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+is paper aims to establish an effective guidance law to accomplish the interception guidance mission for a missile intercepting a
target with impact angle constraint and autopilot dynamics. To achieve this purpose, a fixed-time disturbance observer-based
adaptive finite-time guidance law is presented. First, a fixed-time disturbance observer (FTDO) is designed to guarantee the fast
estimation of the lumped disturbance caused by the target maneuver. +en, the FTDO-based adaptive integral sliding mode
backstepping (AISMB) guidance law is constructed for the interception guidance problem. Besides, several adaptive laws are
established to estimate the derivative of virtual control inputs, making the “differential explosion problem” of conventional
backstepping get avoided. +e finite-time convergence characteristic of the closed-loop system is analyzed by utilizing the
Lyapunov stability theory. Finally, the simulation examples are conducted to demonstrate the effectiveness of the proposed
composite guidance law.

1. Introduction

+e high maneuverability of the targets can bring some great
difficulties in the interception and defense in modern war
[1]. +erefore, it is necessary to develop some innovative
guidance methods [2] for the missiles to improve the in-
terception efficiency against such targets. To achieve this
goal, the missiles are usually required to complete the target
interception at an expected impact angle while ensuring the
small miss distance. By applying this guidance strategy, the
efficiency of warheads and striking efficiency can be im-
proved [3].

For a long time, the proportional navigation (PN)
guidance law is one of the widely attractive methods which
possesses simple calculation and easy implementation for
the practical engineering [4]. On this basis, scholars have
designed varieties of modified PN-based guidance laws, such

as pure proportional navigation (PPN) guidance law [5],
biased proportional navigation (BPN) guidance law [6], and
generalized proportional navigation (GPN) guidance law
[7]. By introducing an argument term to PN, Kim et al. [6]
can intercept the target at the desired angle. In [7], the GPN
is designed to achieve the guidance mission in the presence
of small maneuvering and nonmaneuvering target. How-
ever, when facing a highly maneuvering target, few of these
mentioned methods can simultaneously guarantee the small
miss distance and desired impact angle. +is disadvantage
encourages the researchers to further develop some ad-
vanced methods for the guidance law, i.e., optimal control
[8], sliding mode control [9], and disturbance observer-
based control [10, 11].

+e optimal control-based guidance law can achieve
accurate attack at an expected impact angle under the
premise of minor control energy. However, the design
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process of this guidance law depends on the estimation of
time-to-go [12]. +ough some scholars have proposed an
excellent estimation of time-to-go and applied it to achieve
the guidance mission with specified attack time [13], this
guidance scheme cannot be suitable for other nonlinear
schemes. As one of the most promising methods, the sliding
mode control- (SMC-) based guidance law can provide the
demanding of miss distance and terminal impact angle
constraint without the prior knowledge of time-to-go. In
addition, this method has great robustness to external dis-
turbances and parameter uncertainties [14]. In [15], a
guidance law for intercepting the target with evasive ma-
neuver is proposed by applying the second-order sliding
mode control method. Moreover, Ebrahimi et al. [16]
combined optimal control and sliding mode control to
construct a composite guidance law. Although these tradi-
tional SMC guidance laws can achieve robust guidance with
simple forms, the state of the closed-loop system can only
satisfy asymptotical stability. However, in some practical
scenarios, the interception only lasts for several seconds. In
this situation, the guidance law should have faster conver-
gence speed, while the previous asymptotical stability cannot
guarantee this property.

Subsequently, the finite-time stability theory [17] has
been extended to the guidance and control of the spacecrafts
for the purpose of addressing the aforesaid control issue. As
known, the finite-time convergence theory-based controller
can acquire the finite-time convergence property so as to
drive the system state into the origin within a predefined
convergence time [18]. Notably, the terminal sliding mode
control is an excellent method to ensure this finite-time
property. In [19], a finite-time convergent guidance law is
presented to ensure that the line-of-sight (LOS) angular rate
and LOS error converge to zero in finite time. +us, the
accurate interception is achieved, and the expected impact
angle constraint is also satisfied. Based on the terminal
sliding mode control theory, a guidance law [20] satisfying
different initial conditions is designed to intercept the
constant speed targets. Although abovementioned papers
can solve the interception guidance problem with impact
angle constraints, the target maneuvers are only considered
as nonmoving or constant speed moving, which exhibits
certain limitations in the practical engagements. Besides,
traditional terminal sliding mode control may show the
singularity when the sliding modes converge to zero [21].
+erefore, an adaptive nonsingular fast terminal sliding
mode guidance law is developed by [22] to intercept the
maneuvering targets with impact angle constraints and
improve the singular problem of conventional terminal
sliding mode control. Furthermore, one novel nonsingular
terminal sliding mode control is designed to ensure that the
missile strikes the target with the terminal impact angle
constraint [23].

Strictly speaking, the autopilot dynamics of interceptor
missiles can usually bring substantial influences to the actual
guidance system [24], while most of the aforementioned
studies do not focus on this issue. +us, a finite-time
guidance law considering the dynamics of the missile’s
autopilot as a first-order lag is designed in [25]. However, the

autopilot lag would be more complicated in the actual sit-
uation and can usually be modeled as a second-order dy-
namics [26]. In [27], a robust continuous guidance law with
the terminal angle constraint is proposed in the presence of
second-order autopilot dynamics. In addition, Zhao et al.
[28] presented one output feedback sliding mode guidance
law by applying the sliding mode theory and dynamic
surface control, in which the adaptive technique is utilized to
acquire the estimation of target’s maneuver.

To further improve the disturbance rejection capability,
guidance laws based on the disturbance observer, i.e.,
nonlinear disturbance observer (NDO) [29], extended dis-
turbance observer (ESO) [30], and sliding mode disturbance
observer (SMO) [31], have been broadly applied to handle
this issue. However, the convergence speed of the distur-
bance observers in aforesaid research studies is mainly
depended on the observers’ gains, and the transient process
will be significantly deteriorated [32].

In recent years, fixed-time stability gets attractive and
provides an effective strategy to construct the disturbance
observer [33]. +eoretically speaking, the disturbance ob-
servers with fixed-time stability can guarantee that the es-
timation errors converge to zero in a prescribed fixed-time
regardless of the initial conditions, indicating that these
observers would obtain faster estimation [34]. In [35], a
fixed-time differentiator-based disturbance observer is
designed, which can ensure the exact estimation for the
missile’s control system. Besides, Zuo [36] extended the
fixed-time stability technique to high-order systems and
presented the general formulations of the fixed-time dis-
turbance observer. Furthermore, the fixed-time disturbance
observer (FTDO) is also developed in [37] so as to acquire
the excellent observation of lumped disturbances. It is ob-
vious that the fixed-time disturbance observer has shown
quite impressive estimation performance [38].

Inspired by above discussions, this study attempts to
employ the fixed-time disturbance observer to construct the
composite adaptive finite time guidance law for intercepting
highly maneuvering targets considering impact angle con-
straint and autopilot dynamics. Main contributions of this
paper are summarized as follows:

(1) +e fixed-time disturbance observer (FTDO) is
utilized to estimate the lumped disturbance caused
by target maneuver. Different from the most existing
ESO [10] and SMO [31], the proposed FTDO can
achieve fixed-time stability, and the convergence
time is independent of the initial conditions.

(2) Based on the FTDO, an adaptive integral sliding
mode backstepping (AISMB) guidance law is pro-
posed to accomplish the interception mission, and
the closed-loop guidance system can converge a
small neighborhood around the origin in a finite
time.+e switching functions are introduced into the
sliding mode reaching laws, which can guarantee the
reaching property, meanwhile avoid the possible
singularity problem. Moreover, the adopted adaptive
laws can modify the control gains so as to reduce the
control energy.
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(3) In contrast to the conventional backstepping
methods [28], the proposed adaptive laws in AISMB
are employed to estimate the derivative of virtual
control inputs in the recursive design process, and
the “explosion of terms” can be conquered
accordingly.

+e remaining part of this paper is organized as follows.
+e missile-target engagement motion equations, autopilot
dynamics, and control-oriented model are described in
Section 2. Section 3 presents the composite guidance scheme
and the corresponding stability analysis of the closed-loop
system. Numerical simulations are implemented in Section 4
so as to demonstrate the effectiveness of the proposed
guidance law. Finally, some conclusion remarks are pre-
sented in Section 5.

2. Problem Formulation

2.1. Motion Kinematics and Relative Motion Dynamics. In
this study, we consider the planar interception guidance
problem with impact angle constraint and autopilot dynamics.
+e 2-dimensional (2D) homing engagement geometry for a
missile intercepts a target, as depicted in Figure 1.

+e velocity of the missile and target are represented
by Vm and Vt, respectively. am and at are used to represent
the corresponding normal acceleration of the missile and
target, respectively. cm and ct denote the flight path angle
(FPA) of the missile and target, respectively. Besides, the
LOS angle and relative disturbance between the missile
and target are denoted by θ and r, respectively. +en, the
kinematic engagement equations can be described by
Kumar et al. [39]:

_r � Vt cos θt − Vm cos θm, (1)

r _θ � Vt sin θt − Vm sin θm, (2)

_cm �
am

Vm

, (3)

_ct �
at

Vt

, (4)

where θm � cm − θ, θt � ct − θ.
Calculating the time derivatives of (1) and (2) yields

€r � r _θ
2

+ at sin θt − am sin θm, (5)

€θ � − 2
_r

r
_θ +

cos θt

r
at −

cos θm

r
am. (6)

Remark 1. Generally, the acceleration along the missile’s
velocity cannot be controlled in the terminal guidance phase,
and only equation (6) is considered to design the guidance
law. Besides, from (6), cos θm � 0 will be satisfied when
θm � ±π/2, which can bring about control singularity and
cause the failure of missile interception finally. However, if
θm � ±π/2, _cm − _θ≠ 0 will hold. +us, θm � ±π/2 is not the

stable equilibrium point, and the system trajectories will just
cross this unstable point [20]. On this basis, am can be
applied to control the LOS angle θ.

During the design process of the guidance law, we as-
sume that the missile and the target are point masses moving
in constant velocities Vm and Vt, and the speed ratio of
target-to-missile satisfies υ � Vt/Vm < 1. Besides, to avoid
the possible singularity analyzed in Remark 1, equation (6) is
rewritten as

€θ � − 2
_r

r
_θ −

1
r
am + φ, (7)

where φ � (cos θt/r)at − (cos θm/r)am + (1/r)am.
When the missile hit the target, following relation exists

[39]:

Vm sin cmf − θf􏼐 􏼑 � Vt sin ctf − θf􏼐 􏼑, (8)

where cmf, ctf, and θf represent the final FPA of the missile,
final FPA of the target, and final expected LOS angle,
respectively.

Furthermore, with equation (2), r _θ � 0 will hold. +us,
the relation between the final LOS angle θf and designed
impact angle θimp can be regarded as a one-to-one corre-
spondence formulated by

θf � ctf − arctan
sin θimp

cos θimp − υ
􏼠 􏼡, (9)

where θimp � ctf − cmf.
More specifically, when θimp � nπ, n � ±1, ±2, . . . , the

head-on and tail-chase intercept scenarios can be
considered.

Remark 2. Basically, the missile can successfully achieve the
interception by hit-to-kill impact, and the relative distance at
the impact time is not equal to zero. +erefore, when
r≤ r0 ∈ [rmin, rmax] is satisfied, it can be considered that the
missile has completed the interception mission.

Typically, the dynamics of autopilot can be modeled as
the following second-order system [24]:

Missile

Target

am

at

γm

γt

Vm

Vt

r

y

x

θ

Figure 1: Two-dimensional engagement geometry.
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€am � − 2ξωn − ω2
n _am + ω2

namc, (10)

where ξ denotes the damping ratio, ωn denotes the natural
frequency, and amc denotes the actual guidance command.

2.2. Control-Oriented Model. Considering autopilot dy-
namics (10), the acceleration command amc can be designed
to achieve the target interception at the expected LOS angle
θf. +erefore, let x1 � θ − θf, x2 � _θ,
x3 � am, x4 � _am, and u � amc, and the control-oriented
model can be described by

_x1 � x2,

_x2 � f2 + g2x3 + d2,

_x3 � x4,

_x4 � f4 + g4u,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where f2 � − 2( _r/r)x2, g2 � − (1/r), d2 � φ, f4 � − 2ξωnx3−

ω2
nx2

3, andg4 � ω2
n.

Assumption 1. +e target acceleration and its derivative are
bounded, that is, |at|≤ amax

t and | _at|≤ _amax
t .

Assumption 2. +e derivative of the disturbance _d2 is
bounded and satisfies | _d2|≤ d2max.

Finally, the purpose of this guidance law design problem
is to ensure the small miss distance and small LOS error by
driving the state x1 and x2 to the small neighborhood of zero
in finite time.

3. Guidance Law Design and Analysis

In this section, the design process of the guidance scheme is
described in detail. Specifically, the fixed-time disturbance
observer is employed to estimate the lumped disturbance.
+en, the FTDO-based guidance law is developed by
combing the adaptive theory, integral sliding mode control,
and backstepping control. +e control structure of the
guidance scheme is shown in Figure 2.

Notation 1. In this paper, sig(x)p � sign(x)|x|p, where
sign(x) is the sign function.

Before the conduction of the guidance law, some nec-
essary definitions and lemmas are introduced as follows.

Definition 1 (see [40]). Consider the system

_x � f(x, t),

f(0, t) � 0, x ∈ Rn
,

(12)

where f: N0⟶ Rn is continuous on the open neighbor-
hoodN0 of the origin x � 0. For any t0, given the initial state
x0, which relies on the settling time T(x0), then system (12)
exists in a solution x � φ(t, t0, x0). If t ∈ [t0, T(x0)),
φ(t, t0, x0) ∈ N/ 0{ } with limt⟶T(x0)φ(t, t0, x0) � 0 holds,
and if t>T(x0), φ(t, t0, x0) � 0 will hold. +e origin of (12)
possesses locally finite-time stability in the neighborhood

N⊆N0 if it is also Lyapunov stable.+is solution is said to be
globally finite-time stable if N � N0 � Rn.

Remark 3. From above analysis, the finite-time stability will
imply the asymptotic stability of the origin, and the con-
vergence time can be guaranteed by a prescribed time
T � T(x0). If the system initial state x0 can be obtained, the
settling time can be evaluated by T(x0), and the system can
achieve finite-time stability. However, if the system state x0 is
not available, the settling time cannot be estimated by T(x0)
in advance. In this situation, it is possible that T(x0) will
become large if the initial state is very large. +us, to remedy
this shortcoming, Polyakov [41] proposes the fixed-time
stability which can guarantee that the settling time
T � T(x0) will be independent of the initial condition x0.

Definition 2 (see [41]). Based on Definition 1, the origin of
(12) is said to be fixed-time stable if it satisfies globally finite-
time stable and the settling timeT(x0) is bounded, that is, for
any initial state x0, there exists Tmax > 0 such that
T(x0)<Tmax.

Remark 4. +e settling time of fixed-time stability is re-
gardless of the initial state, while finite time is the opposite.
+is property implies that the convergence time can be
determined by a prescribed manner.

Lemma 1 (see [21]). For system (12) with continuous positive
definite function V(x), if the following equation

_V(x) ≤ − τV(x)
η
, (13)

where τ > 0 and 0< η< 1, holds, then the system will converge
to the origin in finite time bounded by

t≤
V

1− η x0( 􏼁

τ(1 − η)
. (14)

Lemma 2 (see [1]). Similarly, if V(x) defined in Lemma 1
satisfies

_V(x) ≤ − aV(x) − bV(x)
c
, (15)

where a> 0, b> 0, and 0< c< 1, the system converges to the
origin in finite time bounded by

t≤
1

a(1 − c)
ln

aV x0( 􏼁
1− c

+ b

b
. (16)

Lemma 3 (see [28]). For positive real numbers y1, y2, . . . , yn

and 0<p< 1, the following inequality is satisfied:

y
2
1 + y

2
2 + · · · + y

2
n􏼐 􏼑

p
≤ y

p
1 + y

p
2 + · · · + y

p
n􏼐 􏼑

2
. (17)

Lemma 4 (see [42, 43]). For the following system,

s � _en + knsig en− 1( 􏼁
αn + · · · + k1sig e1( 􏼁

α1 , (18)
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where ki and αi (i � 1, 2, . . . , n) are constants,
_ei � ei+1, (i � 1, 2, . . . , n − 1). If ki is selected such that the
polynomial pn + knpn− 1 + · · · + k2p + k1 is Hurwitz and αi

are positive constants satisfying

α1 � α,

n � 1,

αi− 1 �
αiαi+1

2αi+1 − αi

, i � 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where αn+1 � 1 and αn � α ∈ (0, 1), then the system will
converge to its equilibrium point in finite time. When n � 2,
the settling time can be estimated by

t≤
3 + α1( 􏼁V

1− α1( )/ 3+α1( )
0

K 1 − α1( 􏼁
, (20)

where V0 denotes the initial value of the selected Lyapunov
function V and K is a positive constant.

3.1. Ee Design of Fixed-Time Disturbance Observer. As is
known to all, the lumped disturbance d2 will degrade the
performance of the missile guidance and control system.
Inspired by [44], a disturbance observer with fixed-time
convergence characteristics is proposed to estimate the
disturbances. +is fixed-time disturbance observer can drive
the estimation error to a small neighborhood of the origin
within a bounded time regardless of the initial state.
+erefore, we can obtain following theorem.

Theorem 1. For guidance system (11), the unknown term d2
satisfies | _d2|< L2, where L2 is a positive constant. Ee fixed-
time disturbance observer can be described as

_􏽢x2 � f2 + g2x3 + 􏽢d2,

􏽢d2 � k21sig e21( 􏼁
p

+ k22sig e21( 􏼁
q

+ 􏽚
t

0
k23sign e21(τ)( 􏼁dτ,

⎧⎪⎪⎨

⎪⎪⎩

(21)

where 0<p< 1, q> 1, 􏽢x2 is the estimation of x2, e21 � x2 − 􏽢x2
represents the estimate error, and k2j(j � 1, 2, and 3) are all
positive designed parameters that satisfy the follow conditions:

M2 � k23 + L2,

m2 � ki3 − L2,

h2 �
1

k21
+

2e

m2k21
􏼠 􏼡

1/3

,

k23 >L2,

k21h>M2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

with e representing the nature constant.

Proof. Taking the derivative of e21, one can obtain

_e21 � _x2 − _􏽢x2 � d2 − 􏽢d2

� d2 − k21sig e21( 􏼁
p

− k22sig e21( 􏼁
q

− 􏽚
t

0
k23sign e21(τ)( 􏼁dτ.

(23)

Define e22 � d2 − 􏽒
t

0 k23sign(e21(τ))dτ, and equation
(23) can be rewritten as

_e21 � − k21sig e21( 􏼁
p

− k22sig e21( 􏼁
q

+ e22. (24)

+en, calculating the derivative of e22, one has

_e22 � − k33sign e21( 􏼁 + _d2. (25)

According to equations (24) and (25), the following error
dynamics can be obtained:

_e21 � − k21sig e21( 􏼁
p

− k22sig e21( 􏼁
q

+ e22,

_e22 � − k33sign e21( 􏼁 + _d2.

⎧⎨

⎩ (26)

On the basis of the result in [44], if the observer gains
satisfy condition (22), e21 and e22 can uniformly converge to
the origin within a fixed-time bounded by

Fixed-time disturbance observer
Ta

rg
et

 p
os

iti
on

D
es

ire
d 

LO
S 

an
gl

e

Virtual control for nominal
acceleration

Virtual control for derivative of 
nominal acceleration

Actual acceleration of
missile Autopilot dynamics �e dynamics of

missile

Target maneuveringSaturation

Sensors

Relative motion states

Guidance strategy
d2̂

u

x3d x4d

Figure 2: Control diagram of the composite guidance strategy
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to ≤
1

k22

1
q − 1

−
1

k21

1
1 − p

􏼠 􏼡 1 +
M2

1 − M2h2/k21( 􏼁m2
􏼠 􏼡.

(27)

+is result means that e21 � 0 and e22 � 0 for t> to.
Recalling (23), it can be obtained that _e21 � d2 − 􏽢d2 � 0.
+erefore, the equivalent disturbance can be exactly esti-
mated after t> to. +is completes the proof of +eorem
1. □

Remark 5. Compared with SMO and ESO, the applied
FTDO can achieve the fixed-time stability, and the settling
time is uniformly bounded and independent of the initial
state. Besides, as shown in equation (21), the sign function is
integrated in the integral term, which can guarantee the
continuity of the estimation value and eliminate the chat-
tering problem. +is characteristic will be confirmed by the
subsequent simulation results.

3.2. FTDO-Based Adaptive Integral Sliding Mode Back-
stepping Guidance Law Design. As shown in the previous
section, the estimation of unknown disturbance can be
obtained by the proposed FTDO in a short time regardless of
the initial conditions. Based on this merit, the following
composite guidance law is developed in detail.

3.2.1. Finite Time Integral Siding Mode Control.
Generally speaking, the small miss distance and the desired
LOS angle can be satisfied by driving x1 and x2 to zero [17].
+erefore, the sliding surface should contain x1 and x2. In
this situation, we introduce a novel integral sliding surface s2
defined as

s2 � x2 − x2(0) + 􏽚 λ11sig x1( 􏼁
α1 + λ12sig x2( 􏼁

α2dτ, (28)

where λ11 > 0, λ12 > 0, 0< α1 � α< 1, and α2 � (2α1/α1 + 1).
Combing the second equation of (11) and (28), it is clear

that

_s2 � _x2 + λ11sig x1( 􏼁
α1 + λ12sig x2( 􏼁

α2

� f2 + g2x3 + d2 + λ11sig x1( 􏼁
α1 + λ12sig x2( 􏼁

α2 .
(29)

To stabilize the subsystem of x2, the virtual control law
can be designed as

x3d � g
− 1
2 − f2 − λ11sig x1( 􏼁

α1 − λ12sig x2( 􏼁
α2 − k2F2 s2( 􏼁 − 􏽢λ2s2 − 􏽢d2􏼐 􏼑,

(30)

where k2 > 0 is the designed parameter, 􏽢d2 is estimated by the
designed FTDO, and F2(s2) is constructed as

F2 s2( 􏼁 �
sig s2( 􏼁

β
, s2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ϖ2,

τ21s2 + τ22s
2
2sign s2( 􏼁, s2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<ϖ2,

⎧⎪⎨

⎪⎩
(31)

with 0< β< 1, where ϖ2 is a small enough positive constant,
τ21 � (2 − β)ϖβ− 1

2 , τ22 � (1 − β)ϖβ− 2
2 , and 􏽢λ2 is an adaptive

gain designed as

_􏽢λ2 �
κ2s

2
2 − σ2􏽢λ2, s2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ δ2

0, else,

⎧⎨

⎩ (32)

with κ2 > 0, σ2 > 0, and δ2 > 0.

Remark 6. By introducing switching function (31) [45], the
potential singularity that appeared in the derivative of term
sig(s2)

β will get avoided. For the case |s2|≥ϖ2, _F2(s2) �

β|s2|
β− 1 _s2 is nonsingular, while for the case |s2|<ϖ2,

_F2(s2) � τ21 _s2 + 2τ22|s2| _s2 will also not to be singular when
s2 � 0 and _s2 ≠ 0. However, the subsystem will approach zero
with worse convergence property when |s2|<ϖ2. +us, we
should select small enough to guarantee the power rate
reaching law property, meanwhile avoid the singularity
problem.

Define the state error of x3 as

s3 � x3 − x3d. (33)

+en, substituting (33) and (30) into (29), one can obtain
that

_s2 � f2 + g2 x3d + s3( 􏼁 + d2 + λ11sig x1( 􏼁
α1 + λ12sig x2( 􏼁

α2

� f2 + g2s3 + g2x3d + d2 + λ11sig x1( 􏼁
α1 + λ12sig x2( 􏼁

α2

� − k2F2 s2( 􏼁 − 􏽢λ2s2 + d2 − 􏽢d2 + g2s3.

(34)

3.2.2. Backstepping Strategy. +e backstepping scheme
contains a step-by-step construction of the new subsystem
by the state error si � xi − xid(i � 3, 4), where xid is the
desired control command for state xi [29]. Based on this
strategy, calculating the derivative of s3 yields

_s3 � _x3 − _x3d � x4 − _x3d. (35)

It is obvious that the derivative of x3d should be com-
pensated in the subsequent design step. However, it is
difficult to calculate the exact value of _x3d, and the com-
plexity will increase as the order of the system increases. In
order to solve this “differential explosion” problem, _xid will
be considered as an uncertain term with the following
reasonable assumption and finally resolved by the prede-
signed adaptive laws.

Assumption 3 (see [29]). x3d and x4d are bounded, satisfying
|xid|≤ χi (i � 3 and 4) where χ3 and χ4 are all positive
constants.

+us, the virtual control x4d can be designed as

x4d � −
􏽢ρ3s3
2ε23

− k3F3 s3( 􏼁 − 􏽢λ3s3 − g2s2, (36)

where k3 > 0 is the designed parameter and F3(s3) is con-
structed as

F3 s3( 􏼁 �
sig s3( 􏼁

β
, s3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ϖ3,

τ31s3 + τ32s
2
3sign s3( 􏼁, s3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<ϖ3,

⎧⎪⎨

⎪⎩
(37)
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with ϖ3 is a small enough positive constant, where
τ31 � (2 − β)ϖβ− 1

3 , τ32 � (1 − β)ϖβ− 2
3 , and 􏽢λ3 is an adaptive

gain designed as

_􏽢λ3 �
κ3s

2
3 − σ3􏽢λ3, s3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ δ3,

0, else,

⎧⎨

⎩ (38)

with κ2 > 0, σ2 > 0, and δ2 > 0. 􏽢ρ3 is an adaptive parameter
designed as

_􏽢ρ3 �
c3s

2
3

2ε23
− ξ3􏽢ρ3, (39)

with ε3 > 0, c3 > 0, and ξ3 > 0.
Substituting (36) into (35), one obtains

_s3 � x4 − _x3d � x4d + s4 − _x3d

� −
􏽢ρ3s3
2ε23

− k3F3 s3( 􏼁 − 􏽢λ3s3 − g2s2 − _x3d + s4.
(40)

Similarly, the state error for x4 is defined as

s4 � x4 − x4d. (41)

Calculating the time derivative of s4 yields

_s4 � _x4 − _x4d � f4 + g4u + d4 − _x4d. (42)

+en, the actual control law is designed as

u � g
− 1
4 − f4 − s3 −

􏽢ρ4s4
2ε24

− k4F4 s4( 􏼁 − 􏽢λ4s4􏼠 􏼡, (43)

where k4 > 0 is the designed parameter and F4(s4) is con-
structed as

F4 s4( 􏼁 �
sig s4( 􏼁

β
, s4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ϖ4,

τ41s4 + τ42s
2
4sign s4( 􏼁, s4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<ϖ4,

⎧⎪⎨

⎪⎩
(44)

with ϖ4 is a small enough positive constant, where τ41 �

(2 − β)ϖβ− 1
4 and τ42 � (1 − β)ϖβ− 2

4 . 􏽢λ4 is an adaptive gain
designed as

_􏽢λ4 �
κ4s

2
4 − σ4􏽢λ4, s4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ δ4,

0, else,

⎧⎨

⎩ (45)

with κ4 > 0, σ4 > 0, and δ4 > 0. 􏽢ρ4 is an adaptive parameter
designed as

_􏽢ρ4 �
c4s

2
4

2ε24
− ξ4􏽢ρ4, (46)

with ε3 > 0, c3 > 0, and ξ3 > 0.
Substituting (43) into (42), one has

_s4 � f4 + g4u + d4 − _x4d

� − s3 −
􏽢ρ4s4
2ε24

− k4F4 s4( 􏼁 − 􏽢λ4s4 − _x4d.
(47)

Based on the above design steps, the proposed FTDO-
based guidance law can be summarized as

s2 � x2 − x2(0) + 􏽚 λ11sig x1( 􏼁
α1 + λ12sig x2( 􏼁

α2dτ,

x3d � g
− 1
2 − f2 − λ11sig x1( 􏼁

α1 − λ12sig x2( 􏼁
α2 − k2F2 s2( 􏼁 − 􏽢λ2s2 − 􏽢d2􏼐 􏼑,

s3 � x3 − x3d,

x4d � −
􏽢ρ3s3
2ε23

− k3F3 s3( 􏼁 − 􏽢λ3s3 − g2s2,

s4 � x4 − x4d,

u � g
− 1
4 − f4 − s3 −

􏽢ρ4s4
2ε24

− k4F4 s4( 􏼁 − 􏽢λ4s4􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

with functions Fi(si)(i � 2, 3, and 4) defined as

Fi si( 􏼁 �
sig si( 􏼁

β
, si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ϖi,

τi1s2 + τi2s
2
i sign si( 􏼁, si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<ϖi,

⎧⎪⎨

⎪⎩
(49)

and adaptive laws:

_􏽢λi �
κis

2
i − σi

􏽢λi, si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ δi,

0, else,
i � 2, 3, and 4,

⎧⎪⎨

⎪⎩
(50)

_􏽢ρj �
cjs

2
j

2ε2j
− ξj􏽢ρj, j � 3 and 4. (51)

Complexity 7



Theorem 2. For guidance system (11) with proposed AISMB
guidance law (48), FTDO (21), as well as adaptive laws (50)
and (51), the closed-loop system can achieve finite time
stability and the sliding modes si(i � 2, 3, and 4) and states
x1 and x2 are guaranteed to converge to the small neigh-
borhood around the origin in finite time.

Proof. Selecting the Lyapunov candidate as

V1 �
1
2

􏽘

4

i�2
s
2
i +

1
2

􏽘

4

i�2

􏽥λ
2
i

κi

+
1
2

􏽘
j�3,4

􏽥ρ2j
cj

, (52)

where 􏽥λi � λi − 􏽢λ, 􏽥ρj � ρj − 􏽢ρj, λi > 0, and ρi > 0.
Its time derivative is

_V1 � 􏽘
4

i�2
si _si − 􏽘

4

i�2

􏽥λi
_􏽢λi

κi

− 􏽘
j�3,4

􏽥ρj
_􏽢ρj

cj

. (53)

Substituting equations (34), (40), and (47) into (53), one
obtains

_V1 � s2 − k2F2 s2( 􏼁 − 􏽢λ2s2 + d2 − 􏽢d2 + g2s3􏼐 􏼑

+ s3 −
􏽢ρ3s3
2ε23

− k3F3 s3( 􏼁 − 􏽢λ3s3 − g2s2 − _x3d + s4􏼠 􏼡

+ s4 − s3 −
􏽢ρ4s4
2ε24

− k4F4 s4( 􏼁 − 􏽢λ4s4 − _x4d􏼠 􏼡 − 􏽘
4

i�2

􏽥λi
_􏽢λi

κi

− 􏽘
j�3,4

􏽥ρj
_􏽢ρj

cj

,

(54)

where e2 � d2 − 􏽢d2. Since ϖi are sufficient small positive constants, (54) can
be rewritten as

_V1 � − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

− 􏽘
4

i�2

􏽢λis
2
i + s2e2 −

􏽢ρ3s
2
3

2ε23
− _x3ds3 −

􏽢ρ4s
2
4

2ε24
− s4 _x4d

− 􏽘
4

i�2

􏽥λi
_􏽢λi

κi

− 􏽘
j�3,4

􏽥ρj
_􏽢ρj

cj

.

(55)

With adaptive laws (50) and (51), (55) becomes

_V1 � − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

− 􏽘
4

i�2

􏽢λis
2
i + s2e2 −

􏽢ρ3s
2
3

2ε23
− _x3ds3 −

􏽢ρ4s
2
4

2ε24
− s4 _x4d

− 􏽘
4

i�2

􏽥λi

κi

κis
2
i − σi

􏽢λi􏼐 􏼑 − 􏽘
j�3,4

􏽥ρj

cj

cjs
2
j

2ε2j
− ξj􏽢ρj

⎛⎝ ⎞⎠

� − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

+ 􏽘
4

i�2
− λis

2
i +

σi

κi

􏽥λi
􏽢λi􏼠 􏼡 + s2e2 + 􏽘

j�3,4
− xjdsj −

ρjs
2
j

2ε2j
+
ξj

cj

􏽥ρj􏽢ρj
⎛⎝ ⎞⎠.

(56)

According to Assumption 3, one has
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_V1 ≤ − 􏽘

4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

+ 􏽘

4

i�2
− λis

2
i +

σi

κi

􏽥λi
􏽢λi􏼠 􏼡 + s2e2 + 􏽘

j�3,4
− xjd

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 sj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 −
ρjs

2
j

2ε2j
+
ξj

cj

􏽥ρj􏽢ρj
⎛⎝ ⎞⎠

≤ − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

+ 􏽘
4

i�2
− λis

2
i +

σi

κi

􏽥λi
􏽢λi􏼠 􏼡 + s2e2 + 􏽘

j�3,4
χj sj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 −
ρjs

2
j

2ε2j
+
ξj

cj

􏽥ρj􏽢ρj
⎛⎝ ⎞⎠.

(57)

Noting |sj|χj ≤ (|sj|
2/2ε2j)χ2j + (ε2j/2) and s2e2 ≤

(1/2]2)s22 + (]2/2)e22 (]2 is a positive constant which is only
used for analysis), one can get

_V1 ≤ − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

+ 􏽘
4

i�2
− λis

2
i +

σi

κi

􏽥λi
􏽢λi􏼠 􏼡 +

1
2]2

s
2
2 +

]2
2

e
2
2

+ 􏽘
j�3,4

sj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

2ε2j
χ2j +

ε2j
2

−
ρjs

2
j

2ε2j
+
ξj

cj

􏽥ρj􏽢ρj
⎛⎜⎜⎝ ⎞⎟⎟⎠.

(58)

By the definition of 􏽥λi and 􏽥ρj, it can be obtained that

􏽥λi
􏽢λi ≤ −

1
2
􏽥λ
2
i +

1
2
λ
2
i ,

􏽥ρj􏽢ρj ≤ −
1
2
􏽥ρ2j +

1
2
ρ2j .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(59)

Substituting (59) into (58) gives

_V1 ≤ − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

− λ2s
2
2 − λ3 +

ρ3
2ε23

􏼠 􏼡s
2
3 − λ4 +

ρ4
2ε24

􏼠 􏼡s
2
4

− 􏽘
4

i�2

σi

2κi

􏽥λ
2
i − 􏽘

j�3,4

ξj

2cj

􏽥ρ2j + 􏽘
4

i�2

σi

2κi

λ2i + 􏽘
j�3,4

ξj

2cj

ρ2j

+
1
2]2

s
2
2 +

χ23
2ε23

s
2
3 +

χ24
2ε24

s
2
4 +

]2
2

e
2
2 +

ε23
2

+
ε24
2

.

(60)

Applying |x|μ|y|θ ≤ (μ/μ + θ)|x|μ+θ + (θ/μ + θ)ι− (μ/θ)

|y|μ+θ and taking x � s2i , y � 1, μ � (β + 1/2), θ � (1 −

β/2), and ι � (2/β + 1) into account, one has

s
2
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(β+1/2)
≤
β + 1
2

s
2
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1 − β
2

β + 1
2

􏼠 􏼡

(1+β/1− β)

. (61)

Similarly, one can obtain that

􏽘

4

i�2

σi

2κi

􏽥λ
2
i

⎛⎝ ⎞⎠

(β+1/2)

≤
β + 1
2

􏽘

4

i�2

σi

2κi

􏽥λ
2
i

⎛⎝ ⎞⎠ +
1 − β
2

β + 1
2

􏼠 􏼡

(1+β/1− β)

, (62)

􏽘
j�3,4

ξj

2cj

􏽥ρ2j⎛⎝ ⎞⎠

(β+1/2)

≤
β + 1
2

􏽘
j�3,4

ξj

2cj

􏽥ρ2j⎛⎝ ⎞⎠ +
1 − β
2

β + 1
2

􏼠 􏼡

(1+β/1− β)

. (63)

Substituting equations (61)–(63) into (60) yields

_V1 ≤ − 􏽘
4

i�2
ki s

2
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(β+1/2)

− λ2
2

β + 1
s
2
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(β+1/2)

− ι􏼠 􏼡 − λ3 +
ρ3
2ε23

􏼠 􏼡
2

β + 1
s
2
3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(β+1/2)

− ι􏼠 􏼡

− λ4 +
ρ4
2ε24

􏼠 􏼡
2

β + 1
s
2
4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(β+1/2)

− ι􏼠 􏼡 −
2

β + 1
􏽘

4

i�2

σi

2κi

􏽥λ
2
i

⎛⎝ ⎞⎠

(β+1/2)

− ι⎛⎜⎝ ⎞⎟⎠

−
2

β + 1
􏽘

j�3,4

ξj

2cj

􏽥ρ2j⎛⎝ ⎞⎠

(β+1/2)

− ι⎛⎜⎝ ⎞⎟⎠ + 􏽘
4

i�2

σi

2κi

λ
2
i + 􏽘

j�3,4

ξj

2cj

ρ2j

+
1
2]2

s
2
2 +

χ23
2ε23

s
2
3 +

χ24
2ε24

s
2
4 +

]2
2

e
2
2 +

ε23
2

+
ε24
2

,

(64)
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where ι � (1 − β/2)(β + 1/2)(2β/1− β) > 0. With Lemma 3, (64) becomes

_V1 ≤ − k2 +
2λ2
β + 1

􏼠 􏼡2(β+1/2) 1
2
s
2
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(β+1/2)

− k3 +
2

β + 1
λ3 +

ρ3
2ε23

􏼠 􏼡􏼠 􏼡2(β+1/2) 1
2
s
2
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(β+1/2)

− k4 +
2

β + 1
λ4 +

ρ4
2ε24

􏼠 􏼡􏼠 􏼡2(β+1/2) 1
2
s
2
4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(β+1/2)

−
2

β + 1
σ(β+1/2)
0

1
2

􏽘

4

i�2

1
κi

􏽥λ
2
i

⎛⎝ ⎞⎠

(β+1/2)

−
2

β + 1
ξ(β+1/2)
0

1
2

􏽘
j�3,4

1
cj

􏽥ρ2j⎛⎝ ⎞⎠

(β+1/2)

+ ι λ2 + λ3 +
ρ3
2ε23

+ λ4 +
ρ4
2ε24

+ 2􏼠 􏼡

+ 􏽘
4

i�2

σi

2κi

λ
2
i + 􏽘

j�3,4

ξj

2cj

ρ2j +
1
2]2

s
2
2 +

χ23
2ε23

s
2
3 +

χ24
2ε24

s
2
4 +

]2
2

e
2
2 +

ε23
2

+
ε24
2

,

(65)

where σ0 � min(σi)> 0 and ξ0 � min(ξj)> 0. By choosing appropriate parameters, following condi-
tions will hold:

Ψ1 � min k2 +
2λ2
β + 1

􏼠 􏼡2(β+1/2)
, k3 +

2
β + 1

λ3 +
ρ3
2ε23

􏼠 􏼡􏼠 􏼡2(β+1/2)
, k4 +

2
β + 1

λ4 +
ρ4
2ε24

􏼠 􏼡􏼠 􏼡2(β+1/2)
􏼠 􏼡> 0,

Ψ2 �
2

β + 1
σ(β+1/2)
0 > 0,

Ψ3 �
2

β + 1
ξ(β+1/2)
0 > 0,

Ψ0 � ι λ2 + λ3 +
ρ3
2ε23

+ λ4 +
ρ4
2ε24

+ 2􏼠 􏼡 + 􏽘
4

i�2

σi

2κi

λ2i + 􏽘
j�3,4

ξj

2cj

ρ2j +
1
2]2

s
2
2 +

χ23
2ε23

s
2
3 +

χ24
2ε24

s
2
4 +

]2
2

e
2
2 +

ε23
2

+
ε24
2
> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(66)

+en, (65) can be rewritten as

_V1 ≤ − Ψ1
1
2

􏽘

4

i�2
s
2
i􏼐 􏼑⎛⎝ ⎞⎠

(β+1/2)

− Ψ2
1
2

􏽘

4

i�2

1
κi

􏽥λ
2
i

⎛⎝ ⎞⎠

(β+1/2)

− Ψ3
1
2

􏽘

4

i�3

1
ci

􏽥ρ2i⎛⎝ ⎞⎠

(β+1/2)

+ Ψ0

≤ − ΨV
(β+1/2)
1 ,

(67)

where Ψ � min(Ψ1,Ψ2,Ψ3)> 0.
According to Lemma 1, the system will converge to the

equilibrium point in finite time and the settling time is given by

tr ≤
V

1− β
1 x0( 􏼁

Ψ(1 − β)
. (68)

Furthermore, all the state in the closed-loop guidance
system are uniformly ultimately bounded.

+en, consider another Lyapunov function:

Vs � 􏽘
4

i�2

1
2
s
2
i . (69)
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With (34), (40), and (47), the time derivative of Vs

becomes

_Vs � 􏽘
4

i�2
si _si

≤ − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

− 􏽘
4

i�2

􏽢λis
2
i + s2e2.

(70)

Since s2e2 ≤ (1/2]2)s22 + (]2/2)e22 with ]2 is a positive
constant, we have

_Vs ≤ − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

− 􏽘
4

i�2

􏽢λis
2
i +

1
2]2

s
2
2 +

]2
2

e
2
2

≤ − 􏽘
4

i�2
ki si

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β+1

− 􏽢λ2 −
1
2]2

􏼠 􏼡s
2
2 − 􏽢λ3s

2
3 − 􏽢λ4s

2
4 +

]2
2

e
2
2

≤ − 2(β+1/2) min k2, k3, k4( 􏼁 􏽘

4

i�2

s2i
2

􏼠 􏼡

(β+1/2)

− 2min 􏽢λ2 −
1
2]2

, 􏽢λ3, 􏽢λ4􏼠 􏼡 􏽘

4

i�2

s
2
i

2
􏼠 􏼡 +

]2
2

e
2
2.

(71)

From (71), if we choose appropriate adaptive laws for
􏽢λi(i � 2, 3, and 4) and large enough ]2 to guarantee
􏽢λ2 − (1/2]2)> 0, 􏽢λ3 > 0, and 􏽢λ4 > 0, one can obtain that

_Vs ≤ − Γ1V
(β+1/2)
s − Γ2Vs + Γ0 ≤ − Γ1V

(β+1/2)
s − Γ2V, (72)

where Γ1 � 2(1+β/2) min(ki)(i � 2, 3, 4)> 0 and
Γ2 � 2min(􏽢λ2 − (1/2]2), 􏽢λ3, 􏽢λ4)> 0.

+us, according to Lemma 2, si will converge to zero in
finite time bounded by

ts ≤
2

Γ2(1 − β)
ln
Γ2Vs(0)

(1− β/2)
+ Γ1

Γ1
. (73)

When s2 � 0 and _s2 � 0 are achieved, the following
equation can be obtained:

_s2 � _x2 + λ11sig x1( 􏼁
α1 + λ12sig x2( 􏼁

α2 � 0. (74)

Namely,

_x2 � − λ11sig x1( 􏼁
α1 − λ12sig x2( 􏼁

α2 . (75)

Since _x1 � x2, (75) can be rewritten as

€x1 + λ12sig _x1( 􏼁
α2 + λ11sig x1( 􏼁

α1 � 0. (76)

According to Lemma 4, once parameters λ12 and λ11 are
selected tomake polynomial p2 + λ12pα2 + λ1pα1 Hurwitz, x1
and x2 can converge to the equilibrium point in finite time
which can be calculated as

tx ≤
3 + α1( 􏼁V

1− α1( )/ 3+α1( )
0 x1(0), x2(0)( 􏼁

K 1 − α1( 􏼁
, (77)

where K is a positive constant.
+erefore, the designed composite guidance law can

guarantee the finite-time stability of the closed-loop system
and drive the sliding modes si and states x1 and x2 to

converge to zero in finite time with the total settling time
tc � to + tr + ts + tx.

+e proof of +eorem 2 has been completed. □

Remark 7. In most existing literature, the “differential ex-
plosion problem” of the traditional backstepping method is
solved by introducing the first-order filter or tracking dif-
ferentiator. In this study, the proposed adaptive laws are
applied to estimate the derivative of virtual control inputs.

Remark 8. For the global guidance system, λ11,
λ12, α1, β1, κi, σi, εi, cj, εj, and ξj(i � 2, 3, and 4; j � 3 and 4)

are all positive parameters to be regulated. Specifically, ki can
be selected large enough to stabilize each subsystem. For
subsystem x2, κ2 is selected large enough and σ2 is selected
small enough, while for the subsystems x3 and x4, regulation
laws of κ3, κ4 and σ3, σ4 are the opposite. cj and ξj can be
selected small enough, while εi can be selected large enough.
With the satisfactory parameters, the convergence charac-
teristic of the closed-loop system can be guaranteed. In other
words, the state errors can converge to any small interval of
the origin. Besides, when the system gets convergent,
λ11, λ12, α1, and α2 will further balance the LOS error and
miss distance. As λ11 and λ12 increase, the miss distance will
increase and the LOS error decreases. Besides, oversized λ11
and λ12 will result in the failure of the mission. +us, ap-
propriate small λ11 and λ12 should be determined. +e
parameters α1 and β mainly affect the convergence rate.
Large α1 and β will lead to the oscillation of the transient
process, while small α1 and β will degrade the convergence
speed and bring about the interception failure. +erefore,
when tuning these parameters, selecting proper λ11, λ12, α1,
and β first so as to guarantee the relatively fast convergence
rate with acceptable miss distance and LOS error. +en,
choosing appropriate ki, κi, σi, εi, cj, εj, and ξj to stabilize
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each subsystem. Finally, these parameters can be fine-tuned
to improve comprehensive performance.

To further explain the tuning process, the corresponding
main tuning steps can be described as Table 1.

4. Simulation Results and Discussions

Numerical examples are performed in this section to verify
the effectiveness of the proposed composite guidance law.
+e simulation conditions are listed in Table 2. +e maximal
saturation acceleration of the interceptor missile is 40 g
(g � 9.8).

We assume that the relative disturbance r, the LOS angle
θ, and their rates ( _r and _θ) can be provided by the seeker.+e
interception performance is evaluated by the interception
time, miss distance, LOS error, and control energy (denoted
as 􏽒 a2

mcdτ). +e designed parameters for the proposed
guidance scheme (denoted as AISMB-FTDO) are chosen as
λ11 � 0.1, λ12 � 0.05, α1 � α � 4/5, β � 4/5, k2 � 6, κ2 � 10,

σ2 � 0.1, δ2 � 0.005, k3 � 0.5, κ3 � 0.00001, σ3 � 1000, δ3 �

1000, ε3 � 100, c3 � 0.0001, ξ3 � 0.1, k4 � 0.5, κ4 � 0.0001,

σ4 � 1000, δ4 � 4000, ε4 � 1000, c4 � 0.01, ξ4 � 0.01, k21 �

10, k22 � 5, k23 � 4, p � 0.6, q � 1.4, andϖ2 � ϖ3 � ϖ4 �

0.00001.

To make a better showcase, the terminal sliding mode
backstepping (SMB) guidance law [22] with the ESO [10]
(denoted as SMB-ESO) and the finite time convergent (FTC)
guidance law with SMO [31] (denoted as FTC-SMO) are also
introduced into the simulation for comparison.

+e SMB-ESO is defined as

SMB:

s2 � x2 + a1x1sig x1( 􏼁
p1 ,

x3d � g
− 1
2 − f2 − α1 x1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p− 1

x2 − λ21s2 − λ22sig s2( 􏼁
p2 + z22􏼐 􏼑,

τ _x3c + x3c � x3d,

x3c(0) � x3d(0),

s3 � x3 − x3c,

x4d � − λ31sig s3( 􏼁
p3 − λ32s3 − g2s2 − _x3c,

τ _x4c + x4c � x4d,

x4c(0) � x4d(0),

s4 � x4 − x4c,

u � g
− 1
4 − f3 − s3 − λ41sig s4( 􏼁

p4 − λ42s4 − _x4c + z42􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ESO:

e21 � z21 − x2,

_z21 � f2 + g2x3d − β21e21 + z22,

_z22 � − β22fal e21, α2, δ2( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩

(78)

where fal(·) is a nonlinear function defined as

fal(e, α, δ) �

sig(e)
α
, |e|> δ,

e

δ1− α, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(79)

with δ is a positive constant. +e parameters of SMB-ESO
can be chosen as a1 � 0.9, p1 � 0.9, λ21 � 10, λ22 � 2, p2 �

1.15, τ � 0.02, λ31 � 0.01, λ32 � 0.3, p3 � 1.5, p4 � 1.5, λ41 �

0.9, λ42 � 0.5, β21 � 10, β22 � 100, α2 � 0.91, and δ2 �

0.00001.

+e FTC-SMO is defined as

FTC: u � − N1 _r _q + N2sig( _q)
q

+ z1,

SMO:

_z0 � − 2
_r

r
z0 + g2amc + v0,

v0 � − l2L
1/3sig e21( 􏼁

2/3
+ z1

e21 � z0 − x2,

_z1 � v1,

v1 � − l1L
1/2sig z1 − v0( 􏼁

2/3
+ z2

_z2 � l0Lsign z2 − v1( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(80)

+e parameters of FTC-SMO are selected as
N1 � 4, N2 � 30, q � 0.5, l2 � 2, l1 � 1.5, l0 � 1.1, andL �

400.

Remark 9. To alleviate the chattering phenomenon, the sign
function sign(x) is replaced by the following continuous
function:

tanh
x

η
􏼠 􏼡 �

e
x/η

− e
− x/η

e
x/η

+ e
− x/η , (81)

where η> 0 is a sufficient small constant.
In order to illustrate the effectiveness of the proposed

guidance law, the simulation examples are divided into two
kinds of target maneuverings, constant-maneuvering and
cosine maneuvering. Detailed simulation results and rele-
vant discussions are shown as below.

4.1. Scenario1. In this scenario, the simulation results for the
constant-maneuvering target are presented, in which the
target acceleration is chosen as at � 10g. +e corresponding
simulation curves of this scenario are shown in Figures 3–9 .
+e trajectories of the missile and target are shown in
Figure 3, which can reveal that these three guidance laws
could guarantee the successful interception. Besides, it is
obvious that the curves of AISMB-FTDO and FTC-SMO are
smoother than that of SMB-ESO. Nevertheless, the trajec-
tory of AISMB-FTDO is flatter and easier to implement in
practical engineering, while FTC-SMO does not have this
property. Figure 4 reveals that both AISMB-FTDO and
SMB-ESO can achieve the certain LOS angle, while FTC-
SMO cannot. +e reason for this result is that FTC-SMO
does not consider the LOS angle constraint. +e LOS rate
curves are shown in Figure 5. As seen from Figures 4 and 5,
although SMB-ESO can achieve the certain LOS angle, the
LOS angle curve displays some chattering caused by the
divergence of the LOS angular rates during the end phase.
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Howbeit, AISMB-FTDO could ensure little LOS angle error
without chattering. +e actual guidance command curves
are shown in Figure 6. Apparently, the control input curves
of AISMB-FTDO and FTC-SMO are much smoother, while
SMB-ESO exhibits serious saturation. +is saturation

phenomenon will degrade the guidance performance and
produce extremely large control energy. It can be seen from
Figure 7 that the tracking error curves of SMO and FTDO
can converge to zero in shorter time, while ESO need longer
time. However, it is obvious that the curve of SMO causes a
serious chattering phenomenon, while FTDO does not have
this problem. +is is because the sign function in FTDO is
hidden in the integral term and the continuity of estimation
value can be guaranteed. +erefore, this result further in-
dicates that FTDOhas better disturbance observation ability.
+e adaptive gains and adaptive parameters are shown in
Figures 8 and 9, respectively. Both of these parameters can
vary with respect to time and converge to certain values
finally. +ese curves can further confirm the effectiveness of
the designed adaptive laws.+e interception results obtained
from the guidance laws are summarized in Table 3. Com-
pared with FTC-SMO and SMB-ESO, AISMB-FTDO pos-
sesses less interception time, smaller miss distance, less LOS

Table 1: +e main parameter tuning steps.

(i) Select λ11 and λ12 to make the polynomial p2 + λ12pα2 + λ1pα1 Hurwitz and set α1 and β as 0.5
(ii) Fix λ11, λ12, α1, and β, set κ2, σ2, and ε2as zero, and then tune the parameter k2 to stabilize the subsystem x2; if this subsystem looks stable
or has a stable trend, go to step iii; otherwise, continue this step
(iii) Adjust the parameter κ2, σ2, and ε2 to further stabilize the subsystem x2; if this subsystem looks stable or has a stable trend, go to step iv;
otherwise, continue this step
(iv) Fix λ11, λ12, α1, β, k2, κ2, σ2, and ε2, set κ3, σ3, and ε3 as zero, and then tune the parameters k3, c3, ε3, and ξ3to stabilize the subsystem x3;
if this subsystem looks stable or has a stable trend, go to step v; otherwise, continue this step
(v) Adjust the parameter κ3, σ3, and ε3 to further stabilize the subsystem x3; if this subsystem looks stable or has a stable trend, go to step vi;
otherwise, continue this step
(vi) Fix λ11, λ12, α1, β, k2, κ2, σ2, ε2, k3, κ3, σ3, ε3, c3, ε3, and ξ3, set κ4, σ4, and ε4 as zero, and then tune the parameters k4, c4, ε4, and ξ4 to
stabilize the subsystem x4; if this subsystem looks stable or has a stable trend, go to step vii; otherwise, continue this step
(vii) Adjust the parameter κ4, σ4, and ε4 to further stabilize the subsystem x4; if this subsystem looks stable or has a stable trend, go to step
viii; otherwise, continue this step
(viii) In this step, the stability of closed-loop is guaranteed; then, re-adjust the parameters λ11, λ12, α1, and β to balance the miss distance,
LOS error, and convergence speed; these parameters will be further fine-tuned so as to achieve better overall performance

Table 2: Initial conditions for the simulation examples.

State (unit) Value
xm(m) 0
ym(m) 0
Vm(m/s) 600
cm(°) 60
ξ 0.707
θf(°) 20
xt(m) 5000
yt(m) 2500
Vt(m/s) 300
ct(°) 10
ωn 10
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Figure 3: Trajectories of the missile and target in scenario 1.
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Figure 4: Curves of the LOS angle in scenario 1.
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error, and a relatively small control energy. It is worth noting
that although FTC-SMO exhibits the largest LOS error, the
required control energy is the smallest. +e reason for this
phenomenon is that FTC-SMO does not consider the LOS
angle constraint. Besides, compared with SMB-ESO, the
control energy of AISMB-FTDO is much smaller since the
gain regulating laws work well during the interception
process. +us, we can draw the conclusion that AISMB-
FTDO has better comprehensive performance than FTC-
SMO and SMB-ESO.

4.2. Scenario 2. To further verify the capability of the pro-
posed AISMB-FTDO guidance law in a more complicated
situation, the target acceleration is described as

at � 10g cos(πt/8) in this scenario. +e design requirement
and the guidance parameters are unchanged. It is shown
from Table 4 that the AISMB-FTDO guidance law still
possesses less interception time, smaller miss disturbance,
less LOS error, and relatively small control energy than FTC-
SMO and SMB-ESO. Figure 10 depicts the trajectories of the
missile and target in scenario 2. It is obvious that the tra-
jectories of AISMB-FTDO and FTC-SMO can still be
smooth, while SMB-ESO exhibits slow chattering. +e LOS
angle and LOS angular rate are shown in Figures 11 and 12,
respectively. +e results in these two figures present that the
proposed AISMB-FTDO guidance law can still guarantee the
accuracy of the LOS angle, whereas FTC-SMO and SMB-
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Time (s)
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Figure 5: Curves of the LOS angular rate in scenario 1.
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Figure 6: Curves of missiles’ actual accelerations in scenario 1.
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Figure 7: Curves of observation errors from the disturbance ob-
server in scenario 1.

3 4 51 2 6 7 8 9 100
Time (s)

0

0.5

1

1.5

2

2.5

3

l̂ 2 
l 3 

an
d 

l 4
ˆ

ˆ

l̂2
l̂3
l̂4

Figure 8: Curves of adaptive gains 􏽢λi(i � 2, 3, and 4) in scenario 1.

14 Complexity



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 ρ
3 a

nd
 ρ

4
ˆ

ˆ

1 2 3 4 5 6 7 8 9 100
Time (s)

ρ̂3
ρ̂4

Figure 9: Curves of adaptive parameters 􏽢ρj(j � 3 and 4) in scenario 1.

Table 3: Interception result data of scenario 1.

Guidance law Interception time (s) Miss distance (m) LOS error (°) Control energy (m2/s4)
FTC-SMO 10.001 0.4336 − 17.8479 1.7734 × 105
SMB-ESO 9.866 0.3968 − 2.0710 2.5870 × 108
AISMB-FTDO 9.514 0.2763 − 0.2937 2.2498 × 105

Table 4: Interception result data of scenario 2.

Guidance law Interception time (s) Miss distance (m) LOS error (°) Control energy (m2/s4)
FTC-SMO 18.857 0.1321 − 8.4666 1.2877 × 105
SMB-ESO 17.939 0.9362 6.9654 4.6918 × 107
AISMB-FTDO 17.675 0.1921 − 0.0579 1.7983 × 105
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Figure 10: Trajectories of the missile and target in scenario 2.
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Figure 11: Curves of the LOS angle in scenario 2.
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ESO have worse performance. Figure 13 exhibits the ac-
celerations of the missiles. It can be concluded that the
curves of AISMB-FTDO and FTC-SMO are smoother.
Besides, the curve of SMB-ESO is pretty difficult for the
actual implement. Figure 14 shows that the estimation ac-
curacy of FTDO is still favorable in the presence of high
maneuverability, while SMO still causes severe chattering
problem. +e adaptive gains and adaptive parameters are
shown in Figures 15 and 16. +ese variables determine the
satisfactory guidance performance.

Remark 10. +e observation errors in Figures 7 and 14 both
show large sudden changes at the ending of the interception,
which will degrade the actual control effect. +is may result

from the rapidly decreasing of r. +us, the disturbance
observers are disabled if r< r∗, where r∗ is a predesigned
parameter by trial and error.

Remark 11. Based on the above simulation results and
analysis, it is apparent that the proposed AISMB-FTDO
guidance law can provide better performance. Firstly, the
comparisons between these three methods can verify the
superiority of proposed FTDO. As shown in Figures 7 and
14, it is obvious that the convergence time of SMO and
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AISMB−FTDO
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Figure 12: Curves of the LOS angular rate in scenario 2.
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Figure 13: Curves of missiles’ actual acceleration in scenario 2.
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FTDO is smaller than that of ESO. Besides, we can see from
Figures 7 and 14 that the curves of FTDO are smoother than
SMO since SMO causes serious chattering problem. Sec-
ondly, as shown in Tables 3 and 4, the control energy of
SMB-ESO is much larger than that of AISMB-FTDO. For
this phenomenon, one of the main reasons is that the
proposed adaptive gain regulating laws exhibit well during
the interception process. Finally, compared with traditional
backstepping method in SMB-ESO, the adaptive rules are
employed to handle the “differential explosion” problem of
the virtual control input in the design process. +erefore,
above analysis will further imply the contributions of our
study.

5. Conclusions

+is paper investigates the interception problem for amissile
intercepting a target with impact angle constraint and au-
topilot dynamics. To solve this problem, we propose a
FTDO-based adaptive finite time guidance law. +e
employed FTDO can achieve fast estimation for the lumped
disturbance, and the proposed adaptive guidance laws 􏽢λi(i �

2, 3, and 4) can adjust the guidance gains accordingly. Be-
sides, the “explosion of complexity” problem inherent in the
conventional backstepping is avoided by utilizing the
adaptive laws 􏽢ρi(i � 3 and 4). Furthermore, the simulation
results clearly demonstrate the effectiveness of the proposed
composite guidance law for intercepting the highly ma-
neuvering target. In addition, we will further consider the
guidance law design with control faults, sensor noises, and
LOS limitations in our future study.
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