UAV are optimized. In
addition, the percentage of the available bandwidth thatmust be
provided for each base station (CoW and UAV) is calculated.
Finally, we found that the priority depends on the percentage of
the bandwidth given to each base station. For CoW-UAV
system, the simulation results show that the UAV must pri-
oritize choosing its location before the CoW when its per-
centage of bandwidth (c) is less than 0.65. In contrast, the CoW
must be prioritized at the beginning when its percentage of
bandwidth (c) is more than 0.65. In addition, the simulation
results show that the PSO algorithm can achieve the results of
the exhaustive search algorithm with no more than a 5% de-
viation. However, the complexity of the PSO algorithm is much
lower than the complexity of the exhaustive search algorithm.

Data Availability

Data are available from the corresponding author upon
request.
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Figure 5: Deployment of the CoW and UAV using ES algorithm
when the priority is given to the UAV at the beginning.
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Table 3: Running time (in seconds) of the PSO and ES algorithms.

c 0 0.4 0.6 1
PSO 20.37 20.56 20.78 21.01
ES 128.16 128.91 131.16 153.78
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Figure 7: Robustness of the proposed algorithm.
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