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We investigate and analyze the dynamics of hepatitis B with various infection phases and multiple routes of transmission. We
formulate themodel and then fractionalize it using the concept of fractional calculus. For the purpose of fractionalizing, we use the
Caputo–Fabrizio operator. Once we develop the model under consideration, existence and uniqueness analysis will be discussed.
We use fixed point theory for the existence and uniqueness analysis. We also prove that the model under consideration possesses a
bounded and positive solution. We then find the basic reproductive number to perform the steady-state analysis and to show that
the fractional-order epidemiological model is locally and globally asymptotically stable under certain conditions. For the local and
global analysis, we use linearization, mean value theorem, and fractional Barbalat’s lemma, respectively. Finally, we perform some
numerical findings to support the analytical work with the help of graphical representations.

1. Introduction

Hepatitis B virus causes inflammation of the liver. It results
from a noncytopathic virus which is called the hepatitis B
virus (HBV). Characteristic of HBV is its high tissue and
species specificity, as well as a unique genomic organization
and replication mechanism. *e infection of HBV has
multiple phases: acute and chronic.*e acute one refers to the
first six months whenever there is an exposure of some one to
the virus. Usually, in this period, the immune system has the
capability to vanish the infection, while for some severe cases,
it may also lead to the serious stage and so results in the
lifelong illness. *is is also known as the chronic stage. It
could be noted that whenever HBsAg is positive for a person
for a period of more than 6 months, it shows that it has a
chronic illness. In case of the chronic stage, often, the

individual has no history of the acute stage. *is infection
may also lead to the scarring of the liver, become liver failure,
and produce liver cancer [1]. Hepatitis B virus is transferred
bymany ways: blood (razors, sharing of blades, tooth brushes,
etc.) and semen and vaginal [2–5]. One of the other key
sources of transmission is from the infected mother to her
child called vertical transmission [6]. Worldwide, there are
millions of infected population according to the WHO, in
which only 93 millions are infected in China [7, 8]. Vaccines
are available to immunize from the HBV which are very
effective and almost provide permanent immunity [9, 10].

Mathematical modeling of infectious diseases has a vast
field and has a rich literature, which plays a significant role to
explore the dynamics and suggest the control mechanism.
Since hepatitis B is one of the life-threatening and leading
causes of death, it obtained the attention of various researches,
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and consequently, many epidemiological models were de-
veloped (see [11–15]). Anderson and May presented a study
in the form of a simple model to investigate the influence of
carriers on the transmission of hepatitis B [16]. Williams et al.
presented and analyzed the hepatitis B dynamics in the
United Kingdom [17]. Moreover, a model was presented by
Medley et al. to forecast amechanism for eliminating hepatitis
B from New Zealand [18]. In a similar way, a model that
evaluates the effectiveness of the vaccination programme with
the effect of age in China was presented by Zhao et al. [19].
Bakare et al. proposed the analysis of control by using an SIR
epidemic model [20]. More epidemic models were inves-
tigated with control strategies by Kamyad et al. [21].
Onyango developed a model to study the multiple endemic
solutions [22]. Similarly, Zhang et al. studied the dynamics
of hepatitis B in Xinjiang [23]. Very recently, Khan et al.
[24, 25] and Nana-Kyere et al. [26] formulated some ep-
idemiological models to study different parameters’ in-
fluences on the disease transmission and to suggest some
control measures for the elimination of the infection. *e
study of fractional calculus obtained the attention of re-
searchers and is growing rapidly. *is analysis has been
used to capture the axioms of inherited and the memory of
various natural and physical phenomena occurring in
different fields of science and technology. Numerous
classical models have been proved with less accuracy in case
of predicting the future dynamics of a system. However,
models having fractional order are more useful to allocate
and detain the missing information [27, 28]. It could also be
stated that the classical derivative does not provide the
dynamics between two different points [29, 30].

It is noted that hepatitis B virus transmission is influ-
enced by different factors, i.e., various phases, routes of
transmission, etc. Especially, the carriers are significant. *e
chronic carriers have no symptoms while transmitting the
infection. Moreover, it could also be noted that the increased
development of fractional calculus and fractional-order
epidemiological models are more suitable than the classical
order epidemic models and complex dynamics of hepatitis
B; we therefore investigate a hepatitis B virus transmission
epidemic model with various infection phases and multiple
routes of transmission. Moreover, we also use the fractional
calculus to fractionalize the model under consideration
which has not yet been studied to the best of our knowledge.
Once we formulate the model, we then study the existence
analysis as well as uniqueness to prove the well-posedness
and biological feasibility of the problem under consider-
ation. For this analysis, the fixed point theory will be used.
We also prove that the solutions of the proposed system are
bounded and positive.We then discuss the steady state of the
proposed model and investigate that the model under
consideration is locally and globally asymptotically stable.
For local stability analysis, we use the method of lineari-
zation, mean value theorem, and fractional Barbalat’s
lemma. Finally, some numerical simulations will be per-
formed to support the analytical work and show the dif-
ference between the classical and fractional order.

2. Preliminaries

Here, we describe the fundamental concepts related to the
fractional calculus which are helpful to obtain our results.

Definition 1 (see [30]). Let us assume a function φ(t) such
that ϕ ∈ H1(0, T), T> 0; if α> 0 and n − 1< α< n, n ∈ N,
then the Caputo and Caputo–Fabrizio derivative of the
fractional order (α) are defined, respectively, as

C
D

α
0,t φ(t)  �

1
Γ(n − α)


t

0
(t − x)

n− α− 1φn
(x)dx (1)

and

CF
D

α
0,t φ(t)  �

K(α)

(1 − α)


t

0
φ′(y)exp

α(y − t)

1 − α
 dy. (2)

In equations (1) and (2), C and CF represent, respec-
tively, Caputo and Caputo–Fabrizio, while t> 0 and K(α)

represent the normalization function such that
K(1) � 0 � K(0).

Definition 2 (see [30]). If 0< α< 1 and φ(t) varies with time
t, then the Riemann–Liouville integral of order (α) is defined
as

RL
J
α
0,t φ(t)  �

1
Γ(α)


t

0
(t − y)

α− 1φ(y)dy, (3)

while the integral of order (α) in the Caputo–Fabrizio-
Caputo (CF) sense is defined by

CF
J
α
0,t φ(t)  �

2(1 − α)φ(t)

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
φ(y)dy.

(4)

3. Model Formulation

We formulate the model keeping in view the characteristics
of hepatitis B virus and so distribute the total population
symbolized by T(t) into different compartmental pop-
ulation sizes, i.e., susceptible S(t), acute A(t), chronic C(t),
recovered/immune R(t), and vaccinated V(t). We also
define some constraints for the proposed problem:

a1: all the variables (S, A, C, R, and V) and the pa-
rameters (Π, ζ, β, ρ, ϑ, η, σ, p, c, ε, and τ) are non-
negative in the epidemic problem that is under
consideration.
a2: the successfully vaccinated portion η of the sus-
ceptible individuals goes to the recovered class.
a3: the contact of susceptible with acute infected as well
as with chronically infected is, respectively, denoted by
β and ρβ, which lead to the acute portion with prob-
ability p and go to chronic with probability (1 − p),
where this assumption is based on the hypothesis that
some of the individuals have no history of acute illness.
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a4: since some of the individuals got recovery in the
acute stage and it leads to the chronic stage for some
severe cases, therefore, a natural recovery with prob-
ability q has been proposed, while (1 − q) leads to the
chronic stage.
a5: the recovery under treatment (τ) is taken of the
chronic population.

a6: the disease-induced death rate (ε) occurs in the
chronic stage only.
a7: the newborn rate is Π and assumed to be suscep-
tible, while getting successful vaccination (ζ) leads to
the vaccinated class.

In light of these assumptions, we develop a model as
presented in the following:

dS(t)

dt
� (1 − ζ)Π − βS(t)A(t) − ρβS(t)C(t) − (ϑ + η)S(t) + σV(t),

dA(t)

dt
� p βS(t)A(t) + ρβS(t)C(t)  − (ϑ + c)A(t),

dC(t)

dt
� (1 − p) βS(t)A(t) + ρβS(t)C(t)  + qcA(t) − (ϑ + ε + τ)C(t),

dR(t)

dt
� (1 − q)cA(t) + ηS(t) + τC(t) − ϑR(t),

dV(t)

dt
� ζΠ − (ϑ + σ)V(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

with initial population sizes

S(0)> 0, A(0)≥ 0, C(0)≥ 0, R(0)> 0, V(0)> 0, (6)

where ζ is the proportion of successful vaccination indi-
viduals and Π is the newborn rate. Similarly, the trans-
mission rate of hepatitis B is denoted by β, while the reduced
transmission rate is ρ. Moreover, ϑ and η are, respectively,
the natural death rate and permanent recovered individuals’
rate. We also symbolize the recovery rate of acute and
chronic hepatitis B individuals by c and τ, respectively. *e

disease-induced death rate is represented by ε, while those
individuals who lose their immunity are represented by σ.

We extend the reported model by equation (5) to the
associated fractional-order (α< 0< α< 1) version by taking
into account the Caputo–Fabrizio-Caputo (CF) operator.
We therefore replace the derivatives in the problem under
consideration with a fractional derivative to maintain the
dimension of both sides of the equations of the proposed
model taking the α power of each parameter which becomes

CF
D

α
0,t(S(t)) � 1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( S(t) + σαV(t),

CF
D

α
0,t(A(t)) � p βαS(t)A(t) + ραβαS(t)C(t)  − ϑα + c

α
( A(t),

CF
D

α
0,t(C(t)) � (1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc

α
A(t) − ϑα + ϵα + τα( C(t),

CF
D

α
0,t(R(t)) � (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t),

CF
D

α
0,t(V(t)) � ζαΠα − ϑα + σα( V(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

We now discuss the existence and uniqueness of the
above fractional-order epidemiological model (7) in the
following section.
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4. Existence and Uniqueness

*is section is devoted to the existence and uniqueness
analysis of the solution of fractional-order epidemiological
model (7). We use the concept of fixed point theory and

prove the solution existence and uniqueness. For this
analysis, transforming the proposed system into an integral
equation, we obtain

S(t) � S(0) +
CF

J
α
0,t 1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( S(t) + σαV(t) ,

A(t) � A(0) +
CF

J
α
0,t p βαS(t)A(t) + ραβαS(t)C(t)  − ϑα + c

α
( A(t) ,

C(t) � C(0) +
CF

J
α
0,t (1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc

α
A(t) − ϑα + εα + τα( C(t) ,

R(t) � R(0) +
CF

J
α
0,t (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t) ,

V(t) � V(0) +
CF

J
α
0,t ζαΠα − ϑα + σα( V(t) .

(8)

Taking the CF fractional integral of both sides of the
above system leads to the assertions as given in the following:

S(t) � S(0) +
2(1 − α)

K(α)(2 − α)
1 − ςα( Πα − βαS(y)A(y) − ραβαS(t)C(t) − ϑ

α
+ ηα S(t) + σαV(t) 

+
2α

K(α)(2 − α)


t

0
1 − ςα(   − βαS(y)A(y) − ραβαS(y)C(y) − ϑ

α
+ ηα S(y) + σαV(y)dy,

A(t) � A(0) +
2(1 − α)

K(α)(2 − α)
p βαS(t)A(t) + p

αβαS(t)C(t)  − ϑ
α

+ c
α

 S(t) 

+
2α

K(α)(2 − α)


t

0
p βαS(y)A(y) + p

αβαS(y)C(y)  − ϑ
α

+ c
α

 A(y) dy,

B(t) � B(0) +
2(1 − α)

K(α)(2 − α)
(1 − p) βαS(t)A(t) + p

αβαS(t)C(t)  + qc
α
A(t) − ϑ

α
+ εα + τα C(t) 

+
2α

K(α)(2 − α)


t

0
(1 − p) βαS(y)A(y) + p

αβαS(y)C(y)  − qc
α
A(t) − ϑ

α
+ εα + τα C(y) dy,

R(t) � R(0) +
2(1 − α)

K(α)(2 − α)
(1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t) 

+
2α

K(α)(2 − α)


t

0
(1 − q)c

α
A(y) + ηαS(y) + ταC(y) − ϑαR(y) dy,

V(t) � V(0) +
2(1 − α)

K(α)(2 − α)
ςαΠα − ϑα + σα( V(t) 

+
2α

K(α)(2 − α)


t

0
ςαΠα − ϑα + σα( V(t) dy.

(9)
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Let ℓ1, ℓ2, ℓ3, ℓ4, and ℓ5 be the kernels, and they are
defined by

ℓ1(S(t), t) � 1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( S(t) + σαV(t) ,

ℓ2(A(t), t) � p βαS(t)A(t) + ραβαS(t)C(t)  − ϑα + c
α

( A(t) ,

ℓ3(C(t), t) � (1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc
α
A(t) − ϑα + εα + τα( C(t) ,

ℓ4(R(t), t) � (1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑαR(t) ,

ℓ5(V(t), t) � ζαΠα − ϑα + σα( V(t) .

(10)

Theorem 1. Ge above kernels ℓ1, ℓ2, ℓ3, ℓ4, and ℓ5 satisfy
axioms of Lipschitz conditions.

Proof. Let us assume that S and S1, A and A1, C and C1, R

and R1, and V and V1 are, respectively, the two functions for
the kernels ℓ1, ℓ2, ℓ3, ℓ4, and ℓ5, so we establish the following
system:

ℓ1(S(t), t) − ℓ1 S1(t), t(  � 1 − ζα( Πα − βα S − S1( A(t) − ραβα S − S1( C(t) − ϑα + ηα(  S − S1(  + σαV(t) ,

ℓ2(A(t), t) − ℓ2 A1(t), t(  � p βαS(t) A − A1(  + ραβαS(t)C(t)  − ϑα + c
α

(  A − A1(  ,

ℓ3(C(t), t) − ℓ3 C1(t), t(  � (1 − p) βαS(t)A(t) + ραβαS(t) C − C1(   + qc
α
A(t) − ϑα + εα + τα( C(t) ,

ℓ4(R(t), t) − ℓ4 R1(t), t(  � (1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑα R − R1(  ,

ℓ5(V(t), t) − ℓ5 V1(t), t(  � ζαΠα − ϑα + σα(  V − V1(  .

(11)

Cauchy’s inequality application leads to the following
system:

ℓ1(S(t), t) − ℓ1 S1(t), t( 
����

���� � 1 − ζα( Πα − βα S − S1( A(t) − ραβα S − S1( C(t) − ϑα + ηα(  S − S1(  + σαV(t)
����

����,

ℓ2(A(t), t) − ℓ2 A1(t), t( 
����

���� � p βαS(t) A − A1(  + ραβαS(t)C(t)  − ϑα + c
α

(  A − A1( 
����

����,

ℓ3(C(t), t) − ℓ3 C1(t), t( 
����

���� � (1 − p) βαS(t)A(t) + ραβαS(t) C − C1(   + qc
α
A(t) − ϑα + εα + τα( C(t)

����
����,

ℓ4(R(t), t) − ℓ4 R1(t), t( 
����

���� � (1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑα R − R1( 

����
����,

ℓ5(V(t), t) − ℓ5 V1(t), t( 
����

���� � ζαΠα − ϑα + σα(  V − V1( 
����

����.

(12)

Recursively, we obtain

S(t) �
2(1 − α)ℓ1 Sn− 1(t), t( 

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ1 Sn− 1(y), y( dy,

A(t) �
2(1 − α)ℓ2 An− 1(t), t( 

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ2 An− 1(y), y( dy,

C(t) �
2(1 − α)ℓ3 Cn− 1(t), t( 

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ3 Cn− 1(y), y( dy,

R(t) �
2(1 − α)ℓ4 Rn− 1(t), t( 

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ4 Rn− 1(y), y( dy,

V(t) �
2(1 − α)ℓ5 Vn− 1(t), t( 

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ5 Vn− 1(y), y( dy.

(13)
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*e norm application with majorizing and the difference
between successive terms imply

Un(t)
����

���� � Sn(t) − S1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ1 Sn− 1(t), t(  − ℓ1 S1,(n− 2)(t), t 

�����

�����

+
2(1 − α)

K(α)(2 − α)


t

0
ℓ1 Sn− 1(y), y(  − ℓ1 S1,n− 2(y), y  dy

�������

�������
,

Wn(t)
����

���� � An(t) − A1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ2 An− 1(t), t(  − ℓ2 A1,(n− 2)(t), t 

�����

�����

+
2(1 − α)

K(α)(2 − α)


t

0
ℓ2 An− 1(y), y(  − ℓ2 A1,n− 2(y), y  dy

�������

�������
,

Xn(t)
����

���� � Cn(t) − C1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ3 Cn− 1(t), t(  − ℓ3 C1,(n− 2)(t), t 

�����

�����

+
2(1 − α)

K(α)(2 − α)


t

0
ℓ3 Cn− 1(y), y(  − ℓ3 C1,n− 2(y), y  dy

�������

�������
,

Yn(t)
����

���� � Rn(t) − R1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ4 Rn− 1(t), t(  − ℓ4 R1,(n− 2)(t), t 

�����

�����

+
2(1 − α)

K(α)(2 − α)


t

0
ℓ4 Rn− 1(y), y(  − ℓ4 R1,n− 2(y), y  dy

�������

�������
,

Zn(t)
����

���� � Vn(t) − S1,(n− 1)(t)
����

����≤
2(1 − α)

K(α)(2 − α)
ℓ5 Vn− 1(t), t(  − ℓ5 S1,(n− 2)(t), t 

�����

�����

+
2(1 − α)

K(α)(2 − α)


t

0
ℓ4 Vn− 1(y), y(  − ℓ5 V1,n− 2(y), y  dy

�������

�������
,

(14)

where



∞

i�0
Ui(t) � Sn(t),



∞

i�0
Wi(t) � An(t),



∞

i�0
Xi(t) � Bn(t),



∞

i�0
Yi(t) � Rn(t),



∞

i�0
Zi(t) � Vn(t).

(15)

Since the kernels ℓ1, . . . , ℓ5 satisfy the Lipschitz
conditions,
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Un(t)
����

���� � Sn(t) − S1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ1 Sn− 1(t) − S1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ2 

t

0
Sn− 1(y) − S1,n− 2(y)

����
����dy,

Wn(t)
����

���� � An(t) − A1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ3 An− 1(t) − A1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ4 

t

0
An− 1(y) − A1,n− 2(y)

����
����dy,

Xn(t)
����

���� � Cn(t) − C1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ5 Cn− 1(t) − C1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ6 

t

0
Cn− 1(y) − C1,n− 2(y)

����
����dy, Yn(t)

����
����

Zn(t)
����

���� � Vn(t) − V1,n− 1(t)
����

����≤
2(1 − α)

K(α)(2 − α)
τ9 Vn− 1(t) − V1,n− 2(t)

����
����

+
2α

(2 − α)K(α)
τ10 

t

0
Vn− 1(y) − V1,n− 2(y)

����
����dy.

(16)

Theorem 2. Ge solution of fractional-order epidemiological
model (7) exists.

Proof. *e use of equation (15) with the recursive scheme
implies

Un(t)
����

����≤ ‖S(0)‖ +
2τ1(1 − α)

K(α)(2 − α)
 

n

  +
2τ2αt

K(α)(2 − α)
 

n

 ,

Wn(t)
����

����≤ ‖A(0)‖ +
2τ3(1 − α)

K(α)(2 − α)
 

n

  +
2τ4αt

K(α)(2 − α)
 

n

 ,

Xn(t)
����

����≤ ‖(0)‖ +
2τ5(1 − α)

K(α)(2 − α)
 

n

  +
2τ6αt

K(α)(2 − α)
 

n

 ,

Yn(t)
����

����≤ ‖R(0)‖ +
2τ7(1 − α)

K(α)(2 − α)
 

n

  +
2τ8αt

K(α)(2 − α)
 

n

 ,

Zn(t)
����

����≤ ‖V(0)‖ +
2τ9(1 − α)

K(α)(2 − α)
 

n

  +
2τ10αt

K(α)(2 − α)
 

n

 .

(17)

We investigate that equation (17) is the solution of model
(7); therefore, we make the following substitutions:

S(t) � Sn(t) − Y1,n(t),

A(t) � An(t) − Y2,n(t),

B(t) � Bn(t) − Y3,n(t),

R(t) � Rn(t) − Y4,n(t),

V(t) � Vn(t) − Y5,n(t),

(18)
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where Y1,n(t), Y2,n(t), Y3,n(t), Y4,n(t), and Y5,n(t) denote the
remainder terms of the series. So,

S(t) − Sn− 1(t) �
2(1 − α)ℓ1 S(t) − Π1,n(t) 

K(α)(2 − α)
+

2α
K(α)(2 − α)


t

0
ℓ1 S(y) − Y1,n(y) dy,

A(t) − An− 1(t) �
2ℓ2 A(t) − Y2,n(t) (1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)


t

0
ℓ2 A(y) − Y1,n(y) dy,

C(t) − Cn− 1(t) �
2ℓ3 C(t) − Y2,n(t) (1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)


t

0
ℓ2 C(y) − Y1,n(y) dy,

R(t) − Rn− 1(t) �
2ℓ4 R(t) − Y2,n(t) (1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)


t

0
ℓ4 R(y) − Y1,n(y) dy,

V(t) − Vn− 1(t) �
2ℓ5 V(t) − Y2,n(t) (1 − α)

K(α)(2 − α)
+

2α
K(α)(2 − α)


t

0
ℓ5 V(y) − Y1,n(y) dy.

(19)

Applying norm on both sides and the Lipschitz axiom,

S(t) −
2(1 − α)ℓ1(S(t), t)

(2 − α)K(α)
− S(0) −

2α
(2 − α)K(α)


t

0
ℓ1(S(y), y)dy

�������

�������

≤ Υ1,n(t)
����

���� 1 +
2(1 − α)τ1

(2 − α)K(α)
+

2ατ2t
(2 − α)K(α)

  ,

A(t) −
2(1 − α)ℓ2(A(t), t)

(2 − α)K(α)
− A(0) −

2α
(2 − α)K(α)


t

0
ℓ2(A(y), y)dy

�������

�������

≤ Υ2,n(t)
����

���� 1 +
2(1 − α)τ3

(2 − α)K(α)
+

2ατ4t
(2 − α)K(α)

  ,

C(t) −
2(1 − α)ℓ3(S(t), t)

(2 − α)K(α)
− C(0) −

2α
(2 − α)K(α)


t

0
ℓ3(C(y), y)dy

�������

�������

≤ Υ3,n(t)
����

���� 1 +
2(1 − α)τ5

(2 − α)K(α)
+

2ατ6t
(2 − α)K(α)

  ,

R(t) −
2(1 − α)ℓ4(R(t), t)

(2 − α)K(α)
− R(0) −

2α
(2 − α)K(α)


t

0
ℓ4(R(y), y)dy

�������

�������

≤ Υ4,n(t)
����

���� 1 +
2(1 − α)τ7

(2 − α)K(α)
+

2ατ8t
(2 − α)K(α)

  ,

V(t) −
2(1 − α)ℓ5(S(t), t)

(2 − α)K(α)
− V(0) −

2α
(2 − α)K(α)


t

0
ℓ5(V(y), y)dy

�������

�������

≤ Υ5,n(t)
����

���� 1 +
2(1 − α)τ9

(2 − α)K(α)
+

2ατ10t
(2 − α)K(α)

  .

(20)
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Taking lim as t approaches ∞, we get

S(t) �
2(1 − α)ℓ1(S(t), t)

K(α)(2 − α)
+

2α
K(α)(2 − α)


t

0
ℓ1(S(y), y)dy + S(0),

A(t) �
2(1 − α)ℓ2(A(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ2(A(y), y)dy + A(0),

C(t) �
2(1 − α)ℓ3(C(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ3(C(y), y)dy + C(0),

R(t) �
2(1 − α)ℓ4(R(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ4(R(y), y)dy + R(0),

V(t) �
2(1 − α)ℓ5(V(t), t)

(2 − α)K(α)
+

2α
(2 − α)K(α)


t

0
ℓ5(R(y), y)dy + V(0),

(21)

which proves the conclusion that the solution of the pro-
posed epidemiological model as reported by equation (7)
exists. □

Theorem 3. Ge proposed epidemiological model described
by equation (7) possesess a unique solution.

Proof. On the contradiction basis, we assume that
(S+(t), A+(t), B+(t), R+(t), V+(t)) is another solution of
model (7); then,

S(t) − S
+
(t) �

2(1 − α) ℓ1(S(t), t) − ℓ1 S
+
(t), t(  

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ1(S(y), y) − ℓ1 S

+
(y), y(  dy,

A(t) − A
+
(t) �

2(1 − α) ℓ2(S(t), t) − ℓ2 S
+
(t), t(  

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ2(A(y), y) − ℓ2 A

+
(y), y(  dy,

C(t) − C
+
(t) �

2(1 − α) ℓ3(S(t), t) − ℓ3 C
+
(t), t(  

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ3(C(y), y) − ℓ3 C

+
(y), y(  dy,

R(t) − R
+
(t) �

2(1 − α) ℓ4(R(t), t) − ℓ1 R
+
(t), t(  

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ4(R(y), y) − ℓ4 R

+
(y), y(  dy,

V(t) − V
+
(t) �

2(1 − α) ℓ5(V(t), t) − ℓ5 V
+
(t), t(  

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ5(V(y), y) − ℓ5 V

+
(y), y(  dy.

(22)
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Majorizing the above equations, we obtain

S(t) − S
+
(t)

����
���� �

2(1 − α) ℓ1(S(t), t) − ℓ1 S
+
(t), t( 

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ1(S(y), y) − ℓ1 S

+
(y), y( 

����
����dy,

A(t) − A
+
(t)

����
���� �

2(1 − α) ℓ2(A(t), t) − ℓ2 A
+
(t), t( 

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ2(A(y), y) − ℓ2 A

+
(y), y( 

����
����dy,

C(t) − C
+
(t)

����
���� �

2(1 − α) ℓ3(C(t), t) − ℓ3 C
+
(t), t( 

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ3(C(y), y) − ℓ3 C

+
(y), y( 

����
����dy,

R(t) − R
+
(t)

����
���� �

2(1 − α) ℓ4(R(t), t) − ℓ4 R
+
(t), t( 

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ4(R(y), y) − ℓ4 R

+
(y), y( 

����
����dy,

V(t) − V
+
(t)

����
���� �

2(1 − α) ℓ5(V(t), t) − ℓ5 V
+
(t), t( 

����
����

K(α)(2 − α)

+
2α

K(α)(2 − α)


t

0
ℓ5(V(y), y) − ℓ5 V

+
(y), y( 

����
����dy.

(23)

Using *eorems 1 and 2, one may obtain

S(t) − S
+
(t)

����
����≤

2τ1ψ1(1 − α)

K(α)(2 − α)
+

2τ2αϕ2t
K(α)(2 − α)

 

n

,

A(t) − A
+
(t)

����
����≤

2τ3(1 − α)ψ3
K(α)(2 − α)

+
2τ4αϕ4t

K(α)(2 − α)
 

n

,

C(t) − C
+
(t)

����
����≤

2(1 − α)τ5ψ5

K(α)(2 − α)
+

2ατ6ϕ6t
K(α)(2 − α)

 

n

,

R(t) − R
+
(t)

����
����≤

2τ7ψ7(1 − α)

K(α)(2 − α)
+

2ατ8ϕ8t
K(α)(2 − α)

 

n

,

V(t) − V
+
(t)

����
����≤

2τ9ψ9(1 − α)

K(α)(2 − α)
+

2ατ10ϕ10t
K(α)(2 − α)

 

n

.

(24)
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*e inequalities as reported by equation (24) hold for
every value of n; thus, we obtain

S(t) � S
+
(t),

A(t) � A
+
(t),

B(t) � B
+
(t),

R(t) � R
+
(t),

V(t) � V
+
(t).

(25)

We now discuss the positivity as well as the boundedness
of model (7) to show the well-posedness of the problem.

Furthermore, we define a certain region for the dynamics of
the proposed problem which is positively invariant. For this,
the following lemmas have been explored. □

Lemma 1. Since (S(t), A(t), C(t), R(t), V(t)) are the solu-
tions of model (7), let us consider that the model possesses
nonnegative initial conditions; then, the solutions
(S(t), A(t), C(t), R(t), V(t)) are nonnegative for all t≥ 0.

Proof. We assume a general fractional-order (ω) model of
system (7) as

G
D

ω
0,t(S(t)) � 1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( S(t) + σαV(t),

G
D

ω
0,t(A(t)) � p βαS(t)A(t) + ραβαS(t)C(t)  − ϑα + c

α
( A(t),

G
D

ω
0,t(C(t)) � (1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc

α
A(t) − ϑα + εα + τα( C(t),

G
D

ω
0,t(R(t)) � (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t),

G
D

ω
0,t(V(t)) � ζαΠα − ϑα + σα( V(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where G represents the fractional-order operator under
consideration and ω is the order. So, equation (26) becomes

G
D

ω
0,t(S(t))|κ(S) � 1 − ζω( Πω > 0,

G
D

ω
0,t(A(t))|κ(A) � p βωS(t)A(t) + ρωβωS(t)C(t) ≥ 0,

G
D

ω
0,t(C(t))|κ(C) � (1 − p) βωS(t)A(t) + ρωβωS(t)C(t)  + qc

ω
A(t)≥ 0,

G
D

ω
0,t(R(t))|κ(R) � (1 − q)c

ω
A(t) + ηωS(t) + τωC(t)> 0,

G
D

ω
0,t(V(t))|κ(V) � ζαΠα > 0,

(27)

where κ(ξ) � ξ � 0 and S, A, C, R, V{ contained in C(R+ ×

R+)} and ξ ∈ S, A, C, R, V{ }. By following [31], we conclude
that the solutions (S(t), A(t), C(t), R(t), V(t)) are positive
for all nonnegative t. □

Lemma 2. Let Ω be the region for dynamics of model (7)
within it which is positively invariant; then,

Ω � (S(t), A(t), C(t), R(t), V(t)) ∈

R
4
+: S + A + C + R + V≤

Π
ϑ

 
ω
.

(28)

Proof. Since N represents the total population, therefore, it
implies that

G
D

ω
0,t(T(t)) + ϑωT(t)≤Πω. (29)

*e solution of equation (29) gives

T(t)≤T(0)Eω − ϑωt
ω

(  +
Π
ϑ

 
ω

1 − Eω − ϑωt
ω

( ( , (30)

where E(.) is the Mittag-Leffler function such that
Eω(Z) � 

∞
n�0 Zn/Γ(ωi + 1). Note that, in equation (30),

whenever time increases with no bound, T(t)⟶ (Π/ϑ)ω.
Hence, if T(0)≤ (Π/ϑ)ω, then T(t)≤ (Π/ϑ)ω for all t> 0,
while ifT(0)> (Π/ϑ)ω, then T goes into the feasible regionΩ
and will never leave. So, it could be concluded that the
dynamics of the fractional-order epidemiological model can
be studied in the feasible region Ω. □

5. Steady-State Analysis

*e proposed epidemiological model (7) of the hepatitis B
virus is examined for the equilibria: disease-free and en-
demic states. Let D1 be the disease-free equilibrium of the
proposed model; then, for analyzing this point, the pop-
ulation under consideration is assumed to be infection free.
*us, the system reported by equation (7) has a disease-free
equilibrium D1 � (S0, A0, C0, R0, V0), where S0 �

qα4(1 − ζα)+ σαζα/qα1qα4 , A0 � C0 � 0, R0 � ηαΠαqα4(1 − ζα)+

σαζα/ϑαqα1qα4 , and V0 � ζαΠα/qα4 , and q1 � ϑα + ηα,
q2 � ϑα + cα, q3 � ϑα + εα + τα, and q4 � ϑα + σα. Now, to
calculate the basic reproductive number, we assume
X � (A, C)T; then, system (7) yields
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dX

dt

D1

� F − V, (31)

where

F �
pβαS

0
pραβαS

0

(1 − p)βαS
0

(1 − p)ραβαS
0

⎡⎣ ⎤⎦,

V �
q2 0

− qc
α

q3
 .

(32)

*erefore, the basic reproductive number is the spectral
radius of ρ(FV− 1), i.e., R0 � R1 + R2 + R3, where

R1 �
pβαS

0

q2
,

R2 �
ραβαS

0
(1 − p)

q3
,

R3 �
pc

αραβαqS
0

q2q3
.

(33)

Let D2 be the endemic equilibrium, and assume that
S � S∗, A � A∗, C � C∗, R � R∗, and V � V∗ at the steady
state of the proposed model; then, the solution of the re-
sultant algebraic equations will lead to the endemic

equilibrium. *us, regarding the local as well as global
analysis of the proposed model, we have the following
stability results.

Theorem 4. If R0 < 1, then the disease-free equilibrium D1 of
the proposed model (7) is locally asymptotically stable, while if
R0 > 1, then the endemic equilibrium D2 is locally asymp-
totically stable.

Proof. *e linearizable version of the proposed hepatitis B
model (7) around D1 leads to a matrix given by

J|D1
�

− q1 − βαS
0

− ραβαS
0 0 σα

0 pβαS
0

− q2 pραβαS
0 0 0

0 (1 − p)βαS
0

+ qc (1 − p)ραβαS
0

− q3 0 0

ηα (1 − q)c
α τα − ϑα 0

0 0 0 0 − q4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(34)

*e characteristic equation of the matrix J|D1
takes the

following form:

ω5
+ a1ω

4
+ a2ω

3
+ a3ω

2
+ a4ω + a5, (35)

where

a1 � q1 + q4 + ϑα + q2 1 − R1(  + q3 1 − R2( ,

a2 � q1q4 + q1 + q4(  ϑα + q2 1 − R1(  + q3 1 − R2(  

+ q2q3 1 − R0(  + q3ϑ
α 1 − R2(  + q2ϑ

α 1 − R1( ,

a3 � q1 + q4(  q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2(  + q2q3 1 − R0(  

+ q1q4 ϑα + q2 1 − R1(  +q3 1 − R2(  + q2q3ϑ
α 1 − R0( ,

a4 � q1q4 q2q3 1 − R0(  + q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2(   + q1 + q4( q2q3ϑ
α 1 − R0( ,

a5 � q1q4q2q3ϑ
α 1 − R0( .

(36)

It could be noted that the real parts of the eigenvalues of
the above matrix J|D1

are negative whenever Routh–Hurwitz
criteria, i.e., H: ai > 0, for i � 1, 2, 3, 4, 5, a1a2a3−

a2
3 − a2

1a4 > 0 and (a1a4 − a5)(a1a2a3 − a2
3− a2

1a4) − a5(a1a2
− a3)

2 − a1a
2
5 > 0}, hold. So,

a1a2a3 − a
2
3 − a

2
1a4 � q1 + q4 + ϑα + q2 1 − R1(  + q3 1 − R2(   q1q4 + q1 + q4(  ϑα + q2 1 − R1( 

+ q3 1 − R2(  + q2q3 1 − R0(  + q3ϑ
α 1 − R2(  + q2ϑ

α 1 − R1(  q1 + q4(  q2ϑ
α 1 − R1( 

+ q3ϑ
α 1 − R2(  + q2q3 1 − R0(  + q1q4 ϑα + q2 1 − R1(  + q3 1 − R2( ( 

+ q2q3ϑ
α 1 − R0(  − q1 + q4(  q2ϑ

α 1 − R1(  + q3ϑ
α 1 − R2(  + q2q3 1 − R0(  

+ q1q4 ϑα + q2 1 − R1(  + q3 1 − R2(   + q2q3ϑ
α 1 − R0( 

2
− q1 + q4 + ϑα(

+ q2 1 − R1(  + q3 1 − R2( 
2

q1q4 q2 1 − R1(  + q3 1 − R2(  + q2q3 1 − R0( (  + q1 + q4( q2q3ϑ
α 1 − R0(  ,

(37)
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and

a1a4 − a5(  a1a2a3 − a
2
3 − a

2
1a4  − a5 a1a2 − a3( 

2
− a1a

2
5

�

q1 + q4 + ϑα + q2 1 − R1(  + q3 1 − R2( ( 

q1q4 q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2(  + q2q3 1 − R0( (  + q1 + q4( q2q3 1 − R0(  + q1 + q4( q2q3ϑ
α 1 − R0( ( 

− q1q4q2q3ϑ
α 1 − R0( 

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

q1 + q4 + ϑα + q2 1 − R1(  + q3 1 − R2( (  q1q4 + q1 + q4(  ϑα + q2 1 − R1(  + q3 1 − R2(   + q2q3 1 − R0(  + q3ϑ
α 1 − R2(  + q2ϑ

α 1 − R1(  

q1 + q4(  q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2(  + q2q3 1 − R0(   + q1q4 ϑα + q2 1 − R1(  + q3 1 − R2(   + q2q3ϑ
α 1 − R0(  

− q1 + q4(  q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2(  + q2q3 1 − R0(   + q1q4 ϑα + q2 1 − R1(  + q3 1 − R2( (  + q2q3ϑ 1 − R0(  
2

− q1 + q4 + ϑ + q2 1 − R1(  + q3 1 − R2(  
2

q1q4 q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2(  + q2q3 1 − R0( (  + q1 + q4( q2q3ϑ
α 1 − R0( ( 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− q1q2q3q4ϑ
α 1 − R0( 

q1 + q4 + ϑα + q2 1 − R1(  + q3 1 − R2( ( 

q1q4 + q1 + q4(  ϑα + q2 1 − R1(  + q3 1 − R2(   + q2q3 1 − R0(  + q3ϑ
α 1 − R2(  + q2ϑ

α 1 − R1(  

− q1 + q4(  q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2(  + q2q3 1 − R0(   − q1q4 ϑα + q2ϑ
α 1 − R1(  + q3ϑ

α 1 − R2( ( 

− q2q3ϑ
α 1 − R0( 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

− q1 + q4 + ϑα + q2 1 − R1(  + q3 1 − R2( ( q
2
1q

2
4q

2
2q

2
3ϑ

2α 1 − R0( 
2
.

(38)

Clearly, we observe that all the coefficients ai for i �

1, 2, 3, 4, 5 are positive whenever R0 < 1, and if a1a2a3 − a2
3 −

a2
1a4 and (a1a4 − a5)(a1a2a3 − a2

3 − a2
1a4)− a5(a1a2 − a3)

2 −

a1a
2
5 are positive, then it implies that the Routh–Hurwitz

criteria hold, and so, the disease-free state D1 is stable. In a
similar fashion, it can proved that the disease endemic state
D2 of the proposed model (7) is stable. □

Theorem 5. If R0 ≤ 1, then the disease-free equilibrium D1 of
the proposed model (7) is globally asymptotically stable, while
if R0 > 1, then the endemic equilibrium D2 is globally as-
ymptotically stable.

Proof. Let χ(t) � (S(t), A(t), C(t), R(t), V(t)), and we
claim that it has a finite limit whenever t approaches to∞;
then, the last equation of model (7) looks like

CF
D

α
0,tV(t) � ζαΠα − q4V(t). (39)

Since for t≥ 0 and for any φ, φ≤φet, by following the
mean value theorem and the result as stated by *eorem 3.1
in [32], equation (39) implies that

‖V(t)‖≤ aC exp − q4{ }
1/α

+1 t
, (40)

where a � ‖V0‖e− T + KTαe− T/αΓ(α) + ζαΠα, t≥T, and C is
a positive constant, and consequently, we obtain

lim
t⟶∞

V(t)≤C(ζΠ)
α
. (41)

Similarly, the first equation of the proposed fractional-
order model (7) can be rewritten as

CF
D

α
0,tS(t)≤ 1 − ζα( Πα − q1 S(t) + σαV(t). (42)

Let b � ‖S0‖e− T + KTαe− T/αΓ(α) + (1 − ζα)Πα + σαV(t);
then,

‖S(t)‖≤ bC exp − q1{ }
1/α

+1 t
, (43)

which implies that

lim
t⟶∞

S(t)≤C 1 − ζα( Πα(  + lim
t⟶∞

σα V(t), (44)

or equivalently, equation (44) may take the form after using
equation (41) in equation (44) such that

lim
t⟶∞

S(t)≤CΠα. (45)

In a similar fashion, lim of A(t), C(t), and R(t) can be
shown. Moreover, we assume that

lim
t⟶∞

χ(t) � S∞, A∞, C∞, R∞, V∞( , (46)
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and

ϕ(χ) �

ϕ1(χ)

ϕ2(χ)

ϕ3(χ)

ϕ4(χ)

ϕ5(χ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − q1S(t) + σαV(t)

p βαS(t)A(t) + ραβαS(t)C(t)  − q2A(t)

(1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc
α
A(t) − q3C(t)

(1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑαR(t)

ζαΠα − q4V(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)

*us, in light of the mean value theorem, there exist
positive constants C1 andC2 such that

ϕ(χ) ≤C1 + C2
����

����χ
����

����. (48)

So, *eorems 2.1 and 3.1 in [33] imply that
CFD

α
0,t(S(t), A(t), C(t), R(t), V(t)) is uniformly continuous.

*us, Barbalat’s lemma (for details, see [34]) implies that

lim
CF

t⟶∞
D

α
0,t(χ(t)) � (0, 0, 0, 0, 0). (49)

Consequently,

1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − q1S(t) + σαV(t) � 0,

p βαS(t)A(t) + ραβαS(t)C(t)  − q2A(t) � 0,

(1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc
α
A(t) − q3C(t) � 0,

(1 − q)c
α
A(t) + ηαS(t) + ταC(t) − ϑαR(t) � 0,

ζαΠα − q4V(t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

*erefore, (S∞, A∞, C∞, R∞, V∞) is an equilibrium
point of the proposed fractional-order epidemiological
model (7), and by a similar argument as stated by *eorem
3.1 in [35], we conclude that

lim
t⟶∞

(χ(t)) � D1,

lim
t⟶∞

(χ(t)) � D2.
(51)

Hence, the disease endemic state D2 does not exist
whenever R0 < 1, and so, limχ(t) � D1 as t approaches ∞,
and if R0 � 1, then D2 � D1 and limχ(t) � D1 as t ap-
proaches∞, while on the contrary, if R0 > 1, then D2 exists,
and thus, limχ(t) � D2 as t tends to ∞. □

6. Numerical Simulation

In this section, the numerical simulations are carried out to
understand the temporal dynamical behavior corresponding
with hepatitis B virus fractional-order epidemiological
model (7). *is is very important to show the feasibility of
the reported work and investigate the validity of the ana-
lytical work using large-scale numerical simulation. It is
important to point out that, unlike traditional numerical
analysis, there are not as many options to choose schemes for
the numerical analysis of the fractional-order epidemio-
logical model simulations [36]. *us, there is a need of
extensive research in order to develop new schemes and
techniques that are both convergent and robust in the field of
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fractional calculus. By following the numerical schemes as
reported in [37, 38], we assume [0, t] interval of simulation
and h � 10− 3 is the time step for integration, and n � T/h,

n ∈ N, and u � 0, 1, 2, . . . , n. So, the scheme may take the
following structure:

CF
Su+1 � S(0) +(1 − α) 1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( S(t) + σαV(t) 

+ αh 
u

k�0
1 − ζα( Πα − βαS(t)A(t) − ραβαS(t)C(t) − ϑα + ηα( S(t) + σαV(t) ,

CF
Au+1 � A(0) +(1 − α) p βαS(t)A(t) + ραβαS(t)C(t)  − ϑα + c

α
( A(t) 

+ αh 
u

k�0
p βαS(t)A(t) + ραβαS(t)C(t)  − ϑα + c

α
( A(t) ,

CF
Cu+1 � C(0) +(1 − α) (1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc

α
A(t) − ϑα + εα + τα( C(t) 

+ αh 
u

k�0
(1 − p) βαS(t)A(t) + ραβαS(t)C(t)  + qc

α
A(t) − ϑα + εα + τα( C(t) ,

CF
Ru+1 � (1 − α) (1 − q)c

α
A(t) + ηαS(t) + ταC(t) − ϑαR(t) 

+ αh 
u

k�0
(1 − q)c

α
A(t) + ηαS(t) +ταC(t) − ϑαR(t) + R(0),

CF
Vu+1 � (1 − α) ζαΠα − ϑα + σα( V(t)  + V(0)

+ αh 
u

k�0
ζαΠα − ϑα + σα( V(t) .

(52)

Furthermore, the parameters’ value is assumed with
biological feasibility; that is, ζ � 0.4, Π � 0.0975,

ϑ � 0.00000456, ε � 0.3454, β � 0.022, ρ � 0.048, p � 0.5,
q � 0.5, c � 0.45, η � 0.8613, τ � 0.1428, and σ � 0.06, and
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Figure 1: *e graph shows the dynamics of the susceptible population (S(t)) for different values of the fractional-order parameter (α), and
the initial population sizes are (100, 90, 80, 70, 60).
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the initial sizes of compartmental populations are
(100, 90, 80, 70, 60).

By the execution of the above scheme with the stated
parameters’ value as above along the initial sizes of pop-
ulations, we obtain the results as depicted in Figures 1–5.
*ese graphs visualize the dynamical behaviors of the

susceptible, the acutely and chronically infected, the re-
covered, and the vaccinated groups of populations. More
precisely, the dynamics of the susceptible individuals for
different values of the fractional-order parameter (α) is
shown in Figure 1, which demonstrates that if the value of α
increases, then the ratio of the susceptible individuals
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Figure 2: *e graph visualizes the dynamics of the acutely infected
population (A(t)) for different values of the fractional-order pa-
rameter (α), and the initial population sizes are (100, 90, 80, 70, 60).
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Figure 3: *e graph demonstrates the dynamics of the chronically
infected population against different values of the fractional-order
parameter (α), and the initial sizes of the population are
(100, 90, 80, 70, 60).
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Figure 4: *e graph demonstrates the dynamics of the recovered
population against different values of the fractional-order pa-
rameter (α), and the initial sizes of the population are
(100, 90, 80, 70, 60).
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Figure 5: *e graph demonstrates the dynamics of the vaccinated
population against different values of the fractional-order pa-
rameter (α), and the initial sizes of the population are
(100, 90, 80, 70, 60).
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decreases. *is shows that the fractional-order parameter
and the susceptible population are inversely proportional to
each other. Similarly, the acutely and chronically infected
population are also inversely proportional to the fractional-
order parameter (α) as shown in Figures 2 and 3, respec-
tively, while the dynamics of recovered individuals reveals
that there is a direct relation between the fractional-order
parameter (α) and the recovered population, i.e., whenever
the value of α increases, the size of the recovered population
also increases as depicted in Figure 4. *e dynamics of the
vaccinated group of population is described in Figure 5,
which demonstrates that the fractional-order parameter (α)
has a negative impact on the dynamics of the vaccinated
population, i.e., whenever the value of α increases, the size of
the population group V(t) decreases. *is analysis reveals
that the CF fractional-order model presents more valuable
outputs regarding the behavior of compartmental pop-
ulations which usually could not be obtained in case of the
classical model.

7. Conclusion

*e work carried out in this study consists of a new epi-
demiological model related to dynamics of hepatitis B virus
transmission. We used the CF operator and investigated the
dynamics of hepatitis B virus. We formulated the proposed
model first and then fractionalized by using the Capu-
to–Fabrizio operator with dimensional balance in respect of
involved epidemic parameters. We used the fixed point
theory and rigorously showed that the model under the CF
operator possesses a unique solution. We also discussed
biological as well as mathematical feasibility of the proposed
model by proving that the solutions of the model are
bounded and positive. Moreover, the basic reproductive
number is calculated, and the stability analysis of the steady
states of the proposed fractional-order epidemiological
model is shown. At the end, we presented some numerical
simulations to show the relation between compartmental
populations and the fractional-order operator. *us, the
major findings of this study show that the CF fractional-
order operator is the best choice instead of the classical
order.
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