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At present, the contradiction between the high efficiency of the world’s food production and environmental pollution is becoming
increasingly prominent. In order to study the related issues of the world’s food production efficiency and sustainability, this paper
uses the method of entropy weight to extract 5 indicators as the environmental pollution assessment model from the envi-
ronmental pollution of agricultural production, scores 10 major agricultural production countries in the world, and obtains the
environmental pollution index. Subsequently, the DEA model was established for these countries, the environmental pollution
index was included into the production efficiency system as an unexpected output, the Malmquist index was established to
describe the changes in agricultural production efficiency from 2010 to 2018, and the cluster analysis was carried out for it.
Subsequently, the OSL and Tobit models were used for regression of the influencing factors. In addition, the comprehensive
evaluation model of efficiency and sustainability was established by controlling the amount of fertilizer used, which was applied in
different countries.

1. Introduction

With the continuous development of the current world
economy, food production is becoming more and more effi-
cient, and the food produced is enough to feed every individual
in the world. However, 821 million people still suffer from the
food hunger crisis worldwide [1, 2]. .e current food system is
well illustrated by the increasing global environmental dis-
ruption to produce adequate food, which includes a series of
consumption such as greenhouse gas emissions, deforestation,
and agricultural irrigation [3–7]. In studying food production
systems, it is of great importance to rationally evaluate and
improve the current global food system, on the one hand,
considering the advantages of high efficiency for food pro-
duction under the current model and, on the other hand, fo-
cusing on the environmental sustainability issues due to high
efficiency [8, 9].

Due to the differences of geographical and climatic
factors and customs preferences, different countries have

different focus of agricultural production, and there are
obvious differences in environmental factors such as
planting, animal husbandry, and fishery [10, 11]. .e LCA
method is often used to evaluate the environmental pollu-
tion of crops in the whole life cycle [12, 13]. However,
agricultural production and consumption are characterized
by a large time span, and this activity is constantly changing,
so it is difficult to measure. In the aspect of objective
comprehensive evaluation, the entropy weight method can
better measure the existing statistical data and get better
results [14–16]. In the aspect of agricultural production
efficiency, the DEA method is often used to measure the
efficiency and productivity between similar decision-making
units. By adding various constraints on the basis of the DEA
method, more production efficiency models can be obtained
to solve efficiency problems in various situations [17–19].

In this review, we first provide an explanation for the
production efficiency and sustainability of the current global
food system based on the use of the entropy weight method
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to establish an evaluation system for environmental pollu-
tion and the introduction of the EPI as a measure, followed
by the use of the DEA model to establish a model for the
evaluation of the efficiency of global food production and the
inclusion of the EPI as an undesired output into production
system when the model of SBM hyper efficiency is estab-
lished. After that, two methods, OLS and Tobit, were used to
analyze the factors affecting the efficiency of global food
production by using fertilizers as hubs to connect the en-
vironmental pollution assessment model with the food
production efficiency model, respectively, and then, agri-
cultural efficiency and sustainability in representative re-
gions were summarized, and the model was applied to
different developing and developed countries, thus fully
illustrating model stability and fitness. Finally, corre-
sponding improvement measures and policy recommen-
dations are proposed, which will be highly instructive for
agricultural sustainable development.

2. Data Sources and Basic Assumptions

.e data in this paper come from Question E of the 2021
American College Students Mathematical Modeling
Competition and the statistics of the World Bank. In
order to solve the problem, we make assumptions as
follows: (i) assume that the data consulted are true and
reliable; (ii) assume there is no emergency that affects the
agricultural system; (iii) assume there is no geographic
influence in agricultural production; and (iv) we only
consider the world’s major food producing countries as
the evaluation object and ignore the small food producing
countries.

3. Environmental Pollution Assessment Model

.e current world agricultural system has successfully fed
more than 70 billion people, but it has paid a huge price for
the deterioration of the world’s environment. It is pointed
out that 25%–33% of greenhouse gases come from agri-
cultural activities such as fertilization, cultivation, produc-
tion, and incineration in Figure 1 which reflects the global
trend of changes in agricultural CO2 emissions and grain
production in recent years [20]. Although the growth rate of
agricultural CO2 emissions in recent years has decreased, the
total amount is still at a high level. According to relevant
research, the atmospheric CO2 concentration will reach
more than 450 ppm in 2050. .e rise of sea level and ab-
normal temperature caused by greenhouse gases has further
caused serious damage to human agricultural production
[21].

With the increasingly modern cities and the growth of
population, the world’s fresh water demand is also rising
gradually. At the same time, the consumption of fresh
water resources by agricultural activities cannot be ig-
nored. Irrigation water is more than any other human
activities. .e regeneration ability of water resources is
closely related to the stability of the food system. .e
current global regional food production system is in an
unbalanced state. In addition to the production of

necessary crops (such as rice, wheat, and cotton), it also
invests a large amount of water resources into the pro-
duction of inefficient food (such as avocado in Mexico).
Even with the same kind of crops, the water productivity
in developed countries will be much higher than that in
developing countries. .erefore, choosing crops with
high water productivity can not only relieve the pressure
of water resources but also produce more food for food
shortage areas [22, 23].

In order to meet the growing demand for planting,
private growers and small-scale growers, in order to seize
the agricultural market, burned forests on a large scale to
quickly obtain arable land. In Indonesia, for example,
before burning, people drain the swamp through canals
and then cut down the trees to facilitate subsequent
burning. When the forest is burned, the burning vege-
tation and roots ignite the coal buried underground,
which releases a large amount of carbon dioxide [24]. .is
behavior has led to a significant decline in biodiversity
and increased the risk of alien species invasion. And the
reduction of the original forest also makes the adverse
environmental phenomenon occur frequently.

Fertilizer is the most important part of agricultural
production. For a long time, it has become a common
phenomenon that the amount of fertilizer is large and the
utilization rate is low. .is low efficiency and high
consumption mode of fertilizer application not only
increases the cost of agricultural production but also
causes extremely bad environmental pollution. It also
increases the content of nitrogen in the soil. With the
surface runoff polluting the surface water and under-
ground water, the pollution of nitrates will be expanded,
and the human cells may become cancer.

In summary, the current agricultural production pays
attention to high efficiency while ignoring the low sus-
tainability risk brought by it. .is production mode is based
on the future of the global environment as the overdraft cost,
so it is particularly important to make an objective assess-
ment of global environmental pollution.

3.1. Environmental Pollution Index. In this paper, an ob-
jective weighting method, i.e., the entropy weight method, is
adopted to give weight to each index, respectively, according
to the degree of variation of each index, so as to obtain a
comprehensive index of agricultural environmental
pollution.

First of all, the agricultural irrigation area, CO2 emission,
deforestation area, and fertilizer use amount of each country
are standardized in four indicators:

Xij �
αij − min αij 

max αij  − min αij 
+ 1,

pij �
xij


n
i�1 xij

.

(1)

.e normalized matrix P of the original matrix is as
follows:
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. (2)

.en, we calculate the entropy of each indicator
according to the formula as follows:

ej � −k 
n

i�1
pij ln pij , k �

1
ln n

. (3)

We calculate the degree of difference (information utility
value) of each indicator and set the difference coefficient as
gj which is given as follows:

gj � 1 − ej. (4)

.e weight of each indicator is as follows:

wj �
gj


n
j�1 gj

. (5)

.erefore, the comprehensive score of each country can
be obtained as follows:

si � 
m

j�1
wj × pij. (6)

Because the value of si is small and not easy to be directly
observed, the following method is used to project it into the
[0, 100] interval to construct the EPI (environmental pol-
lution index) as follows:

EPI �
si − Min si( 

Max si(  − Min si( 
× 100. (7)

3.2. Results Analysis. According to the above steps, calculate
the collected data and use MATLAB to calculate and obtain
the index of the entropy and weight, for the future com-
prehensive score calculation. .e results are shown in
Table 1.

After determining the weight and the amount of in-
formation, the final comprehensive score of each country’s
environmental pollution level is obtained, which we call
environmental pollution index (EPI), as shown in Table 2.

We use histogram and radar chart to show the score
results; in the histogram of Figure 2, the higher the area, the
higher the environmental pollution index and the more
serious the agricultural pollution.

4. Grain Production Efficiency Model

4.1.DEAModel of SBMSuper Efficiency. .eDEAmodel is a
special tool based on linear programming to evaluate the
relative effectiveness of work performance of the same type
of organizations. It can effectively eliminate the interference
of external environment and random errors on efficiency
calculation and can evaluate the world food production
efficiency well. However, the pure DEA model can only take
the expected output efficiency as the output index and
cannot take the unexpected pollutants in the agricultural
production process into account in the model [25–27].
.erefore, this paper will use the traditional DEA model
based on the use of the SBM super efficiency model so that
the DEA method can take into account the unexpected
output in the calculation and can reduce the unexpected
output from b1 to b2 and increase the expected output from
g1 to g2 by reducing the input of the decision-making unit,
as shown in Figure 3.
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Figure 1: CO2 emissions and grain production.
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Assuming that a system has n decision-making units, m

inputs, and s outputs, the input and output indicator vectors
of the j DMU are as follows:

Xj � x1j, x2j, . . . , xmj 
T
> 0, Yj � y1j, y2j, . . . , ysj 

T
> 0, j � 1, 2, . . . , n, (8)

where Xij(i � 1, 2, . . . , m) is the ith input variable of the jth
DMU andYij(j � 1, 2, . . . , s) is the rth output variable of the
jth DMU..e VRS input-orientated DEAmodel is as follows:

min ρSE � 1 +
(1/m) 

m
i�1 s

−
i

xik

s.t. 
n

j�1,j≠ k

xijλj − s
−
i ≤xik



n

j�1,j≠ k

yrjλj ≥yrk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where λ≥ 0, s− ≥ 0, s+ ≥ 0; i � 1, 2, . . . , m; r � 1, 2, . . . , q;
j � 1, 2, . . . , n(j≠ k); ρSE represents the efficiency value of

the decision-making unit under the SBM super efficiency
model; xij represents the total amount of input element i in
country j; yrj represents the total amount of type r output in
country j; s+ and s− represent the relaxed variables of input
and output vectors; and k represents the country on the
effective production boundary.

Environmental efficiency is divided into natural disposable
environmental efficiency and management disposable envi-
ronmental efficiency. Natural disposability refers to reducing
the corresponding unexpected output by reducing the input of
the system; management disposability, contrary to natural
disposability, refers to increasing the expected output of the
system and reducing the unexpected output of the system by
continuously improving the technical level and increasing the
input of the system.

In order to describe the change of agricultural pro-
duction efficiency over time, this paper uses data from

Table 1: Weight and entropy.

Indicators Weight Entropy
Agricultural irrigation 0.1309 0.8346
CO2 emissions 0.1748 0.7793
Deforestation 0.3002 0.6208
Fertilizer consumption 0.3942 0.5021

Table 2: Score and ranking.

Rank 1 2 3 4 5 6 7 8 9 10
Country IND CHN VNM DEU FRA USA BRA CAN RUS ARG
EPI 100 61 43 30 26 17 7 4 1 0
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Figure 2: EPI histogram.
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Figure 3: DEA method.
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different countries during 2010–2018 to construct the
Malmquist production efficiency index [28] as follows:

M
t
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D
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x

t+1
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t
 

. (10)

.e efficiency change index can be further divided into
pure technical efficiency change index and scale efficiency
change index:
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PTEC(VRS) �
D

t
v x

t+1
, y

t+1
 

D
t+1
v x

t
, y

t
 

,

SEC(VRS,CRS) �
D

t
v x

t
, y

t
 

D
t
c x

t
, y

t
 

×
D

t+1
c x

t+1
, y

t+1
 

D
t+1
v x

t+1
, y

t+1
 

.

(12)

4.2. Index Selection and Data Processing. In order to study
the efficiency of the global food production system, we
selected the top 10 countries in the global agricultural
production scale in the past few years, namely: China, USA,
India, Brazil, Russia, France, Canada, Vietnam, Germany,
and Argentina. In this paper, each country is regarded as a
decision-making unit (DMU). .erefore, there are a total of
10 DMUs. On the basis of reference to relevant research, we
determined the indicators as shown in Table 3.

Output Indicators. .e output indicators include expected
output and unexpected output. .e expected output is ag-
ricultural GDP, and the unexpected output is CO2 emission.

Input Indicators. As the DEA model selected in this paper
includes unexpected output indicators, not only labor force,
agricultural arable land area, and agricultural irrigation area
are selected for input indicators but also some indicators that
will generate unexpected output but play a key role in food
production, including agricultural machinery and fertilizer
consumption.

4.3. Results Analysis. .e analysis results with DEAP2.1
software are shown in Table 4. Without considering envi-
ronmental factors and random factors, the average value of
agricultural comprehensive technical efficiency, the average
value of pure technical efficiency, and the average value of
scale efficiency of various countries in 2018 were 0.368,

0.769, and 0.452, respectively..emaximum comprehensive
technical efficiency is 1.000 (China and the United States),
and there is room for improvement in other countries in all
aspects; the minimum comprehensive technical efficiency is
0.059 (France).

By calculating theMalmquist average index from 2010 to
2018, it can be seen from Table 5 that the development of
Vietnam started later, so the development speed in recent
years is faster. .e EFFCH (technical efficiency), scale ef-
ficiency (SECH), and total factor productivity (TFPCH) of
the Malmquist average index are the highest, while there is
still room for improvement in terms of technological
progress. As an old agricultural exporter, Canada has the
highest TECHCH and France has the highest PECH.

.e Malmquist index from 2010 to 2018 was cluster
analyzed by Python, and the corresponding spectrum cluster
graph is obtained as shown in Figure 4. .e cluster results of
agricultural production efficiency of various countries in 9
years can be divided into 3 categories: Canada, Germany,
and Russia in the first category; Brazil, China, Vietnam,
India, and the United States in the second category; and the
other 2 countries belong to the third category and are di-
vided into Argentina and France, respectively.

5. Regression Analysis of Factors Affecting
Production Efficiency

In order to find the influencing factors of production effi-
ciency, this paper chooses to establish a regression model
[29]. Because the minimum value of efficiency value is 0 and
the result of the super efficiency model makes the efficiency
value not limited to 1, there is no limitation in the selection
of the regression model. In this paper, OLS and Tobit models
are selected for analysis.

5.1. OLSModel. .e five input factors of the DEA model are
taken as independent variables, namely, Labor (X1), Agri-
cultural Land (X2), Agricultural Irrigation (X3), Fertilizer

Complexity 5



Consumption (X4), and Agricultural Machinery (X5). .e
ecological efficiency value (Y) calculated by the DEA model
is taken as dependent variable, and the following multiple
linear regression model is constructed by taking logarithm
on both sides, respectively:

lnY � β0 + β1 ln X1 + β2 ln X2 + β3 ln X3 + β4 ln X4 + β5 ln X5 + μ.

(13)

Efficient β0 is the intercept term, and regression coef-
ficient βi represents the percentage of the impact of changes
in input factors on changes in ecological efficiency value, and
μ is a random error term.

5.2. Tobit Model. .e Tobit model, also known as sample
selection model and restricted dependent variable model,
refers to the value taking model when the explained variables
are continuous but subject to certain restrictions, which is
applicable to the cases where the explained variables have
zero value and the remaining values are positive and con-
tinuous. In the estimation of the model, the potential
explained variables Y ∗ satisfy the basic assumptions of the
classic linear model and are subject to independent normal
distribution of the same variance. .e basic form of the
model is as follows:

Y
∗
t � at + 

r

j�1
βjXtj + εtt � 1, 2, . . . , n; j � 1, 2, . . . , r,

Y
∗
t �

Y
∗
t Y

∗
t ≥ 0

0 Y
∗
t ≤ 0

,
⎧⎨

⎩

(14)

where X � (x1, x2, . . . , xn)′ is the vector of explanatory var-
iables, that is, input of factors; Y � (y1, y2, . . . , yn)′ is the
vector of explanatory variables, that is, the value of eco-eco-
nomic efficiency of peasant households; β � (β1, β2, . . . , βn)′ is
the parameter vector; and ε � (ε1, ε2, . . . , εn)′ is the residual.

5.3. Results Analysis. From Table 6, it can be seen that the
OLS and Tobit results are basically the same, and the re-
gression coefficients of the explanatory variables X2, X3,
and X4 are all negative, indicating that the increase in
agricultural arable land, agricultural irrigation, and

fertilizer use will have an adverse impact on the efficiency of
food production. .e regression coefficients of X1 and X5
are positive, indicating that labor input and agricultural
machinery use are directly proportional to their production
efficiency.

6. Comprehensive Evaluation Model of
Efficiency and Sustainability

In the weight of environmental pollution in Table 1, the
weight of fertilizer use is the largest, and in the regression
analysis in Table 6, fertilizer use also has good explanatory
effect. In order to express the direct connection between
agricultural production efficiency and sustainability, the
amount of fertilizer used is selected to connect the sus-
tainability and production efficiency of world food pro-
duction. When the fertilizer usage is reduced in a linear
way [30–34], we name it as the process of increasing the
proportion coefficient. When the proportion coefficient is
0, it means to keep the original state. When the proportion
coefficient is 1, it means not to use the fertilizer. Devel-
oping countries and developed countries are selected at
different stages to substitute into the environmental pol-
lution assessment model and obtain the change relation-
ship between EPI and proportion coefficient as shown in
Figure 5; the change relationship between comprehensive
technical efficiency and proportion coefficient is shown in
Figure 6.

With other indicators unchanged, the impact of re-
ducing fertilizer use on different countries is calculated. In
Figure 5, the EPI of each country shows the same downward
trend with the decrease in fertilizer use. In Figure 6, with the
decrease in the EPI, the comprehensive technical efficiency
of China is in a decreasing stage. In Germany and India, the
comprehensive technical efficiency is increasing.

If Figures 5 and 6 are drawn on the same graph, the direct
relationship between agricultural production efficiency and
sustainability can be obtained as shown in Figure 7. .is
indicates that some countries have invested too much fer-
tilizer at present, resulting in the positive expected output
efficiency lower than the unexpected output efficiency.
.erefore, reducing the input of fertilizer can effectively
improve the production efficiency and reduce environ-
mental pollution.

Table 3: Indicator selection.

Input indicators
Output indicators

Expected output Unexpected output
Labor (million)

Grain yield (billions of tons) Environmental pollution index
Agricultural land (percent of land area)
Agricultural irrigation (percent of total agricultural land)
Fertilizer consumption (kilograms per hectare of arable land)
Agricultural machinery (tractors per 100 Sq. km of arable land)
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Figure 4: Cluster analysis of Malmquist index.

Table 4: Returns to economies of scale in 2018.

Country CHN USA IND BRA RUS FRA CAN VNM DEU ARG Mean
MALM 1 1 0.275 0.278 0.661 0.059 0.095 0.111 0.137 0.066 0.368
TECH 1 1 0.409 1 1 0.31 1 0.325 0.642 1 0.769
EFFI 1 1 0.673 0.278 0.661 0.189 0.095 0.342 0.214 0.066 0.452
Return on scale — — IRS IRS IRS IRS IRS IRS IRS IRS —

Table 5: Average Malmquist index.

Country CHN USA IND BRA RUS FRA CAN VNM DEU ARG
EFFCH 0.970 1 1 1 0.928 1.037 1.017 1.057 0.875 1.004
TECHCH 1.003 0.982 0.972 0.99 0.993 0.973 1.006 0.958 1.001 0.989
PECH 1.006 1 1 1 1 1.007 1 1.004 1 1
SECH 0.964 1 1 1 0.928 1.03 1.017 1.054 0.875 1.004
TFPCH 0.973 0.982 0.972 0.99 0.922 1.009 1.023 1.013 0.876 0.994

Table 6: Regression results of influencing factors.

Variable C X1 X2 X3 X4 X5

OSL Coefficient −2.8272 0.6859 −0.0485 −0.1593 −0.2789 0.1784
t-statistic −2.2029 3.2117 −0.1692 −0.5691 −1.0489 0.6464

Tobit Coefficient 0.3786 0.001 −0.002 −0.0044 −0.0003 0.0002
z-statistic 2.408 2.6567 −0.4355 −0.486 −0.7838 0.5998
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7. Conclusion

(1) In this paper, 4 indicators of agricultural irrigation
area, CO2 emissions, deforestation area, and fertilizer
use were selected, and the environmental pollution
assessment model was established by using the
method of entropy weight, and the environmental
pollution index was obtained. Among the 10 major
agricultural producing countries, India has the
highest degree of environmental pollution, and
Argentina has the lowest degree.

(2) .rough the establishment of the DEA model, it is
found that the countries with the highest compre-
hensive technical efficiency are China and the United
States and Vietnam has the highest rate of techno-
logical progress. .e subsequent regression analysis
model indicates that the increase in agricultural
arable land, agricultural irrigation, and fertilizer use
will have an adverse impact on the economic effi-
ciency value of food production, and the labor input
and agricultural machinery use are directly pro-
portional to their ecological economic efficiency
value.

(3) .e OSL and Tobit models were used to conduct
regression analysis on the factors affecting the
production efficiency, and the results showed that
the increase in agricultural arable land, agricultural
irrigation, and fertilizer use would have an adverse
impact on the food production efficiency. .e input
of labor force and the use of agricultural machinery
are directly proportional to their production
efficiency.

(4) Combining the environmental pollution index with the
comprehensive technical efficiency, the relationship
between the two has been obtained through the control
of fertilizer use. Some countries have invested excessive

fertilizer in production, resulting in the positive ex-
pected output efficiency lower than the unexpected
output efficiency. Reducing the input of fertilizer can
effectively improve the production efficiency and re-
duce environmental pollution.

.e research of this paper also has some deficiencies as
follows:

(1) Due to the lack of data, the latest data can only be
researched into 2018, and the changes in the last two
years have not been considered.

(2) In this paper, only 10 countries are selected to
represent the global agricultural production system,
and the environmental pollution status of some
countries with characteristic crops is not considered,
which may be different from the main agricultural
producing countries.

In conclusion, our research results can provide a the-
oretical basis for evaluating the efficiency of agricultural
production and the health of environmental pollution sys-
tem in a country and contribute to the reform of agricultural
development so as to promote environmental protection and
sustainable development of agriculture.
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R. Melnikienė, “Technical change directions of China’s grain
production: application of the bias-corrected malmquist in-
dices,” Technological and Economic Development of Economy,
vol. 24, no. 5, pp. 2065–2082, 2018.

[4] D. Abler, “Economic evaluation of agricultural pollution
control options for China,” Journal of Integrative Agriculture,
vol. 14, no. 6, pp. 1045–1056, 2015.

[5] J. S. Zhang, X. Y. Yan, and X. Z. Hu, “Calculation of the
agricultural total factor productivity and its influencing fac-
tors in Chongqing of China,” European Journal of Agronomy,
vol. 28, no. 1, pp. 1810–1812, 2017.

[6] S. U. K. Rohmer, J. C. Gerdessen, and G. D. H. Claassen,
“Sustainable supply chain design in the food system with
dietary considerations: a multi-objective analysis,” European
Journal of Operational Research, vol. 273, no. 3, pp. 1149–
1164, 2019.

[7] W. N. Chang, H. P. Zhou, and Y. Gao, “Balance between
planting and breeding-discussion on the mode of reducing
agricultural pollution,” Journal of Agro-Environment Science,
vol. 32, no. 11, pp. 2118–2124, 2013.

[8] P. Yan and L. Z. Zhu, “Agricultural pollution control in China:
defects in environmental regulation and adverse selection of
stakeholders,” Issues in Agricultural Economy, vol. 36, no. 11,
pp. 73–80, 2015.

[9] W. N. Chang and H. P. Zhou, “Preliminary construction of
agricultural pollution reduction index system,” Journal of
Ecology and Rural Environment, vol. 28, no. 4, pp. 456–461,
2012.

[10] X. F. Li, J. Z. Zhu, X. J. Gu, and J. J. Zhu, “.e present situation
of the pollution of the non-point source of agriculture and the
progress of its control,” China Population, Resources and
Environment, vol. 20, no. 4, pp. 81–84, 2010.

[11] Q. Yang and H. J. Liu, “.e regional difference and influence
factors of the efficiency of the rural water resources in China
under the influence of the pollution,” ;e Journal of Quan-
titative & Technical Economics, vol. 32, no. 1, pp. 114–128,
2015.

[12] J. L. Zhu, Q. J. Yang, and G. Y. Wang, “Based on LCA, an
assessment of the development of low-carbon agriculture in
Anhui province and an analysis of the impact factors,” Henan
Agricultural Sciences, vol. 45, no. 9, pp. 64–68, 2016.

[13] F. L. Zhong, X. Yang, and A. J. Guo, “Study on the eco
economic efficiency of oasis agriculture in the arid area based
on the combination of LCA and DEA-Taking the planting of
corn in Zhangye city as an example,” Ecological Economy,
vol. 33, no. 11, pp. 122–127, 2017.

[14] L. Lei and X. X. Tuo, “Evaluation of comprehensive inno-
vation and development ability of modern agricultural science
and technology park in Shaanxi based on supply side
structural reform-a model based on the combination of the
method of entropy weight and TOPSIS,” Science and Tech-
nology Management Research, vol. 39, no. 3, pp. 114–120,
2019.

[15] M. Li, S. F. Li, and Y. H. Ouyang, “.e evaluation and analysis
of modern agricultural development level of Zhuolu County
based on the method of entropy weight,” Journal of China
Agricultural University, vol. 19, no. 5, pp. 236–243, 2014.

[16] C. Zhang, Z. M. Li, X. X. Dong, and C. Y. Peng, “An analysis of
the agricultural development level of BRICs countries—a
comparative study based on the method of entry-level weight
and the method of coefficient of variation,” Science & Tech-
nology and Economy, vol. 27, no. 6, pp. 42–46, 2014.

[17] X. L. Tang, J. Q. Wang, B. Zhang, and L. X. Zhang, “Appli-
cation of the DEA on the performance evaluation of the
agricultural support policy in China,” Agricultural Economics-
Zemedelska Ekonomika, vol. 63, no. 11, pp. 510–523, 2017.

[18] Q. X. Lu and X. H. Meng, “Research on agricultural pro-
duction efficiency of Jiangsu Province based on 3 stage DEA
model,” Northeast Agricultural Science, vol. 46, no. 1,
pp. 94–99, 2021.

[19] H. F. Wang, Y. S. Shi, and C. Y. Yi, “Land use efficiency and its
changes of Shanghai development zone based on DEA model
and Malmquist productivity index,” Geographical Research,
vol. 33, no. 9, pp. 1636–1646, 2014.

[20] L. Pang, “Analysis on regional differences and influencing
factors of agricultural carbon emissions in China,” Journal of
Arid Land Resources and Environment, vol. 28, no. 12, pp. 1–7,
2014.

[21] Y. T. Yao and W. M. Chen, “.e present situation of
greenhouse gas and the development mode of low-carbon
agriculture,” Science & Technology Progress and Policy, vol. 27,
no. 22, pp. 48–51, 2010.

[22] L. P. Zhang, J. Xia, and Z. F. Hu, “An analysis of the situation
and safety of water resources in China,” Resources and En-
vironment in the Yangtze Basin, vol. 18, no. 2, pp. 116–120,
2009.

[23] F. Y. Xu, Y. C. Gai, Z. M. Xu, and W. Z. Wang, “Study on the
assessment method of water productivity of crops,” Journal of
Glaciology and Geocryology, vol. 35, no. 1, pp. 156–163, 2013.

[24] M. Wei, “System and living world in climate change gover-
nance: a case study of peat swamp forest destruction in
Indonesia under palm oil development,” Communication of
Dialectics of Nature, vol. 42, no. 9, pp. 106–111, 2020.

[25] Z. Chen, Y. Y. Xu, Z. J. Zhai, and S. Huang, “Analysis of
agricultural production efficiency of Henan Province based on
SBM-DEA model,” Journal of Henan Agricultural University,
vol. 53, no. 4, pp. 647–652, 2019.

[26] J. Li and D. R. Cheng, “A study on the efficiency of the en-
vironment in China based on DEA-SBM model,” Journal of
Hefei University of Technology (Natural Science Edition),
vol. 32, no. 8, pp. 1208–1211, 2009.

[27] X. H. Chen, G. D. Yi, and X. Liu, “Based on the three stage
SBM-DEA model, a study on the efficiency of the Chinese
region’s carbon discharge,” Operations Research and Man-
agement Science, vol. 26, no. 3, pp. 115–122, 2017.

[28] Y. Yang and S. B. Jiang, “Evaluation of agricultural irrigation
water use efficiency in China based on DEA and malmquist
index,” Ecological Economy, vol. 32, no. 5, pp. 147–151, 2016.

[29] W. E. Jiao, G. C. Guo, and Y. S. Chen, “Research on the impact
of agricultural land transfer on agricultural production effi-
ciency-based on the analysis of DEA-Tobit model,” Resources
Science, vol. 37, no. 9, pp. 1816–1824, 2015.

[30] J. B. Liu, J. Zhao, and J. Min, “On the Hosoya index of graphs
formed by a fractal graph,” Fractals-Complex Geometry
Patterns and Scaling in Nature and Society, vol. 27, no. 8,
pp. 19–35, 2019.

[31] X.-B. Liu, Y.-J. Zhang, W.-K. Cui, L.-T. Wang, and J.-M. Zhu,
“Development assessment of higher education system based
on TOPSIS-entropy, hopfield neural network, and cobweb
model,” Complexity, vol. 2021, Article ID 5520030, 11 pages,
2021.

[32] J.-M. Zhu, Y. Chen, and S. Zhang, “Analysis of the impact of
climate change on national vulnerability based on fuzzy
comprehensive evaluation,” Discrete Dynamics in Nature and
Society, vol. 2020, Article ID 3527540, 10 pages, 2020.

10 Complexity



[33] F. Xu, Y.-A. Du, H. Chen, and J.-M. Zhu, “Prediction of fish
migration caused by ocean warming based on SARIMA
model,” Complexity, vol. 2021, Article ID 5553935, 9 pages,
2021.

[34] R. Xie, R. Liu, X.-B. Liu, and J.-M. Zhu, “Evaluation of SMEs’
credit decision based on support vector machine-logistics
regression,” Journal of Mathematics, vol. 2021, Article ID
5541436, 10 pages, 2021.

Complexity 11


